ON CRYPTOGRAPHIC PROTOCOLS EMPLOYING ASYMMETRIC
PAIRINGS - THE ROLE OF ¥ REVISITED

SANJIT CHATTERJEE AND ALFRED MENEZES

ABSTRACT. Asymmetric pairings e : G1 X Gg — Gp for which an efficiently-computable
isomorphism v : Gg — G1 is known are called Type 2 pairings; if such an isomorphism
1 is not known then e is called a Type 3 pairing. Many cryptographic protocols in the
asymmetric setting rely on the existence of 1 for their security reduction while some use
it in the protocol itself. For these reasons, it is believed that some of these protocols
cannot be implemented with Type 3 pairings, while for some the security reductions
either cannot be transformed to the Type 3 setting or else require a stronger complexity
assumption. Contrary to these widely held beliefs, we argue that Type 2 pairings are
merely inefficient implementations of Type 3 pairings, and appear to offer no benefit for
protocols based on asymmetric pairings from the point of view of functionality, security,
and performance.

1. INTRODUCTION

Pairing-based cryptography, though proposed only at the turn of the century, has wit-
nessed a tremendous growth. The successful application of pairings in the design of novel
cryptographic protocols [28, 33, 9] and their potential use as a principal building block for
many others fuelled this growth. The main thrust of research efforts in this area has been,
and still is, in the development of new protocols. Simultaneously, substantial research has
been carried out to find suitable pairings [32, 4] and efficient pairing algorithms [27, 30].

For three groups Gi, Ga, G of the same (prime) order, a pairing is a function e :
G1 X Go — G that is bilinear, non-degenerate, and efficiently computable. If G; = Go
then the pairing is symmetric and following [24] we call it a Type 1 pairing. The pairing is
asymmetric when G1 # Gz. In the asymmetric setting, if there is an efficiently-computable
isomorphism) : Gy — Gy then e is called a Type 2 pairing. If no efficiently-computable
isomorphism is known from Gs to G; (or from Gy to Gg) then we call it Type 3. Known
examples of such pairings are the Weil and Tate pairings over suitable elliptic curve groups
G, and Gy, and their modifications such as the ate pairing [27] and the R-ate pairing [30].!
Since Type 1 pairings are quite restricted in terms of the choice of curves and are significantly
slower than their asymmetric counterparts at higher security levels [26], they will not be
considered in the remainder of this paper.

Current research [24] suggests that Type 3 is a better choice than Type 2 in terms of the
size of elements in G2, the cost of performing group operations in Gs, the cost of member-
ship testing in G, the feasibility of hashing into G2, and the cost of the pairing operation.
However, these performance advantages do not immediately make Type 3 pairings an obvi-
ous choice for protocols described in the asymmetric setting. Cryptographic protocols are

Date: September 27, 2009.

1Cryptographically suitable pairings can also be defined from hyperelliptic curves and, more generally,
from abelian varieties [23]. Since elliptic curve pairings are believed to offer superior performance, this paper
will only be concerned with pairings derived from elliptic curves.

1

2 SANJIT CHATTERJEE AND ALFRED MENEZES

designed to realize some concrete functionality in a secure way. The question of security is
intrinsic to that of functionality for such protocols. The question of efficiency enters only
after issues of functionality and security have been settled. In the context of pairing-based
protocols in the asymmetric setting, Type 3 can be considered to be a better choice only
if it is possible to argue that whatever is achievable in terms of functionality and security
in Type 2 can also be achieved in Type 3, and moreover if the overall performance of the
Type 3 version of the protocol is at least as good (if not better) than its Type 2 counterpart.

Performance apart, the key difference between Type 2 and Type 3 is the existence or oth-
erwise of the map 1. While there exist some protocols in the asymmetric setting which do
not require v to be efficiently computable, there are many others which do — either in the se-
curity proof or in the protocol itself. For example, consider the very first protocol described
in the asymmetric setting — the Boneh-Lynn-Shacham (BLS) short signature scheme [11].
In [11] the authors observed that the efficiently-computable isomorphism ¢ : Go — G is
essential for the security of the protocol and can be avoided only at the cost of making a
stronger complexity assumption. The same argument was later echoed by Shacham in his
PhD Thesis [34] which asserts that “the map [¢] isn’t merely a proof artifact”. These ob-
servations were likely instrumental in causing much of the subsequent work in pairing-based
cryptography to consider the Type 2 setting as the natural choice either when proposing a
new protocol or when modifying a protocol from the symmetric to the asymmetric setting.
While most of these protocols need v in the security argument only, some do use it in the
protocol itself. The use of ¥ in a protocol might further be construed as evidence that
the map ¢ cannot possibly be avoided altogether even if one is prepared to make stronger
complexity assumptions.

Galbraith, Paterson and Smart in their timely work “Pairings for cryptographers” [24]
provided an excellent exposition of what is achievable and what isn’t when a particular
type of pairing is employed. They too comment that for many pairing-based primitives, the
“security proof does not apply if the cryptosystem is implemented using pairings of the third
type” (i.e., Type 3). Since Type 3 offers better performance and flexibility they conclude
that it would be desirable if the protocol designers prove the security of their protocol in
the Type 3 setting.

While Type 3 might allow better performance for some protocols, the map i appears
to be necessary for some of the known security reductions to go through. One possible
way to resolve this dichotomy is to use a relativized assumption as introduced by Smart
and Vercauteren [36]. Using such a notion it is assumed that an underlying hard problem
remains hard even when the adversary is given oracle access to 1. Such an oracle access
allows a security reduction to go through in the Type 3 setting even when one cannot
efficiently compute 1. Smart and Vercauteren discuss the security of the Boneh-Franklin
identity-based encryption (BF-IBE) scheme and the BLS signature scheme under this kind of
relativized assumption. Their approach was further pursued by Chen, Cheng and Smart [18]
to prove the security of some identity-based key agreement protocols in the Type 3 setting.

In [16] Chatterjee et al. took a closer look at the security and efficiency aspects of two
signature schemes and two aggregate signature schemes when implemented with Barreto-
Naehrig (BN) elliptic curves [4]. One of the contributions of that work is to establish that
there is no security (or performance) benefit to be gained by using a Type 2 pairing instead
of Type 3 for the particular schemes under consideration. For example, compared to Type 2,
the BLS signature scheme in Type 3 does not depend on a stronger complexity assumption
as was stated in [11], nor is it necessary to use a relativized assumption as suggested in
[36]. This motivated us to further investigate the exact role played by ¢ in pairing-based

ASYMMETRIC PAIRINGS - THE ROLE OF ¢ REVISITED 3

protocols and in their security arguments. The current work takes the findings of [16] as its
starting point and can be seen as a sequel of it in a broader canvas.

Specifically, we find it relevant to raise the following questions. Can any cryptographic
protocol originally described in the Type 2 setting be transformed to the Type 3 setting?
What about the security of the transformed protocol — is it equivalent to the original one?
Is there any performance benefit to be accrued by working in the Type 3 setting after such
a transformation?

Our study indicates that given any protocol, Protocol-2, described using a Type-2 pair-
ing, and a security proof for Protocol-2 with respect to some problem P-2, there is a natural
transformation of Protocol-2 to a Protocol-3 that uses a Type-3 pairing, a natural trans-
formation of P-2 to P-3, and a natural transformation of the security proof to one for
Protocol-3 with respect to P-3. Moreover, Protocol-3 is at least as efficient as Protocol-2,
and P-3 is equally as hard as P-2 (for appropriately chosen parameters). In other words,
1) does not play any cryptographically significant role and hence there is no reason to use
Protocol-2 instead of Protocol-3.

The remainder of the paper is organized as follows. In §2, we compare the performance of
Type 2 and Type 3 pairings derived from elliptic curves having even embedding degree. The
complexity assumptions in the asymmetric setting are reviewed in §3 and we demonstrate
that for each complexity assumption in Type 2, there is a natural counterpart in Type 3
such that the two problems are equivalent when parameters are chosen in an appropriate
way. §4 is devoted to existing protocols in the asymmetric setting. We show how some
known protocols in the Type 2 setting can be transformed into Type 3 without affecting
the functionality or security, and moreover it is sometimes possible to obtain better per-
formance. These observations are extended in §5 where we provide general guidelines on
how to transform a given protocol as well as its security argument from Type 2 to Type 3.
Finally, we conclude in §6 with some open problems which we think will shed further light
on the role of ¥ in the context of cryptographic protocols in the asymmetric setting.

2. ASYMMETRIC PAIRINGS

Let IFy be a finite field of characteristic p > 5, and let £/ be an ordinary elliptic curve
defined over Fy. Let n be a prime divisor of #E(F,) satisfying ged(n, ¢) = 1, and let k (the
embedding degree) be the smallest positive integer such that n | ¢* — 1. We will assume
that & > 1, whence E[n] C E(F,) where E[n] denotes the n-torsion group of E. We will
further assume that n® { #E(F). Let Gr be the order-n subgroup of F?.. The (full) Tate
pairing is a non-degenerate bilinear function é : E[n] x E[n] — G and can be defined as
follows:

)

fn,P(Q 4 R)) (‘kal)/"
fn,P(R)

where R € E(F,) with R ¢ {oo, P, —Q, P — Q}, and where the Miller function f, p is a
function whose only zeros and poles in F are a zero of order n at P and a pole of order n at
oo. For cryptographic applications, one generally restricts the domain of € to a product of
two order-n subgroups G1 and Gg of E[n]. The first group G is taken to be E(Fy)[n], and
any other order-n subgroup can be selected for the second group Gy. Then the definition
of é simplifies to é(P,Q) = (fnyp(Q))(qkfl)/” for all P € G; and @ € Gy [3]. Moreover, one
assumes k to be even because then the ‘denominator elimination’ [3] speedup is applicable
for the Type 3 pairings defined next.

1) «ra-

4 SANJIT CHATTERJEE AND ALFRED MENEZES

2.1. Type 3 pairings. Following [24], we denote by D the CM discriminant of F and set

ged(k,6), if D= -3,
(2) e=< ged(k,4), if D= —4,
2, if D < —4,

and d = k/e. For example, BN curves [4] have k = 12, ¢ = 6 and d = 2, whereas MNT
curves [32] have k = 6, ¢ = 2 and d = 3. Now, F has a unique degree-e twist E defined over
F, such that n | #E(F,a) [27]. Let P, € E(F) be a point of order n, and let Gy = (P).
Then there is a monomorphism ¢ : Gy — E(Fqk) such that P, = ¢(P,) ¢ G;. The group
G2 = (P2) is the Trace-0 subgroup of E[n], so named because it consists of all points
P € EIn] for which Tr(P) = Zf 01 7'(P) = oo, where 7 denotes the g-th power Frobenius.
The monomorphism ¢ can be defined so that ¢ : Go — Go can be efficiently computed in
both directions; therefore we can identify G4 and G4, and consequently Go can be viewed as
having coordinates in F,a (instead of in the larger field Fyx). The restriction of é to G1 x G2
gives a pairing t, : G; X Go — Gr that is of the Type 3 variety because no efficiently-
computable isomorphism is known from Gy to G1. Several Type 3 pairings that are faster
to evaluate have been discovered. Among these are the ate pairing a,, : G; X Go — Gr
[27] and the R-ate pairing R, : G1 x G2 — Gp [30]. In particular, the R-ate pairing with
BN curves is the fastest pairing presently known for the 128-bit security level. Like the
ate pairing, it has the property that there is a fixed integer N (with n { N) such that
R.(P,Q) = ¢é(Q, P)N for all P € Gy, Q € Ga.
In the remainder of the paper we will consider the R-ate pairing and denote it by es.

2.2. Type 2 pairings. If P, € E[n] with P; ¢ G; and Pj ¢ Go, then G, = (Py) is an
order-n subgroup of E(F) with G # G1 and G, # G». Bilinear pairings ¢ : G; xG) — G
are of the Type 2 variety because the map Tr is an efficiently-computable isomorphism from
G} to G1. These pairings have the property that hashing onto G4 is not feasible (other than
by multiplying Pj by a randomly selected integer).

Consider now the Type 2 pairing ez : G; x G5 — G defined by ea(P, Q) = é(Q, P)*V.
Notice that this choice of pairing is without much loss of generality since in any cryptographic
application of the pairing it makes no difference if the pairing is replaced by its (2N)-th
power. As first shown in [29], the computation of es is easily reduced to the task of computing
the R-ate pairing.

Lemma 1 ([29)]). Let P € Gy and Q € Gly. Then ea(P,Q) = e3(P,Q), where Q = Q—7/(Q)
and f =k/2.

Proof. First note that Q # oo since Q & E(F,s). Moreover, Q) = Tr(Q) — Tr(xf (Q)) =
00, and hence Q € Go. Finally,

e(P,Q) = &Q,P)*"

(2Q, P)Y

(Q+Q+7T (Q), P)N
é@Q,P)N - e(@Q+77(Q), PN
= e3(P,Q),

since Q + 7/ (Q) € E(F,s) whence é(Q + 7/ (Q), P) =1 [22, Lemma IX.8]. O

D D

>

ASYMMETRIC PAIRINGS - THE ROLE OF ¢ REVISITED 5

2.3. Comparing the performance of Type 2 and Type 3 pairings. Since points in
G} have coordinates in I x whereas points in Gz have coordinates in Fa, it would appear
that the ratio of the bitlengths of points in G5 and G2 is k/d. Similarly, the ratio of the
costs of addition in G, and Go can be expected to be k?/d? bit operations (using naive
methods for extension field arithmetic). These ratios are given in Table 3 of [24]; see also
Table 5 of [18]. However, as observed in [16], points in G} have a shorter representation
which we describe next. We emphasize that this representation can be used for all order-n
subgroups G of E[n] different from G; and Gs.

Let P be an arbitrary point from E[n] \ (G; U Gs), and set G, = (Pj). Define P, =
+Tr(P3) so that the map

Q YiG =G Qe 1THQ)

is an efficiently-computable isomorphism with ¢(P}) = P;. Finally, set Py = ¢~ (P} — Py)
for an arbitrary integer ¢ € Z;. Then P> € G2 and the map

(4) p:Gy =Gz, Q—Q-9Y(Q)

is an efficiently-computable isomorphism with p(Pj) = cPs.

Now, given a point @ € G, one can efficiently determine the unique points Q1 € Gy
and Q2 € Gy such that Q = Q1 + Q2; namely, Q1 = ¥(Q) and Q2 = p(Q) = Q — Q1.
Writing D(Q) = (¢(Q),p(Q)), and letting H, C G; x Gy denote the range of D, we
have an efficiently-computable isomorphism D : G5 — HY whose inverse is also efficiently
computable. Hence, without loss of generality, points @ € G5 can be represented by a
pair of points (Q1,Q2) with Q1 € G; and Q2 € Go. Note that arithmetic in Gf with this
representation is component-wise. Thus the ratio of the bitlengths of points in G} and Go
is in fact (d + 1)/d, while the ratio of the costs of addition in G and Gz is (d? 4 1)/d>.

Table 2 of [16] lists the costs of performing basic operations in Gy, G2 and G for a
particular BN curve. The table confirms the expectation that basic operations in G are
only marginally more expensive than the operations in Go. One exception is that testing
membership in GY is several times more expensive than membership testing in Go since the
former requires two pairing operations.

In summary, we have shown that while the basic operations in the Type 2 group G}
are indeed more expensive than in the Type 3 group Gs, the differences are not as high as
previously reported. The same is true for the bitlengths of points in G versus Gy. The
remainder of the paper will compare the security and efficiency of protocols that use the
pairings es or es. For consistency with the literature on pairing-based protocols, we will use
multiplicative notation for elements of Gy, G and G. In particular, the generators of these
groups will be denoted by g1, g2 and ¢}, and the identity element will be denoted by 1.

3. HARDNESS ASSUMPTIONS IN THE ASYMMETRIC SETTING

Security of a pairing-based protocol is based on some hard problem in the respective
pairing groups. The standard practice is to argue the security of the protocol in terms of a
reduction from the hard problem to breaking the protocol in an appropriate security model.
Suppose that we have a protocol, Protocol-2, described in the Type 2 setting whose security
is based on some hard problem P-2 in that setting. Also suppose that we have some means
of obtaining a version of Protocol-2, say Protocol-3, in the Type 3 setting which achieves
the same functionality as Protocol-2. Simultaneously, we would like the assurance that
Protocol-3 is at least as secure as Protocol-2. One way to achieve this is to define a version
of problem P-2, say P-3 in the Type 3 setting, and then argue the security of Protocol-3

6 SANJIT CHATTERJEE AND ALFRED MENEZES

based on P-3. Now, if P-3 can be shown to be at least as hard as P-2, then the assurance
provided by the reduction for Protocol-3 is at least as high as the assurance provided by the
reduction for Protocol-2. If P-2 and P-3 are computationally equivalent, then the assurances
provided by the reductions are the same. Hence the security of Protocol-2 and Protocol-3
can be compared if one can find a way to define P-3 so that it is at least as hard as P-2.

For example, as shown in [16], security of BLS in the Type 2 setting is based on the
co-DHP problem (compute h* given h € Gy and g5° € G), whereas that of BLS in the
Type 3 setting is based on the co-DHP* problem (compute h* given h, g% € G; and g3 € G2).
Furthermore, these two problems are equivalent if the generators g1, g2, g5 are appropriately
chosen. We next show equivalence of the Type 2 and Type 3 variants of the bilinear Diffie-
Hellman (BDH) problem.

3.1. The bilinear Diffie-Hellman assumption. The bilinear Diffie-Hellman problem was
originally defined in the symmetric setting [9] and later extended to the asymmetric set-
ting [25, 14]. It is possible to define several versions of the problem in the asymmetric setting
—see e.g., [36, 13] and the note on variants of BDH below. We consider the following version
of the problem in Type 2 used by Galindo in [25] and which is the same as the problem
discussed in [14] when specialized to Type 2.

Definition 1 (Bilinear Diffie-Hellman Problem in Type 2 (BDH-2)). Given ¢g¢ € G; and
g’QB,géV € G for a, 8,y €r Zp, the BDH-2 problem is to compute the Type 2 pairing
value es (g1, g5)*?7. The BDH-2 assumption asserts that the BDH-2 problem is hard. The
decisional version DBDH-2 of the problem is to decide, given (g¢, g’zﬁ, 957, 7Z) € Gy x Gy x
GY x G, whether or not Z = ea(g1, g5)*??. The DBDH-2 assumption is that the DBDH-2
problem is hard.

We define a version of the BDH-2 problem in Type 3 as follows.

Definition 2 (Bilinear Diffie-Hellman Problem in Type 3 (BDH-3)). Given g, glﬁ, g1 € Gy
and gg,g; € Gy for a, 8,7 €r Z,, the BDH-3 problem is to compute the Type 3 pairing
value e3(g1,g2)*?7. The decisional version DBDH-3 of the problem is defined analogously
to DBDH-2. The BDH-3 (resp. DBDH-3) assumption 3 asserts that the BDH-3 (resp.
DBDH-3) problem is hard.

It might appear at first sight that the BDH-3 assumption is stronger than BDH-2 as two
extra elements, namely gf .97 € G1, are provided as input to the BDH-3 problem. However,
note that one can easily compute these values in BDH-2 by virtue of ¢. Hence we consider
these two problems as natural counterparts and in fact they are equivalent as we show in
Lemma 3. Essentially the same argument also applies for the decisional versions DBDH-2
and DBDH-3.

Lemma 2. Let g1, gb, g2 be generators of Gy, Gh, Gy with g1 = ¥(gh) and g2 = (p(gh))*/¢
for some ¢ € Z¥,. Then ez(g1,g5) = e3(g1, g2)%.

Proof. First note that g5 = g195. Hence, by Lemma 1, we have

62(91795)263 (glajg—é/> = €3 (glugjigg) .
™ (92) g1(m7(g2))°
The result then follows if we can establish that 7/ (g2) = g5 '

Note that Tr(m(g2)) = 7(Tr(g2)) = 7(1) = 1, whence 7(g2) € Go. Hence we can write
7(g2) = g5 for some r € [1,n — 1]. Since 7*(g2) = g2, we have ggk = g2 and hence

(5) gf” I~

ASYMMETRIC PAIRINGS - THE ROLE OF ¢ REVISITED 7

Now, ntrf — 1 since 7/ (g2) # g2. Hence (5) implies that ggfﬂ =1,s0ml(g2) =gy" O
Lemma 3. Let g1, gb, g2 be generators of Gy, Gh, Gy with g1 = ¥(gh) and go = (p(gh))*/¢
for some ¢ € Z7,. Then BDH-2 is equivalent to BDH-3.

Proof. Given a BDH-2 problem instance (g¢', géﬁ, g5"), we apply the function p : G5 — Gz to
obtain g = (p(g5”))/¢ and g3 = (p(g5"))"/* and apply ¥ : G, — Gy to obtain g7 = 1(g5")
and g7 = (gy?). The resulting BDH-3 problem instance (¢%,¢”,g7,95,97) is given to
the BDH-3 solver which returns e3(g1, g2)*?7 from which the solution ez (g1, g5)*?7 of the
original BDH-2 problem is easily obtained by Lemma 2. This establishes that BDH-2 <
BDH-3.

Conversely, given a BDH-3 problem instance (¢¢,47,97,45,93), we compute g, =
g7(g5)e and gb" = ¢7(g3)°. The resulting BDH-2 problem instance (¢, g57,g57) is given to
the BDH-2 solver which returns es(g1, g5)*??. Thereafter, the solution e3(g1, g2)*?” of the
original BDH-3 problem is easily obtained showing that BDH-3 < BDH-2. ([l

The formal equivalence between (D)BDH-2 and (D)BDH-3 is established under the con-
dition that the parameter c is known. No such equivalence is known if ¢ is unknown, nor
is there any indication that one problem is weaker than the other. Note that BDH-2 can
be solved either by solving the Diffie-Hellman problem (DHP) in G; or G or by solving
co-DHP. Similarly, BDH-3 can be solved either by solving DHP in G; or G2 or by solving
co-DHP*. Currently there is no evidence to suggest that DHP is any easier in G2 than in
G}, or, for that matter, co-DHP* is any easier than co-DHP (see §2.3 of [16] for a discussion
on the relationship between co-DHP and co-DHP*).

Variants of BDH. As already noted, it is possible to formulate different versions of BDH in
the asymmetric setting. Some of these variants have been used to argue the security of some
existing protocols. For example, Smart and Vercauteren [36] discuss several such variants
(including the relativized versions) and their relationships and show that the security of
different versions of BF-IBE relies on different versions of the BDH problem. Boyen provides
a general statement of the problem (called BDH’) in [13] for all known pairing types, the
earliest mention of which can be traced back to the work of Boyen, Mei and Waters [14].2
In Type 2 the problem is to compute ea(g1, g5)*?7 given gf‘,gf € G and géﬁ,gé'y € Gb;
we call this problem BDH-2b. Clearly BDH-2b and BDH-2 are equivalent. The analogous
problem in Type 3, which we call BDH-3b, is obtained by replacing elements of G} by
elements of G2 and the task is to compute e3(g1, gg)o‘ﬁ"ﬁ However, it is not known whether
BDH-3b is equivalent to BDH-3 (or for that matter to BDH-2 or BDH-2b). Still another
variant in Type 3, which we call BDH-3c, is to compute e3(g1, g2)*?" given g¢ € G; and
gg,g; € Go. BDH-3c is attributed to Galbraith in [13]. It is easy to see that BDH-3 <
BDH-3b < BDH-3c, but currently we do not know anything in the reverse direction.

3.2. Other assumptions. A large array of complexity assumptions have been proposed so
far in pairing groups; see [13] for a listing of such assumptions. Most of these assumptions
come in two flavors — computational and decisional as in the case of BDH. Many of these
assumptions were initially introduced in the symmetric setting to be generalized later in
the asymmetric setting. As we have noted, some authors [36, 18, 17] also used the notion

2The statement allows uniform description of the problem across different settings. However, that does
not imply that the problem remains equivalent in different settings. In other words, though the “statement
complexity” remains the same the computational complexity may be quite different!

8 SANJIT CHATTERJEE AND ALFRED MENEZES

of relativized assumption in the Type 3 setting — assuming that the problem remains hard
even when the adversary is given oracle access to .

Their apparent diversity notwithstanding, the complexity assumptions in pairing groups
can be broadly classified into two categories.

(i) Assumptions where the problem does not explicitly involve any element from G —
examples are the co-DHP, Linear, Strong DH, Hidden SDH, and Poly-SDH assump-
tions.

(i1) Assumptions where the problem involves a pairing computation and hence element of
Gr — examples are BDH, Bilinear DH Inversion (BDHI), and Bilinear DH Exponent
(BDHE) assumptions.

Given a hardness assumption in the Type 2 setting, our primary concern here is to
formulate its natural counterpart in Type 3. Note that if one is given some element g5 € Gb,
then one can easily obtain g7 = v(g5*) without knowing 2. So if the input to problem P-2
includes g4° then that implicitly implies that g7 € Gy is also part of the input. However,
that is not the case for Type 3 as 9 is not known in that setting. Hence, as in the case of
BDH and co-DHP, we insist that both gf and g3 be included in the input to -3 in order to
make it the natural counterpart of P-2 in the Type 3 setting. For an assumption in Category
(i) above, we can then use the argument of Lemma 2 of [16] (which shows the equivalence
of co-DHP and co-DHP*) to show that P-3 is equivalent to P-2, while the argument put
forth in Lemma 3 above for the case of BDH can be readily adapted to show equivalence
between P-2 and P-3 for an assumption in Category (ii).

Remark 1. For some cryptographic protocols in Type 3, it might be possible to drop one
or more elements of G; from the problem statement of P-3 without affecting the reduction.
For example, BF-IBE-3 can be proven secure under BDH-3b (see §4.1). However, we do
not know any protocol that can be proven secure under the seemingly weaker assumption
BDH-3c. Note that the input to BDH-3c includes only g¢ € G; along with gg,g; € Go,
whereas all known security reductions based on BDH in the asymmetric setting require at
least one of glﬁ or g as part of the problem input. We note that the situation is similar for
the “weaker statement” of the Linear assumption in Type 3 as stated in [13] (also attributed
to Galbraith). In fact an interesting open question is to what extent one can prune P-3 and
still use it in the security reduction of a natural cryptographic problem.

4. PROTOCOLS IN THE ASYMMETRIC SETTING

We revisit some existing pairing-based protocols in the asymmetric setting. Some of
these protocols employ the isomorphism v in the protocol itself and some others only in the
security reduction. The purpose of this investigation is twofold — to determine the exact
role played by % in the functionality and security of these protocols and then to investigate
whether it is possible to avoid the use of ¥ altogether. We begin in §4.1 with the most famous
protocol in the pairing-based setting — the identity-based encryption scheme of Boneh and
Franklin [9]. This protocol was originally described in the symmetric setting but can also be
implemented in the asymmetric setting [25, 36]. In contrast to previous findings, our study
indicates that Type 3 is indeed a better choice than Type 2 for BF-IBE taking into account
functionality, security and efficiency. We then show in §4.2 and §4.3 that this observation
extends to some other known protocols where v is used either in the protocol and/or in the
security reduction.

4.1. Boneh-Franklin IBE. For simplicity we focus on the basic version of the protocol
(called Basicldent in [9]). The same arguments apply to the full version. While it is known

ASYMMETRIC PAIRINGS - THE ROLE OF ¢ REVISITED 9

that the protocol can be implemented in both Type 2 and Type 3 (and it is possible to
better optimize the protocol in Type 3), an earlier work [36] gives the impression that the
security in the Type 3 setting might depend on a stronger complexity assumption.

BF-IBE-2. The master secret of the key generation center (KGC) is €r Z, and the
corresponding public key is goup = g4" € G5. Given a user identity id € {0,1}*, the public
key of the user is hig = H;(id) € Gy, where H;y : {0,1}* — Gy is a publicly computable hash
function. The corresponding private key is dig = h{j. To encrypt a message M € {0,1}" a
sender chooses r €g Z, and sends (g5", M & Ha(e2(hid, gpub)")) where Hy : Gy — {0,1}"
is another publicly computable hash function. The receiver computes Ha(ea(dig, g4")) and
then xors it with the second component of the ciphertext to obtain M. The decryption
process succeeds since es(did, 95") = e2(h, g5)" = e2(hid, gpub)"- The security of BF-IBE-2
is argued by a reduction from BDH-2 to the breaking of BF-IBE-2.

BF-IBE-3. The above scheme can be directly implemented in Type 3 — the KGC’s public
key will be goup = g5 € Gz and similarly the ephemeral key in the ciphertext will be
g5 € Gy. The security of BF-IBE-3 is argued by a reduction from BDH-3b to the breaking
of BF-IBE-3.

A variant of BF-IBE in Type 3 can be obtained by hashing the identities into G2. We call
this variant BF-IBE-3b which gives a smaller ciphertext overhead. Such an optimization is
not possible for BF-IBE-2 as we do not know how to hash into G5.?

BF-IBE-3b. The master public key of the key generation center is now gpu, = g7 € G
while Hy : {0,1}* — G2 and so both hiy = H1(id) and diq are in Ga. To encrypt a message
M € {0,1}™ a sender chooses g € Z,, and sends (g7, M & Ha(e(gpub, hida)")). The receiver
computes Hz(e(g7,diq)) and then xors it with the second component of the ciphertext to
obtain M. The security of BF-IBE-3b is argued by a reduction from BDH-3b.

Note that the ciphertext overhead in BF-IBE-3b is one element of G; (namely ¢7), while
that in BF-IBE-2 is one element of G). Furthermore, exponentiation in G; is faster than
exponentiation in G, and hence BF-IBE-3b is a better choice as far as performance is
concerned.

Smart and Vercauteren [36] observed that the security of BF-IBE-3 can be reduced to
either BDH-3c with oracle access to 1 or to BDH-3b without such oracle access. In the first
case one does not know how to simulate the oracle and in the second case they consider
the problem (which they call coBDH; 2) to be “somewhat unnatural”. Based on these
observations they conclude that one should use a pairing with an efficiently-computable
isomorphism, i.e., Type 2 for BF-IBE. However, as we have already noted, BDH-3b is at
least as hard as BDH-2 and so Type 3 is overall a better choice for BF-IBE.

4.2. Protocols employing . Some protocols in the asymmetric setting employ % in the
protocol itself. For example consider the verifiably encrypted signature scheme and ring
signature scheme of Boneh, Gentry, Lynn and Shacham (BGLS) [10] and the group signature
scheme with verifier-local revocation of Boneh and Shacham [12]. Here we describe the
ring signature scheme and its security argument in the original Type 2 setting and then
show how one can easily modify both to allow working in the Type 3 setting. A similar
argument applies to the verifiably encrypted signature scheme. As observed in [36], the

3Galindo in [25] assumed the existence of such a hash function. However, it is easy to either modify
the protocol in [25] which then corresponds to BF-IBE-2 above or to change the security assumption to
BDH-3b.

10 SANJIT CHATTERJEE AND ALFRED MENEZES

Boneh-Shacham group signature scheme cannot be implemented in either Type 2 or Type 3
(cf. footnote 4).

A ring signature on a message is constructed using the public keys of a set of users U
and the private key of a single user w € U. The verification process gives the assurance
that the signat