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Abstract

Numerical results are presented for vibration frequencies of antisymmetric angle-ply laminated thin
square composite plates having different boundary conditions. Boundary conditions are chosen as 2 adjacent
free edges and the remaining edges are simply supported, clamped, or free. The Ritz method, along with
the displacement assumed in the form of simple polynomials, is applied to solve the problems. Convergence
studies are presented to demonstrate the accuracy of the results. The effects of various parameters such as
fibre orientation, number of layers, and boundary conditions upon the natural frequencies are studied.
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Introduction

Since composite plates are used widely in many
structural applications, the vibration behaviour
of composite laminated plates has been studied
by many researchers. There are many publica-
tions about symmetrically laminated plate vibration.
Qatu (1991) studied the vibration of symmetrically
laminated composite plates with different bound-
ary conditions. Narita and Leissa (1992, 1990) pre-
sented solutions for symmetrically laminated thin
cantilevered composite plates. Qatu and Leissa
(1991) studied the vibration of thin completely free
composite laminated plates. Narita (2000) investi-
gated the free vibration of composite laminated thin
plates with general edge conditions. All of the au-
thors mentioned above used classical plate theory in
their analyses. Chen et al. (1997) and Lee et al.
(1991) studied the vibration of symmetrically lam-
inated composite plates by the higher order shear
deformation theories. However, in the literature, so-
lutions for the free vibration problem of antisymmet-
ric laminated composite plates are rare (Moita et al.,
1999). Soldatos and Messina (2001) and Messina and
Soldatos (1999) investigated the vibration of anti-

symmetrically laminated composite plates by using a
unified shear deformation theory for some boundary
conditions. Although there are some studies about
antisymmetric angle ply plates, they are restricted
to a limited number of boundary conditions.
The objective of this paper is to present a simple,

approximate solution for the problem, and to study
the vibration behaviour of laminated plates with fi-
brous composite layers.

Analysis

Figure 1 shows a composite plate made of N layers
having dimensions a and b and thickness h. The x-y
plane is the mid-plane of the plate and the z axis is
normal to the plate. The stress-strain relationships
can be written in terms of a global coordinate sys-
tem in the following form, according to Vinson and
Sierakoski (1986) and Jones (1975):

 σx

σy

τxy


 =


 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66





 εx

εy

γxy


 (1)

Here Q̄ij are the components of transformed lam-
ina stiffness matrix. Displacement field components
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with Kirchoff assumptions can be expressed as

U(x, y, z, t) = u(x, y, t)− zw,x ,
V (x, y, z, t) = v(x, y, t) − zw,y ,
W (x, y, z, t) = w(x, y, t).

(2)

where u and v are tangential displacement of the
middle surface along the x and y directions, respec-
tively, and w is the transverse displacement of an
arbitrary point in the plate. U, V, and W are the
displacements of a typical point of the plate again
along the x, y, and z directions, respectively.

θ

y

0

z
h

b

a x

Figure 1. Composite plate geometry and coordinate sys-
tem.

For small displacements, the strains are defined
in terms of displacement components:

εx =
∂U

∂x
, εy =

∂V

∂y
, γxy =

∂U

∂y
+

∂V

∂x
(3)

where εx and εy are the strains along the x and y
directions, respectively, and γxy is the in-plane shear
strain. The strain energy of deformation for a thin
plate is

Vs = 1
2

∫∫
A

(σxεx + σyεy + τxyγxy)dxdy
(4)

This potential energy of the plate can be written in
terms of the displacements of the mid-plane surface
of the plate using the relations

Vs = 1
2

∫
A

{
A11u

2
,x + 2A12v,yu,x + A22v

2
,y

+2A16 (u,xu,y + u,xv,x)
+2A26(v,yu,y + v,yv,x) + A66(u,y + v,x)2

−2B11u,xw,xx − 2B16(u,yw,xx + v,xw,xx

+2u,xw,xy) − 2B26(u,yw,yy + v,xw,yy + 2v,yw,xy)
+2B12(v,yw,xx + u,xw,yy)− 2B22v,yw,yy

−4B66(u,yw,xy + v,xw,xy) +D11w
2
,xx + 2D12w,yyw,xx

+D22w
2
,yy + 4D16w,xyw,xx + 4D26w,yyw,xy

+ 4D66w
2
,xy

}
dA

(5)

where the Aij , Bij and Dij are conventional laminate
stiffness coefficients (Jones, 1975).
The kinetic energy of the composite plate is

T =
1
2
ρ

∫∫

A

(u2
,t + v2

,t + w2
,t)dxdy (6)

where ρ is the mass per unit area of plate.
For the small-amplitude (linear) free vibrations

of the plate, displacements are assumed as

u(x, y, t) = α(x, y)eiωt

v(x, y, t) = β(x, y)eiωt

w(x, y, t) = γ(x, y)eiωt.
(7)

Position dependent displacement functions α, β, and
γ can be written as double series forms of simple
polynomials in terms of the non-dimensional coordi-
nates ξ and η as

α(ξ, η) =
I∑

i=i0

J∑
j=j0

Pijξ
iηj

β(ξ, η) =
K∑

k=k0

L∑
l=l0

Qklξ
kηl

γ(ξ, η) =
M∑

m=m0

N∑
n=n0

Rmnξmηn

(8)

where ξ = x/a – ξo and η = y/b – ηo. Now con-
sider clamped boundary conditions. Equation (8)
exactly satisfies the conditions given in Table 1, be-
cause of the terms of i = 0, k = 0, m = 0, and m =
1 are neglected for zero displacement and zero slope.
Details of these coordinate transformations can be
found in the work by Qatu (1991). In the present
study, boundary conditions of the plate were chosen
in 6 different forms. Two adjacent edges of plates are
free (F) and other 2 edges are free, simply supported
(S), or clamped (C). In the Ritz method, the geo-
metric boundary conditions (i.e. zero displacement
and/or normal slope) must be at least satisfied. Ge-
ometric boundary conditions are given in Table 1.
The boundary conditions used in this study corre-
spond to classical boundary conditions given by Ba-
harlou and Leissa (1987) (i.e. simply supported, free,
and clamped correspond to S2, F4, and C1, respec-
tively). In order to satisfy the boundary conditions,
the starting terms of the series given in Eq. (8) can
be chosen as given in Table 2.
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Table 1. Geometric boundary conditions.

Boundary at ξ = constant at η = constant
condition type
Free (F) u �= 0, v �= 0, w �= 0 (no constraints) u �= 0, v �= 0, w �= 0 (no constraints)

Simply supported v = w = 0 u = w = 0
Clamped u = v = w,ξ = 0 u = v = w,ξ = 0

Table 2. Starting indices of the series.

B.C. at x = constant B.C. at y = constant
i0 k0 m0 j0 l0 n0

Free 0 0 0 0 0 0
Simply 0 1 1 1 0 1
Clamped 1 1 2 1 1 2

The Ritz method requires the minimisation of the
functional (Tmax-Vmax) with respect to the coeffi-
cients Pij , Qkl, and Rmn

∂(Tmax−Vmax)
Pij

= 0i = i0, ..., I; j = j0, ..., J
∂(Tmax−Vmax)

Qkl
= 0k = k0, ..., K; l= l0, ..., L

∂(Tmax−Vmax)
Rmn

= 0m = m0, ..., M ;n= n0, ..., N

(9)

If the upper limits of the series are taken equal to
each other (I = J = K = L = M = N), Eq. (9) yields
a total of 3 × M × N simultaneous, linear, homo-
geneous equations in unknowns Pij, Qkl, and Rmn.
Those equations can be described in matrix form as

(
[K]−Ω2 [M ]

) {δ} = 0 (10)

where [K] is the stiffness matrix, [M] is the mass
matrix and {δ} is the column vector of unknown co-
efficients Pij , Qkl, and Rmn. For a non-trivial solu-
tion, the eigenvalues (Ω) that make the determinant
equal to zero correspond to the vibration frequency
parameters.

Numerical Results

Since an increasing orthotropy degree results in poor
convergence in the Ritz method, the material proper-
ties are chosen as E1/E2= 40, G12/E2 = 0.5, and ν12

= 0.25. This material has the highest orthotropy de-
gree used in the literature. The nondimensional fre-
quency parameter is taken as Ω = ωa2(ρh/D0)1/2,
where D0 = E2h3.
A sample convergence study is presented in Ta-

ble 3 for 2-layer antisymmetric (30◦/–30◦) composite
plates. The maximum difference between a 6- and 7-
term solution is 0.65% for FFFF plates. Based on
this study, the following calculations are carried out
using 6 × 6 (108 terms).
In Table 4, the numerical results obtained for 2

and 10 layers with different fibre orientation angles
are compared to values in the literature in order to
establish the validity of the present approach. All of
the obtained results are the same as those reported
by Soldatos and Messina (2001) for completely free
plates. Unfortunately, no other results in the litera-
ture for comparison are known by the authors.

Table 3. Convergence of frequency parameters (Ω) for angle-ply square plates (30◦/–30◦).

M SSFF CSFF FFFF CFFF CCFF SFFF
4 3.975 5.503 7.745 3.307 6.155 7.698
5 3.972 5.499 6.943 3.182 6.134 7.662
6 3.970 5.494 6.943 3.079 6.130 7.586
7 3.970 5.493 6.898 3.073 6.129 7.583
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Table 4. Comparison of frequency parameters of completely free plates with previous results.

(θ/–θ) (θ/–θ)5
Present Soldatos and Messina (2001) Present Soldatos and Messina (2001)

0◦ 0.7453 0.7453 0.7453 0.7453
15◦ 1.028 1.028 1.036 1.036
30◦ 1.090 1.090 1.144 1.144
45◦ 1.153 1.153 1.195 1.195

Table 5 gives the first (fundamental) nondimen-
sional frequencies (Ω) for 4- and 10-layer square (a/b
= 1) composite plates, as the fibre orientation angle
varies between 0◦ and 90◦. As mentioned by Qatu
(1991) for FFFF, SSFF, and CCFF square plates,
symmetry about the line ξ = η exists. For this
reason, the frequencies obtained for plates with fi-
bre orientation angles θ = 60◦, 75◦, and 90◦ are the
same as those with angles of θ = 30◦, 15◦, and 0◦,
respectively. In each column, the maximum value is
indicated by an asterisk. It is observed that for all
numbers of layers studied for CFFF the maximum
fundamental frequency occurs for θ = 0◦ plates and
for FFFF, SFFF, and SSFF plates for θ = 45◦. For
4 and 10 layers, maximum frequencies were obtained
for θ = 45◦ for CCFF plates and θ = 30◦ for CSFF
plates. The frequency parameter is insensitive to the
number of layers for θ = 0◦ and θ = 90◦ for all bound-
ary conditions considered.
Table 6 gives 4 nondimensional frequencies (Ω)

for 2-layer antisymmetric square plates. In each col-
umn, the maximum value of the parameters corre-
sponding to each mode for different fibre orientations
is indicated by ∗an asterisk. Increasing the fibre an-
gle θ from 0◦ to 45◦ increases the lowest 2 nondimen-
sional frequencies for FFFF and SSFF, and decreases
fundamental frequency for CSFF and the first 2 fre-
quencies for CFFF plates. The fourth frequencies
are maximum for θ = 45◦ for all boundary conditions
except CFFF plates, where maximum frequency oc-
curs at θ = 15◦. Increasing the number of layers
increases the frequency parameter and this increase
is more pronounced for small numbers of layers.
The effects of material anisotropy on the frequen-

cies of antisymmetric angle-ply square plates with a
fibre orientation angle of 45◦ for CFFF, FFFF, and
CSFF edge boundary conditions are demonstrated
in Figures 2-4. These results are obtained by keep-
ing the material properties as G12/E2 = 0.5 and
ν12 = 0.25 constant and changing the E1/E2 ratio.
As seen from these figures, the frequency parame-
ter increased for all of these boundary conditions as
the orthotropy degree increased. These increases are

Table 5. Effects of fibre orientation angles upon fre-
quency parameters (Ω) for the plates with dif-
ferent boundary conditions.

B.C. θ 4 layers 10 layers

SSFF

0◦ 1.178 1.178
15◦ 2.692 2.730
30◦ 4.331 4.415
45◦ 4.950∗ 5.057∗

CCFF

0◦ 6.730 6.730
15◦ 6.769 7.053
30◦ 7.460 7.765
45◦ 7.914∗ 8.226∗

FFFF

0◦ 4.714 4.714
15◦ 6.542 6.553
30◦ 7.186 7.237
45◦ 7.531∗ 7.559∗

CSFF

0◦ 6.583 6.583
15◦ 6.418 6.751
30◦ 6.745∗ 7.030∗
45◦ 6.507 6.733
60◦ 5.224 5.369
75◦ 3.257 3.309
90◦ 1.750 1.750

SFFF

0◦ 2.398 2.398
15◦ 5.450 5.548
30◦ 8.588 8.839
45◦ 9.749∗ 10.049∗
60◦ 7.520 7.708
75◦ 4.669 4.678
90◦ 2.286 2.286

CFFF

0◦ 6.424∗ 6.424∗
15◦ 5.499 5.891
30◦ 4.254 4.590
45◦ 2.765 2.967
60◦ 1.566 1.637
75◦ 1.064 1.070
90◦ 1.015 1.015
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sharper for CFFF and CSFF cases compared to the
FFFF case, in which a mild increase in the frequency
parameter is observed. Although not shown here,
the behaviour of SFFF, CCFF, and SSFF plates is
nearly the same as that with a CSFF plate. It is also
seen from these figures that when the orthotropy ra-
tio is increased the difference between 6-layer and 2-
layer results becomes more pronounced for the CFFF
plate.

Table 6. Frequency parameters (Ω) for 2-layer square
plates.

B.C. θ Ω

CCFF

0◦ 6.730∗ 10.227 20.305 38.076
15◦ 5.597 12.557 23.977∗ 26.071
30◦ 6.130 15.547 22.383 32.224
45◦ 6.526 19.157∗ 20.959 41.078∗

SSFF

0◦ 1.178 5.735 15.725 28.382
15◦ 2.529 8.988 18.657∗ 20.194
30◦ 3.962 13.337 17.196 27.766
45◦ 4.483∗ 15.575∗ 16.703 35.089∗

FFFF

0◦ 4.714 6.511 11.810 18.341
15◦ 6.549 7.007 16.081 18.509
30◦ 6.942 10.193 17.530∗ 21.156
45◦ 7.321∗ 11.545∗ 14.960 25.510∗

CSFF

0◦ 6.580∗ 8.966 17.438 33.853
15◦ 5.049 11.027 21.248 25.539
30◦ 5.486 14.594 21.762∗ 28.933
45◦ 5.495 16.772∗ 19.391 36.770∗
60◦ 4.615 15.179 17.626 31.117
75◦ 3.049 10.526 18.376 22.614
90◦ 1.732 7.483 18.836 28.449

SFFF

0◦ 2.398 8.377 20.099 28.165
15◦ 5.091 12.646 24.006 27.700
30◦ 7.586 14.067∗ 28.031∗ 31.267
45◦ 8.446∗ 13.371 25.672 33.858∗
60◦ 5.375 8.126 25.110 28.129
75◦ 4.581 5.277 14.449 16.753
90◦ 2.286 4.450 8.404 14.579

CFFF

0◦ 6.424∗ 7.070∗ 10.939 21.389
15◦ 3.766 6.312 11.885 23.390∗
30◦ 2.717 6.661 13.811∗ 17.614
45◦ 1.863 6.743 10.886 17.889
60◦ 1.263 5.742 7.636 18.489
75◦ 1.036 3.984 6.476 13.207
90◦ 1.017 2.829 6.362 10.026
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Figure 2. The effect of material anisotropy on the fre-
quency parameters of [45◦/–45◦/...] antisym-
metric angle-ply plates with CFFF boundary
condition.
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Figure 3. The effect of material anisotropy on the fre-
quency parameters of [45◦/–45◦/...] antisym-
metric angle-ply plates with CSFF boundary
condition.
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Figure 4. The effect of material anisotropy on the fre-
quency parameters of [45◦/–45◦/...] antisym-
metric angle-ply plates with FFFF boundary
condition.

Conclusions

This study dealt with the free vibration analysis of
antisymmetric angle-ply laminated thin square com-
posite plates subjected to 6 different types of bound-
ary conditions on the basis of a classical plate theory.
The Ritz method was employed to find fundamen-
tal frequencies of 2-, 4-, and 10-layered antisymmet-
ric composite plates and the first 4 frequencies of
2-layered antisymmetric thin composite plates.
In applying the Ritz method, the displacement

components were assumed as the double series ex-
pansions of simple algebraic polynomials. It appears
that the Ritz method employing simple algebraic
polynomials can yield quite reliable results even for
a few initial terms in the series as far as the thin
anti-symmetric angle-ply laminates are concerned.

Finally, the effects of orthotropy degree on the
frequencies of angle-ply plates of 3 different combi-
nations of edge boundary conditions (FFFF, CSFF,
and CFFF) were demonstrated in graphical forms.
The study can also be used for the vibration prob-
lem of angle-ply composite plates by using higher
order shear deformation theory.

Nomenclature

a,b plate dimensions in x,y direc-
tions

E1, E2 elastic moduli for a composite
layer

G12 shear modulus for a composite
layer

ν12 Poisson’s ratio
h plate thickness
σx, σy, τxy stress components in cartesian

coordinates
U,V,W displacements in x-, y-, and z-

directions, respectively
u, v, w displacement components in the

midplane
Qij

(i, j = 1, 2, 6) reduced stiffnesses
εx, εy, γxy strain components
x,y,z cartesian coordinates
t time
Aij, Bij,
Dij(i, j = 1, 2, 6) stiffness
[K] stiffness matrix
[M] mass matrix
{δ} column vector of undetermined

coefficients
Ω nondimensional frequency pa-

rameter
Vs strain energy
T kinetic energy
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