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Abstract

We show that for any constant d € N, there exists a public-key encryption scheme that
can securely encrypt any function f of its own secret-key, assuming f can be expressed as a
polynomial of total degree-d. Such a scheme is said to be key-dependent message (KDM) secure
w.r.t. degree-d polynomials. We also show that there exists a public-key encryption scheme
that is KDM secure w.r.t. all Turing machines of bounded description length and bounded
running time. The security of such public-key schemes can be based either on the standard
decision Diffie-Hellman (DDH) assumption or on the learning with errors (LWE) assumption
(with certain parameters settings).

In the case of functions that can be expressed as degree-d polynomials, we show that the
resulting schemes are also secure with respect to key cycles. Specifically, given a polynomial
number n of key pairs, the schemes can securely encrypt a degree-d polynomial whose variables
are the collection of coordinates of all n secret-keys.

Our key idea is a general transformation that amplifies KDM security. The transformation
takes an encryption scheme that is KDM secure w.r.t. some functions even when the secret keys
are weak (i.e. chosen from an arbitrary distribution with entropy k), and outputs a scheme that
is KDM secure w.r.t. a richer class of functions. The resulting scheme may no longer be secure
with weak keys. Thus, in some sense, this transformation converts security with weak keys into
amplified KDM security.
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1 Introduction

Secure encryption is one of the most fundamental tasks in cryptography, and significant work has
gone into defining and attaining it. All commonly accepted definitions for secure encryption [GM84,
RS91, BN00, BR00, DDN00, KY00, Kra01], assume that the plaintext messages to be encrypted
are independent of the secret decryption keys. However, over the years, it was observed that in
some situations the plaintext messages do depend on the secret keys. For example, a backup
system may store the backup encryption key on disk and then encrypt the entire disk, including
the key, and backup the result. Other examples arise in the context of anonymous credential
systems, as observed by Camenisch and Lysyanskaya [CLO1], and in the context of “axiomatic
secuirty” [ABHS05, LCO03].

Security in this more demanding setting was termed key-dependent message security (KDM
security) by Black, Rogoway and Shrimpton in [BRS02|, who defined KDM security both in the
symmetric and in the public-key settings. In the public-key setting, the adversary is given public
keys pky,...,pk, and can access an oracle O that upon receiving a query (i,g), where g is a
polynomial size circuit and ¢ € [n] is an index, returns an encryption of g(sky,...,sk,) under the
public key pk;. The scheme is KDM™ secure, where n is the number of public keys, if the adversary
cannot distinguish between the oracle O and an oracle that always returns an encryption of (say)
the all-zero string. In particular, in KDM(-security, the adversary is given a single public key pk
and can ask for encryptions (under pk) of functions of the corresponding secret key sk.

A more restrictive way to define KDM security is w.r.t. a class of functions. An encryption
scheme is said to be KDM™ secure w.r.t. functions in F, if the oracle O only answers queries (i, f)
for f € Fand i € [n].

In the last few years, the notion of KDM security has been extensively studied [HK07, BPS07,
BDU08, HU08, BHHO08, HH09, CCS09, ACPS09]. Without resorting to random oracles, con-
structing an encryption scheme that is KDM-secure w.r.t. all efficient functions of the secret key
(either in the symmetric or in the public-key setting) is a long-standing open problem. Significant
progress was recently made by Boneh, Halevi, Hamburg and Ostrovsky [BHHOO08], who constructed
a public-key encryption scheme that is KDM ™ secure w.r.t. all affine functions (more precisely
“affine in the exponent”), under the DDH assumption, for any polynomial n. This fundamental
result was followed by a work of Applebaum, Cash, Peikert and Sahai [ACPS09] who proved that a
variation of Regev’s scheme [Reg05] is also KDM secure w.r.t. all affine functions, under the LWE
assumption. They also constructed a very efficient symmetric encryption scheme which is KDM
secure w.r.t. all affine functions, under the learning parity with noise (LPN) assumption.

A natural question to ask is: do there exist encryption schemes (either in the symmetric or in
the public-key setting) that are KDM secure w.r.t. a richer class of functions?

Heitner and Holenstein [HH09] gave impossibility results with regards to black-box construction
of KDMW_secure encryption (even in the symmetric case). They showed that KDM(I)—security
w.r.t. poly-wise independent functions is not black-box reducible to one-way trapdoor permutations,
and also that KDM(I)—security w.r.t. all functions is not black-box reducible to essentially any
cryptographic assumption.

1.1 Our Results

We provide a general transformation that amplifies KDM security. Throughout this work, we
restrict our attention to public-key encryption schemes in which the key-generation algorithm works



by first sampling a secret key and then applying some, possibly randomized, function to produce
the public key. Many known encryption schemes have this property, e.g. [RSA78, Gam84, Reg05,
BHHOO08, ACPS09] and others. We say that an encryption scheme is entropy-k KDM-secure if
it is KDM-secure even when the secret-key is sampled from an arbitrary distribution with min-
entropy k, and the computation of the public-key is performed with perfect randomness.! Our
transformation starts with an encryption scheme £ = (G, E, D) that is entropy-k KDM®™ secure
w.r.t. some class of functions F, and converts it into another scheme £* = (G*, E*, D*), which is
KDM®™ secure w.r.t. a larger class of functions F’.

Theorem 1.1 (informal). Let &€ = (G, E, D) be a public-key encryption scheme that is entropy-k
KDM™ _secure w.r.t. a function class F. Let S denote the space of the secret keys of £, and let
KC be any set of size at least 2F. Then for every deterministic, efficiently computable and injective
mapping o : K — S there exists an encryption scheme E: = (G*, E*, D*), whose secret key, sk*,
are chosen at random from IC, such that £ is KDM™ secure w.r.t. the function class F' = Foa =

{(foa)(sk],...,sk;) = f(a(sk]),...,a(sk})) : f € F}.

We emphasize that in Theorem 1.1, we start with a scheme £ that is entropy-k KDM™)-secure
w.r.t. a function class F, and we end up with a scheme & that is not necessarily entropy-k secure
anymore. However, it is KDM(-secure w.r.t. a (supposedly richer) function class F’ (see examples
below). Therefore this theorem gives a way to convert security with weak keys, into enhanced KDM
security. This gives a formal connection between the two notions.

We apply Theorem 1.1 to the schemes of [BHHOO08] and [ACPS09] to obtain Theorems 1.2
and 1.3, respectively, presented below. In order to do that, we will argue that these schemes (or
rather, a slight modification thereof) are entropy-k KDM-secure. In what follows, A denotes the
security parameter.

Theorem 1.2 (informal). Under the DDH assumption in a group G of order q, for any class
H = {h1,...,hs : hi € {0,1}* — {0,1}} of poly(\)-time computable functions, with cardinality
¢ = poly(N), letting g be any generator of G, there exists a KDMW® _secure encryption scheme w.r.t.
the class of functions

Fn = {f(gx) — geln ihiITw o {0,1}", (t,w) € Zé X Zq} -

In this scheme, the secret-key is a vector in G¥ whose i*" coordinate is g% € {1, g}. Theorem 1.2
is obtained by applying Theorem 1.1 to the [BHHOOS8] public-key encryption scheme, which is KDM
secure w.r.t. affine functions in the exponent, using the mapping a(g¥) = (¢ ™), ..., gh®),

In particular, taking H to be the class of all degree-d monomials, we show that for any constant
d € N, there exists a public-key encryption scheme that is KDM® secure w.r.t. all polynomials
of total degree d (in the exponent). This is because degree-d polynomials over k variables can be
viewed as affine functions applied to the vector of degree-d monomials. A different selection of H
implies that for any polynomial ¢, there exists a public-key scheme that is KDM®W_secure w.r.t. all
Turing machines of description length bounded by logt¢ and running time bounded by ¢.

Theorem 1.3 (informal). Under the LWE assumption with modulus q = p?, for a prime p, for any
class H = {h1,...,hg: h; € {0,1}% — {0,1}} of poly(\)-time computable functions, with cardinality

1This notion is different from security with key-leakage, where the leakage may depend on the public-key.



¢ = poly(A), there exists a KDMW -secure encryption scheme w.r.t. the class of functions

Fp = {f(x) - %;]tihi(x) +w  (mod p): (t,w) € Z x Zp} .

The secret key space in this scheme is {0,1}*. The result is obtained by applying Theorem 1.1
to (a variant of) the [ACPS09] public-key encryption scheme, which is KDM secure w.r.t. affine
functions, using the mapping a(x) = (hi(x),. .., h¢(x)).

In a similar manner to the DDH based result, appropriate selections of H imply a KDM)
secure scheme w.r.t. all polynomials of total degree d and a KDM®_gecure scheme w.r.t. all Turing
machines of description length bounded by logt¢ and running time bounded by ¢, for ¢ = poly(\).

We are able to extend the above results, using additional techniques (Theorem 1.1 will not
suffice), and show that for the case of degree-d polynomials, both schemes obtained above are in
fact KDM () secure, based on their respective assumptions. These results are stated in the theorems
below.

Theorem 1.4 (informal). Under the DDH assumption, for any d € N, there ezists a public-
key encryption scheme that is KDM®™ -secure w.r.t. degree-d polynomials in the exponent, for any

n = poly(A).

Theorem 1.5 (informal). Under the LWE assumption, for any d € N, there exists a public-key
encryption scheme that is KDM®™ -secure w.r.t. degree-d polynomials, for any n = poly(\).

Let us compare our results with the known impossibility results. As mentioned above, [HH09]
showed a black-box impossibility result for obtaining KDM(I)—security w.r.t. the class of all func-
tions, based on essentially any cryptographic assumption. This is done by showing that an adversary
that breaks KDM(I)—security w.r.t. a random function cannot be useful in breaking the underlying
assumption.

In their reduction, it is important that the random function, relative to which KDM-security
is broken, is chosen after the encryption scheme has been defined. In contrast, in this work, the
definition of the encryption scheme is dependent on the set of functions relative to which KDM
security should hold. Namely, if the encryption scheme can evaluate the function, even in a black-
box manner, then KDM-security w.r.t. that function can be obtained (based on cryptographic
assumptions).

In other words, we show that even though it may be hard to achieve KDM security w.r.t. all
possible functions, it is possible to do so w.r.t. any arbitrary, but small enough class of functions,
i.e. one of polynomial cardinality.

Such a tool can be useful when, as a part of a cryptographic protocol, encryptions of certain
functions of the secret-key need to be transmitted. In such case, one can tailor an encryption
scheme to the required set of functions.

1.2 Owur Techniques

Let us present the intuition behind the KDM amplification theorem (Theorem 1.1). Given an
encryption scheme & that is entropy-k KDM(™-secure w.r.t. a function class F, we construct the
encryption scheme £* as follows: The key generation algorithm G*, rather than choosing the secret
key from S, it chooses sk & K, and sets pk to be the public key corresponding to the secret



key a(sk). As an example, one can think of K = {0,1}*, & = {0,1}* where ¢ = Z?:o (lf), and
a(sk) is the vector of all monomials of degree d; namely, a(z1,...,2x) = ([[;c; %i)j1<d> Where
sk = (z1,...,23) € {0,1}*. Another example is where K = {0,1}*, S = {0, 1}?°Y®*)and a(sk) as
being the vector of all Turing machines with description length O(log k) and running time at most
t (for some polynomial ¢), applied to sk. Namely, a(sk) = (M (sk)) s, where M is a Turing machine
with description length O(log k) that runs for at most ¢ steps on sk.

The encryption algorithm E* is identical to E. The decryption algorithm D* takes the secret
key sk, computes «a(sk), and decrypts the ciphertext by applying the decryption algorithm D with
the secret key a(sk).

We next exemplify why the scheme £* has amplified KDM security. Assume, for example, that
& was entropy-k KDM® secure w.r.t. all affine functions. Consider, as in the example above, «(sk)
that is the vector of all monomials of degree d. Then £ is still secure, because it applies the scheme
& with a weak secret key of min-entropy k. Moreover, the fact that £ is entropy-k KDMM-secure
w.r.t. all affine functions, implies that the scheme £* is secure w.r.t. all affine functions of a(sk),
i.e. all degree d polynomials of sk. Similarly, if a(sk) is the vector of all Turing machines with
description length O(log k) with running time at most ¢, applied to sk, then £* would be KDM ™
secure w.r.t. all functions computed by these Turing machines.

Thus, Theorem 1.1 provides us with a generic tool that can be used to amplify KDM security
of schemes that are entropy-k KDM-secure to begin with. However, the question that remains is:
Do there exist entropy-k KDM-secure schemes?

KDMW-security. [BHHOO08, ACPS09] presented encryption schemes that are KDMW_gecure
w.r.t. some classes of functions. We argue that these schemes are in fact entropy-k KDMM-secure
(for some setting of parameters). This enables us to apply Theorem 1.1 and amplify KDM®)-
security “for free”. Specifically, this implies KDM®-secure schemes w.r.t. degree-d polynomials or
bounded description and bounded running time Turing machines.

KDM(™-security. Two problems arise when trying to utilize Theorem 1.1 to obtain KDM®
security. First, a direct application of Theorem 1.1 may not produce the strongest result. Consider,
for example, the case of bounded degree polynomials. Even if we had a scheme that was entropy-k
KDM(™-secure w.r.t. affine functions, Theorem 1.1 would only imply a scheme that is KDM™)-
secure w.r.t. bounded-degree polynomials where each monomial only contains variables of the same
secret key. Second, we are not able to show entropy-k KDM(”)—security for any scheme and therefore
cannot satisfy the conditions of the theorem.

To obtain Theorems 1.4 and 1.5, therefore, additional ideas are required. Rather than applying
Theorem 1.1 directly for KDM™, we consider the schemes obtained by Theorems 1.2 and 1.3 for
the specific case where H is the class of all degree-d monomials. We then show that these schemes
are not only KDM®-secure w.r.t. degree-d polynomials, but are also KDM () -secure w.r.t. the
same class. We emphasize that monomials can contain variables from all secret-keys in the system.
This part contains the bulk of technical difficulty of this work.

While the proof for each scheme requires special treatment, the crux of the idea in both cases
is similar. We use the “linear” behavior exhibited by both underlying schemes (in the DDH-based
scheme, linearity is in the exponent) which enables the following form of homomorphism: starting
from a single public key, that corresponds to a secret key sk, it is possible to generate a public
key that corresponds to a linearly-related secret-key. This is done without knowing the original
secret key sk, only the (linear) relation. This, however, is not enough: as it turns out (and as
hinted by the intuition of Theorem 1.1 provided above), we need to apply this homomorphism on



secret-keys whose coordinates are low-degree monomials. Therefore we cannot use arbitrary linear
transformations to “switch” between secret keys. We solve this problem by presenting a class of
linear transformations that do preserve the structure of the input secret-key.

1.3 Other Related Works and Notions

One can consider an “entropy-k” variant for any security measure for public-key encryption, analo-
gously to our definition of entropy-k KDM-security; i.e., requiring that the scheme remains secure,
in the relative measure, even when the secret-key is sampled from an arbitrary entropy-k distribu-
tion. This notion is incomparable to that of key-leakage resilience, defined by Akavia, Goldwasser
and Vaikuntanathan [AGV09], and by Naor and Segev [NS09]. On the one hand, the notion of
entropy-k security is weaker since imperfect randomness is only used to generate the secret-key,
while the computation of the corresponding public-key uses perfect randomness. On the other hand,
key-leakage resilience is weaker since it requires security to hold, with high probability, over some
family of distributions, whereas entropy-k security requires security to hold for all high min-entropy
distributions.

The idea of modifying the secret-key of a public-key encryption scheme in order to achieve
additional properties has been used before. In the KDM-secure scheme of [BHHOOS], binary
vectors in the exponent of a group generator are used as secret-keys, instead of the more natural
selection of vectors in Z,. This is done in order to achieve KDM security w.r.t. the desired function
class. In [NS09], the secret-key distribution of the [BHHOO08| scheme is again modified, this time
using vectors of higher dimension than required, thus achieving security against key-leakage. The
KDM-secure public-key scheme of [ACPS09] is very similar to that of [Reg05], with one of the
changes being that the secret-key distribution is selected from a narrow Gaussian rather than being
uniform. This is done, again, in order for KDM-security to apply w.r.t. the desired set of functions.

1.4 Paper Organization

We provide notation and standard definitions in Section 2, new definitions and tools used through-
out the paper appear in Section 3. The KDM amplification theorem (Theorem 1.1) is formally
restated and proven in Section 4, where examples of applying it to specific function classes are also
provided. Sections 5 and 6 feature our DDH and LWE based constructions, respectively. Specifi-
cally, Theorems 1.2 and 1.4 are formally restated and proven in Section 5, while Theorems 1.3 and
1.5 are restated and proven in Section 6.

2 Notation and Definitions

We denote scalars in plain lowercase (z € {0,1}), vectors in bold lowercase (x € {0,1}*) and
matrices in bold uppercase (X € {0,1}**¥). All vectors are column vectors by default, a row
vector is denoted xZ. The i*" coordinate of x is denoted z;. For a set I , we use X = (x;)ies to
denote a vector that is indexed by elements in I.

Vectors in {0, 1}* are treated both as elements in Z’; and as elements in Z5. We use standard
arithmetic notation for arithmetics over Z’; and use x @y to denote the addition in Z& (i.e. bitwise
XOR operation).

For a group G with generator g and order g, if x € Zj then g* € G" denotes the vector whose ith
coordinate is g% ; similarly we denote g for matrices. For sets S C Z4 we denote g° ={g*: xS}



We note that given X € Zg"*", Y € Z;‘Xk it is possible to compute gXY given either (¢%X,Y) or
(X, gY) using poly(m,n, k) group multiplications.

Let X be a probability distribution over domain S, we write x £ X to indicate that z is
sampled from distribution X. X" denotes the n-fold product distribution of X over S™. The
uniform distribution over a set S is denoted U(S). We use z < S as abbreviation for z < U(S).
The min entropy of a random variable X over domain S is Hoo(X) = — log (max,cg Pr[X = z]).
Logarithms here, and anywhere else in this paper, are taken to the base 2. For any function f
with domain S we let f(X) denote the random variable (or corresponding distribution) obtained
by sampling x & X and outputting f(z).

We write negl(n) to denote an arbitrary negligible function, i.e. one that vanishes faster than
the inverse of any polynomial.

The statistical distance between two distributions X,Y (or random variables with those dis-
tributions) over common domain S is defined as SD(X,Y) = maxacgs |Pr[X € A] — Pr[Y € 4]].
Two ensembles { Xy, }n, {Yn}n are statistically indistinguishable if SD(X,,Y,) = negl(n), and are
computationally indistinguishable if for every poly(n)-time adversary A it holds that

[PrlA(Xy) = 1] = PriA(Y,) = 1]| = negl(n) .

Let M be a deterministic Turing Machine. We use |M| to denote the description length of M
and use exec(M, 1!, x) to denote the content of M’s output tape after running on z for ¢ computation
steps. Clearly exec(M, 1%, x) is computable in time poly(|M|, ).

2.1 Cryptographic Assumptions

Decision Diffie-Hellman (DDH). Let G be a group of prime order ¢ (in fact, we consider a
family of groups parameterized by security parameter A). The DDH assumption (on G) is that the
distributions (g, g%, ¢¥, ¢*) and (g, 9", ¢Y, g"Y) are computationally indistinguishable, where g is a
random generator for G and x, vy, z & Ly.

Learning with errors (LWE). We use the decisional version of the LWE ([Reg05]) assumption.
For any m,n,q € N such that ¢ > 2, all functions of the security parameter X\, and any probability
distribution x on Z,, the LWE,, ,, ,, assumption is that the distributions (A, As + x) and (A, u)
are computationally indistinguishable, where A & g™ ", s & Ly, x & XM, u & Lyq'.

We remark that the search version of the assumption, where the challenge is to find s, is
equivalent to the decisional version, for prime ¢, under poly(q)-time reductions. It is shown in
[ACPS09] that this equivalence also holds for ¢ = p®, for integer constant e and prime p, provided
that x is a distribution over Z, that produces an element in {—%, cee p%l} with all but negligible
probability.

Worst-case to average-case reductions of [Reg05, Pei09] can be used to obtain a connection
between LWE instances and worst case lattice problems, for some (Gaussian like) distribution x.

2.2 KDM Security

A public-key encryption scheme & = (G, E, D) is defined by its key generation, encryption and
decryption algorithms. The key generation algorithm G takes as input the unary vector 1*, where X
is called the security parameter of the scheme. All other parameters of the scheme are parameterized
by A\. We let § = {S,} denote the space of secret keys and M = { M} denote the message space of



the encryption scheme. We refer the reader to [Gol04] for a formal definition of encryption schemes
and their security.

In the scenario of key-dependent messages, we wish to model the case where functions of the
secret key can be encrypted, and require that the resulting ciphertexts are indistinguishable from
encryptions of 0. We want our definition to apply also for the case of “key cycles” where a function
of one user’s secret key is encrypted by another’s public key and vice versa. The most inclusive
definition, therefore, is parameterized by the number of users n and allows encrypting a function
of the entire vector of n secret keys under any of the corresponding public keys (this is sometimes
referred to as “clique security”). An additional parameter to be considered is the set of functions
of the secret key that we allow to encrypt. We use the definition presented in [BHHOOS].

Formally, let £ = (G, E, D) be a public key encryption scheme, n > 0 be an integer, S = {S)}
be the space of secret keys, and let 7 = {F,} be a class of functions such that 7\ C S} — M.

We define the KDM(™) game, w.r.t. the function class F, played between a challenger and an
adversary A, as follows.

Initialize. The challenger selects b < {0,1} and generates, for all i € [n], key pairs (sk;, pk;) <
G(1*). The challenger then sends {pk;};e) to A.

Query. The adversary makes queries of the form (i, f) € [n] x Fy. For each query, the challenger
computes y < f(ski,...,sk,) and sends the following ciphertext to .A.

o[ Bugly) ifb=0
By, (0) ifb=1.

Finish. A outputs a guess b’ € {0, 1}.
Adversary A wins the game if ¥ = b. The advantage of A, denoted KDM™ Adv[A, E](N) is
|Pr[W] — 1/2| where W is the event that A wins.

We sometime denote KDM;@) to indicate the function class in discussion.

3 New Definitions and Tools

3.1 Projective Encryption Schemes and Weak Keys

Projection. Throughout this paper, we only consider encryption schemes that have a projection
between the secret and public key. Namely, the key generation can be described as first sampling
the secret key from some set and then applying an efficiently computable projection function (which
can be randomized) to generate the public key.

Definition 3.1 (projection). Let £ = (G, E, D) be a public-key encryption scheme. £ is projective
if G(1*) = (sk,pk = Proj(sk)) where sk < S and Proj(-) is an efficiently computable (possibly
randomized) function.

We remark that many known encryption schemes are indeed projective, e.g. [RSA78, Gam84,
Reg05, BHHOO08, ACPS09] and others. We further remark that any secure scheme can be modified
to be projective by using the randomness of the key generation as the secret key. However such
transformation does not preserve KDM security (formally defined below) and thus we will need to
require projection explicitly.

Weak keys and entropy-k security. We are also interested in a more specific case where a
(projective) scheme remains secure even when the key generation is “improper”: the secret key is



sampled from an arbitrary distribution on § that has min-entropy k. The projection is then applied
to the sampled value.

We can think of an “entropy-k variant” of any security notion o, we thus provide a general
definition. In this work, however, we instantiate this definition with ¢ being KDM security.

Definition 3.2 (entropy-k security). Let € = (G, E,D) be a projective public-key encryption
scheme and let o be some security notion. Consider a distribution ensemble D = {D\} over
S ={S\}. Let Gp denote the following key-generator: Gp(1*) = (sk, Proj(sk)) where sk « Dy.

Let k : N — R* be some function. £ is entropy-k o-secure if for any ensemble D with Huo (D)) >
k(X) it holds that Ep(Gp, E, D) is o-secure.

We stress that entropy-k security, as defined above, is a notion incomparable to that of key-
leakage resilience (as defined in [AGV(09, NS09]). On the one hand, the notion of entropy-k security
is weaker since imperfect randomness is only used to generate the secret-key, while the projection
Proj(-) uses perfect randomness to compute the corresponding public-key. On the other hand,
key-leakage resilience is weaker since it requires security to hold with high probability over some
family of distributions, whereas entropy-k security requires security to hold for all high min-entropy
distributions.

3.2 Transformations on Expanded Secret-Keys

Let ¢ be some modulus. The set of affine functions modulo q on Z'g is
Fur = {frw(x) = tTx+w: (t,w) € ZF x Zg} .

The set of affine functions in the exponent over G*, where G is a group of order ¢ and g is a
generator of G, is denoted by

Fur = {heau(g¥) = g2 (t0) € Zf x Zg}

Degree-d polynomials over k variables can be viewed as affine functions applied to the vector
of degree-d monomials. While we consider polynomials over Z,, we only apply them to binary
variables, x € {0,1}*. We define a mapping v}, 4 that maps x € {0,1}* into the vector containing
all monomials of degree d of the variables of x.

Definition 3.3 (the vector of monomials ~,, 4). For all k,d € N and x € {0,1}*, we define the
vector of all degree-d monomials in x by

’Yk,d(x) = <ij>J§[k], .
jeJ |J]<d

In other words, letting vy q = Z;l:o (’;) denote the number of such degree-d monomials, vy, 4 :

{0,1}% — {0,1}"%4 is a mapping between vectors. We denote its image by T q = {v;.4(x) : x € {0,1}*}.

It follows immediately from the definition that v, 4 is injective, since (vj 4(x)){;} = =i, and
thus that [T’ 4| = 2k,

Intuitively, in the context of KDM-security amplification, x is our “real” secret-key, whereas
Yi.a(X), the expanded version of x, is used as a “secret-key” for a scheme that is KDM-secure w.r.t.
affine functions. This results in a KDM-secure scheme w.r.t. degree-d polynomials.



We denote the set of all degree-d polynomials over Z, with binary variables x € {0, 1}* by

Fa={fe(x)=t" Yea(x) it € Zé} .

Note that v 4(x)p = 1, i.e. the vector of monomials contains the empty monomial that always
evaluates to 1. Therefore there is no need for an additional free term w as in the definition of affine
functions.

Again, for the degree-d polynomials in exponent we denote

Fo={he(g%) = gt Ml ;¢ Zty

where g is a generator of a group G of order q.

The following lemma states that that given y € {0,1}*, we can efficiently compute a matrix
T e nge such that for all x € {0,1}* it holds that T - Vid(X) = Ve a(xDy). We think of y as the
known relation between secret-keys x and x @ y. The transformation T allows us to convert the
expanded version of x to the expanded version of x @y, i.e. to convert v, 4(x) into v, 4(x D y).

Lemma 3.1. For all k,d,q € N such that ¢ > 2, there exists an efficiently computable function
Thdq : {0,1}F — ZE, where £ = vy, q, such that setting T = Ty q4(y), for all x € {0,1}* it holds
that T - vy 4(x) = Y 4(x ® y). Moreover T is an involution, i.e. T? is the identity matriz.

Proof. Fix k,d,q,¢ and y € {0,1}*. For any x € {0, 1}* it holds that

i yi =0
(X@y)z_{ 1— yi:1
where the arithmetics is over Z,. Hence, given y, we can compute v,w € Zf; such that (x®y), =
vix; +w;: if y; = 0 then v; = 1,w; = 0 and if y; = 1 then v; = —1,w; = 1. Thus, for all J C [k],
|J| < d, it holds that v, 4(x ©y)s = [[;c;(vizi + w;). We can now open the parenthesis of the
expression (note that this can be done in time poly(¢)) and express v 4(x @ y)s as a degree-d
polynomial in x with known coefficients, or, in other words, as a linear function of ~; 4(x). These
coefficients will constitute the J™ row of the matrix T = T(y). Computing row by row, we can
construct a matrix T such that T, 4(X) = v 4(x @ y) as desired.
We note that T2 -y, 4(x) = T v} 4(x @ y) = V.4(x) and thus conclude that T? is the identity
matrix. In order to derive this last conclusion, we rely on the fact that there exist ¢ linearly-
independent vectors of the form ~; ,4(x). O

4 Amplification of KDM Security

In this section we give a general result: We show that an entropy-k KDM-secure scheme, w.r.t. a
certain class of functions, can be converted into various schemes that are KDM-secure w.r.t. richer
classes. We start by stating the general result and then present corollaries for specific classes of
functions.

4.1 Main Theorem

Before stating our theorem, let us give some intuition for how KDM-security can be amplified for
projective entropy-k schemes (as defined in Section 3.1).



Consider, for example, a projective encryption scheme £ that is entropy-k KDM-secure w.r.t.
the class of indexing functions Z = {h;(s) = s;} or, in other words, a bit by bit encryption of
the secret key is secure. Entropy-k security in particular means that we can sample the secret
key sk = s € {0,1}¢ as follows: first, sample the first k bits uniformly, call this part x; then,
set the remaining bits of s to s; = fi(x), where {f;}i=r+1,. ¢ is an arbitrary class of efficiently
computable deterministic functions. The resulting secret-key distribution has min-entropy k and
thus € is still KDM-secure w.r.t. Z with the resulting secret-key distribution. Namely, £ is secure
w.r.t. the functions h;(s) = s; = fi(x). Therefore, we can convert £ into a scheme £* by setting the
secret key in £* to be x. This £* is KDM-secure w.r.t. indexing functions as well as the functions

{fitizk1,..0-
Theorem 1.1 (restated). Let & = (G, E, D) be a projective public-key encryption scheme that is
entropy-k KDM"™ -secure w.r.t. a function class F. Let S = {S\} be the space of secret keys.

Let KK = {Kx} be a family of sets such that |K| > 2% and let o : K — S be a deterministic,
efficiently computable and injective function. Then there exists a projective encryption scheme £ =
(G*, E*, D*) with secret-key space K that is KDM™ secure w.r.t. F oo = {(f oa)(sky,...,sk,) =
fla(sky),...,a(sky,)) : f € F}.

Proof. Consider the ensemble D where Dy = a(U(K))) and consider the scheme &p = (Gp, E, D)
as in Definition 3.2. & is similar to &p with the following modifications. G*(1%) first samples

sk* & K and then computes pk = Proj*(sk*) = Proj(a(sk*)). Note that the distribution of the
public-keys is identical to that of &p while the distributions of secret-keys differ. The encryption E*
is performed identically to £. The decryption D7 «(c) is performed by first computing sk = a(sk™)
and then outputting Dg(c).

Since « is injective, it holds that Ho (D)) > k, and thus by definition, &p is KDM™)_secure
w.r.t. F.

We next show that for any adversary A* for the KDM(™ game with Ex, there exists an adversary
A for the KDM™ game with £p such that

KDM'Y Adv]A, Ep](A) = KDM') Adv[A*, EX](N) .

This will complete the proof of the theorem.

Adversary A simulates A*.
Initialize. Since the public key distributions of &p and &} are identical, A forwards its input
pky,...,pk, to A*.
Queries. When A* sends the query (i, f o a) € [n] X (F o), A sends the query (i, f).? Let sk}
denote the secret-key corresponding to pk; in £, then by definition sk; = a(sk}) is the secret-key
corresponding to pk; in Ep. Therefore f(sky,...,sky,) = (f o a)(sk],...,sk})), and A can forward
the answer to A*. Thus, A can simulate any query made by A* during the game.
Finish. When A* terminates and returns b, A also terminates and returns the same ¥'.

Since A simulates A* exactly, it follows that A achieves the same advantage in the KDM®)
game with &p as A* does with &£;. O

4.2 Exemplifying for Specific Function Classes

We demonstrate specific cases where Theorem 1.1 amplifies KDM security. We restrict our attention
to KDM® security (see discussion below).

2We represent f o o in such a way that enables to derive f.
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e Bounded description functions. We first show how to amplify the class of indexing func-
tions Z = {h;(s) = s;} into the class of all functions computable by a Turing machine with
bounded description length and bounded running time. Let £ be an entropy-k KDMM-secure
encryption scheme w.r.t. the class of indexing functions, with message space M = {0, 1} and
secret-key space S = {0,1}*. Let K = {0,1}* and a(x) = (exec(M, 1t(’\),x))‘M‘§10gg where
t(-) is some (fixed) polynomial. Then £*, defined in the proof of Theorem 1.1, is KDM™)-
secure w.r.t. all functions computable by a Turing machine with description length log ¢ and
running time ¢(\).3

e Bounded degree polynomials. We now show how to amplify the class of affine functions into
the class of bounded degree polynomials. Let £ be an entropy-k KDMM-secure encryption
scheme w.r.t. the class of affine functions FY — F, with M = F and S C F¢, for a finite
field F. Let K = {0,1}* C F* and a(x) = 7}, 4(x) with 7} 4 as in Definition 3.3 (we assume
that £ = v, 4). Namely, a contains all degree d monomials. Then &}, defined in the proof of
Theorem 1.1, is KDM(-secure w.r.t. all degree-d polynomials F¥ — TF.

We provided examples only for the case of KDM(-gecurity for two reasons. First of all, while
we present in Sections 5.2, 6.2 we present (candidates for) entropy-k KDM®-gecure schemes, we
are unable to obtain entropy-k KDM(™_secure schemes for n > 1. Secondly, even if such exist,
the result of applying Theorem 1.1 for the classes above would be weaker than expected. This is
because while the functions in the class F are applied to the vector of n secret keys, the mapping «
is only applied to one secret-key at a time. Therefore, the first example above would imply KDM™)-
security w.r.t. Turing machines that only take one of the secret keys as input; the second would
imply KDM(-security w.r.t. degree-d polynomials where each monomial only contains variables
from one secret key.

5 DDH Based KDM Security

For any constant d, we present a scheme that is KDM™ secure w.r.t. all degree-d polynomials (in
the exponent), Fy. We also present a scheme that is KDM-secure w.r.t. the class of all functions
computed by Turing machines with description length at most logt and running time ¢, for some
polynomial ¢ (more generally, w.r.t. any class of efficiently computable functions of polynomial
cardinality). Our starting point is the scheme presented in [BHHOOS8], which we denote Esuno,
which is extended using ideas from Section 4.

In Section 5.1, we present Ezuno and state its entropy-k KDM-security properties. Then, in

Section 5.2, we show how to use Theorem 1.1 to amplify the KDM(l)—security of the scheme to

)

richer classes of functions, including F,. Finally, in Section 5.3, we show that the KDM(}& -secure
d

scheme is also KDMgg)-secure.
d

5.1 Scheme &suno

The scheme, as defined in [BHHOO0S], assumes that the secret-key is sampled uniformly from g
for a specific set S = {0, 1}*. They discussed the possibility of using different sets S in the context

30ne has to be careful when showing that « is injective. We can either assume that the first k coordinates of the
output contain the input, or, if ¢ is sufficiently larger than k, we can rely on the short description and running time
of the indexing functions.
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of improving efficiency. For our purposes, we take & as one of the parameters of the scheme. The
scheme Epuno|G, S is defined as follows.

Parameters. Let G be a group of order ¢ such that log ¢ = poly(\) and let g be some generator
of G. Let £ = poly(\) and S C Zg. We require that group operations over G can be done efficiently
(in time poly())). The secret-key space of the scheme is ¢° and the message space is G. We require
that S is such that there exists an efficiently computable mapping that, for all s € S, takes ¢° and
returns s.

Key generation. On input 1%, the generator samples s £ S and sets the secret-key sk = ¢5 € G.
It then samples z & Zg and sets the public-key pk = (g7, g*ZT'S) €G! x G.

Encryption. On inputs a public-key pk = (¢97, ¢*) € G* x G, and a message w € G, encryption is
done by sampling r < Zq and outputting (¢"%,¢"" - w).

Decryption. On inputs a secret-key sk = ¢° and a ciphertext ¢ = (¢?, g*), the decryption process

is as follows. First s is extracted from sk (note that we define S so that this can be done efficiently)

a ., u

and output w = gST g“.
The following statement on the security of Eguuo[G, S] is implicit in [BHHOO08]. Specifically see
Corollary 1 and the discussion in Section 4 in their work.

Lemma 5.1 ([BHHOO08]). If SD ((a,a’ - s), (a,u)) = negl(\) for a & Zt, Sfi S, u & Zy and if

the DDH assumption holds for G, then EpunolG,S] is KDM® secure w.r.t. Fop-
A useful corollary follows.

Corollary 5.2. Euyno[G,S) is entropy-k KDMW -secure w.r.t. F,z if S = {0,1}¢, ¢-27% = negl())
and the DDH assumption holds.

Proof. Consider Eguno[G,S] where the DDH assumption holds in G and where S C {0,1}¢ and
|S| > 2%, In such case, there exists an efficiently computable mapping restoring s € S from g%,
since ¢g* € {1,¢}.

In addition, an immediate corollary of the left-over hash lemma (see [BHHOO08, Lemma 2])
implies that SD ((a,a’ -s), (a,u)) < \/q/(4S]). Therefore, if |S| > 2¥ where ¢ - 27 = negl()),
then Lemma 5.1 implies KDM(I)—security of Eeuno|G, S].

Since the above holds for any S with |S| > 2%, entropy-k KDMW-security follows. O

5.2 Amplification of KDM®W-Security

We use Theorem 1.1 and Corollary 5.2 to amplify the KDM(l)—security of Esuno. We say that a
finite set of functions, H = {hy,..., h¢}, with a common domain, is entropy preserving if ay(x) =
(h1(zx),- -+ he(z)) is an injective function.

Theorem 1.2 (restated). Let G be a group of order q for which the DDH assumption holds (more
precisely: a family of groups parameterized by \). Let g be any generator of G. Let k be such that
q-27% = negl(\). Let H = {h1,...,hy : hy € {0,1}* — {0,1}} be an entropy preserving class of
efficiently computable functions with cardinality £ = poly(X). Then there ezists a KDM® _secure
public-key encryption scheme w.r.t. the class of functions

Fr = {J(g%) = g=rea MO (6,0) € ZL x 2y}
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Proof. By Corollary 5.2, EgunolG, {0, 1}¢] is entropy-k KDMM-secure w.r.t. F,r. We apply Theo-
rem 1.1 to this scheme with « : g{o’l}k — g{ovl}z, where a(g*) = <9h(x)>heH' To do this, we need
to show that « is injective and efficiently computable: « is injective since H is entropy preserving
and since ¢ is a generator; moreover, it is efficiently computable since H is efficiently computable
and since x € {0,1}*, which means that it can be efﬁmently extracted from ¢*. Applying Theo-
rem 1.1, there exists a KDM@ _secure scheme w.r.t. faﬁ o a. By definition of F, .+ and «, it holds
that F.poa = {few(g®) = g2nen lih(x)+w . (t,w) € Zg X Lq} = Fn, as required. O

The above calls for a short discussion on parameters. The “standard” form of the DDH assump-
tion considers polylog(q)-time adversaries. Since we consider adversaries that run in time poly(A),
this implies that logq > \° for some ¢ > 0. Corollary 5.2 requires that ¢ - 27% = negl()\), i.e. that
k > logq + w(log \) > A¢. Therefore, if we base security on the standard DDH assumption then,
since £ = poly()), it holds that ¢ = poly(k). This restricts the size of classes H for which we can
apply Theorem 1.2. One example is letting ¢ = poly(\) be some polynomial and taking H be the
set of all functions computable by a Turing machine with description log/ and running time at
most ¢. In this case, £ = poly(k) means that we are restricted to Turing machines with description
length at most O(log k). Another important example, discussed in detail below, is taking H to be
the class of all monomials of degree-d. Here, the restriction ¢ = poly(k) means that we can only do
so for d = O(1).

We note, however, that if we make a stronger assumption, e.g. assume that the DDH assumption
holds also for adversaries that run in time poly(21°g(S 1), for some § € (0,1), then we could take

qg= 2108"° X and have k = log g + w(log \) = O(log1/5 A), i.e. £ = poly(A) = 29k") | In the example
of degree-d monomials, since £ < (k + 1)?, we can set d = log?lffl) = Q(K°).

Recall that v, 4, Vk,d, I'k,a were defined in Definition 3.3 and let us explicitly present the scheme
obtained in the case where H is the set of all degree-d monomials, i.e. a(g*) = g”k»d(x). We denote
this scheme by & . Theorem 1.2 implies KDM(l)—security of & wur.t. Fy, the class of degree-
d polynomials in the exponent. In Section 5.3, we show that £ actually has stronger security
properties.

Encryption scheme &£;. Scheme & is parameterized by k,d € N in addition to the parameters
of Esnno|G, T'k.4]. We require that ¢ - 27% = negl()\), where g is the order of G.

Key generation. On input 1%, we generate the secret-key by selecting x & {0,1}* and setting
sk = ¢* € GF. Let s = Yk,a(X), which is uniform in T’y 4. We generate the public key according to
Eenno|G, Tk 4], as if ¢° was the secret-key. Note that the distribution of public keys is identical to
that of 5BHHO [G, de].

Encryption. On inputs pk and w, the encryption algorithm runs the encryption of Eguuo|G, I'k 4]
on the same input.

Decryption. On inputs a secret-key sk = ¢* and a ciphertext c, the decryption algorithm first
obtains x from sk, which can be done efficiently since x € {0, 1}’“. This enables it, in turn, to
compute s = vy, 4(x). Decryption then runs the decryption algorithm of Egppo (G, 'y q] with inputs
a secret-key ¢® and a ciphertext c

5.3 KDM®™-Security w.r.t. Degree-d Polynomials
We show that the scheme & presented above is in fact KDM)_secure w.r.t. ]:"d.
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Theorem 1.4 (restated). Scheme &1, with the parameters described above, is KDM®™ secure w.r.t.
Fa, for any n = poly(N).

To prove the theorem, we use several additional properties of Egyno, stated in Lemma 5.3 below.
The proof of the lemma is implicit in [BHHOO08] and for the sake of completeness, we also provide
a proof in Appendix A.

Lemma 5.3. Consider Epuuo|G,S| where the DDH assumption holds on G. Let s € Zfl, we G

be arbitrary. Let (A,b) € Zg” X Zg be an invertible linear transformation on Zf; and define
s’ = As+b.

Let pk, pk’ be random variables distributed as public-keys corresponding to s, s’, respectively. Let
c,c’ be distributed as encryptions of the message w with the public-keys pk, pk’ respectively. Then
the following hold.

e Public-key homomorphism. There exists an efficiently computable function P(pk, A,b) such
that the distributions (pk, pk’) and (pk, P(pk, A, b)) are computationally indistinguishable.

e Ciphertext homomorphism. There exists an efficiently computable function C(c, A,b) such
that the distributions (pk, pk’,c’) and (pk,pk/,C(c, A, b)) are computationally indistinguish-
able.*

We can now prove the theorem.

Proof of Theorem 1.4. The proof works by reduction to the KDMg)
d

Theorem 1.2). Consider an adversary A for the KDM®™ game of & w.r.t. F;. We show that there
exists an adversary B for the KDM(!) game such that

KDMWAAV[B, £1](\) > KDM™ Adv[A, &](A) — negl()) .

-security of &; (established in

Initialize. B gets as input a public key pk that corresponds to some (unknown) secret x. B
samples y1,...,¥Yn & {0,1}* and computes T; = Th.d,q(yi), where Ty, g, is taken from Lemma 3.1.

Using the public key homomorphism property, B generates pky, . .., pk,, where pk; Ep (pk, T;,0)

corresponds to the secret z; = x @ y;. B forwards pky,...,pk, to A as the public keys for the n
users.
Queries. B simulates the query phase of A. Suppose A makes a query (i,h), where h € Fu.
Namely, h(g*,...,g%") = g¥#Z12n) for a degree-d polynomial ¢. B thinks of ¢ as a polynomial
in x rather than in zy,...,2,. That is, B computes a degree-d polynomial ¢'(x) such that ¢'(x) =
©(21,...,2y,). This is done by first replacing each variable z; ; in ¢ with x; if y; ; = 0, or with 1 —x;
if y;; = 1; and then computing the coefficients of all the monomials of ¢’. This can be done in
time poly(¢) by opening the parenthesis of . Let h'(g%) = g¥ .

The next step is sending k' to the challenger and receiving c, an encryption under pk of either
either h/(¢*) or 0. B uses the ciphertext homomorphism property to sample ¢/ el (¢, T;,0), which
is computationally indistinguishable from an encryption of the same message under pk;. BB returns
¢’ to A as an answer to the query (i, h).

Finish. Upon A’s completion and returning b, B also terminates and returns the same ¥'.

We now use a hybrid argument to prove the required claim. For hybrid H;, let p; denote the

probability that A returns b’ = b.

4Note that C (+) does not take pk’ as input. Therefore, this property also implies that two independent public-keys
that correspond to the same secret-key generate two computationally indistinguishable ciphertext distributions.
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1. In hybrid Hp, A interacts with the simulator B as described above. By definition,
KDMWAdv([B, E1](A) = [po — 1/2| .

2. In hybrid Hy, A interacts with with a simulator identical to B with one change: rather than
sample from the distribution P(pk, T;,0), in H; the simulator samples an actual public-key
for z;. Lemma 5.3 implies that |p; — po| = negl()\), since otherwise we can consider a hybrid
H fj ) where the first Jj keys are produced according to P(pk,T;,0) and the rest are properly
generated. Two adjacent hybrids which are computationally distinguishable enable to find
s, A, b that contradict public-key homomorphism.

3. In hybrid Hs, A interacts with a simulator identical to that of Hy, with one change: rather
than sampling from the distribution C(c, T;,0), in Ho the simulator samples an actual encryp-
tion of the relevant message with public-key pk;. Again, |p2 — p1| = negl()\) since otherwise
we can define H éj ) where the first j encryptions are obtained using ciphertext homomorphism
and the rest are properly generated. This, in turn, will imply a distinguisher for ciphertext

homomorphism.
Noting that, Hy is identical to the KDM(™-game of A, we get that KDM™ Adv[A, &](\) =
lp2 —1/2].

We conclude that KDM™M Adv[B, &](A) > KDM™Adv[A, £ ]()\) — negl(\) as required.’ O

6 LWE Based KDM Security

In this section we show similar results to those of Section 5, this time under the LWE assumption.
We follow the same general outline. First, in Section 6.1, we present the relevant previous work, in
this case - the scheme of [ACPS09], denoted Escps. Then, in Section 6.2, we prove the entropy-k
KDM(l)—security of Excpg w.r.t. affine functions F,g, and present the consequences of applying The-
orem 1.1 to Excps. Finally, in Section 6.3, we show that in the special case of degree-d polynomials,
we can in fact prove KDM(")—security of the scheme obtained from Theorem 1.1.

Preliminaries. In this section, we use distributions that are derived from Gaussians. For any
o > 0, we denote D,(z) = e ™@/9)? /5 the (scaled) density function of the one dimensional
Gaussian distribution. For any ¢ € N and o > 0 we define ¥, to be the distribution over Zq obtained

by sampling y <~ D, and outputting l¢-y] (mod ¢). We define Dzm , to be the distribution over
all x € Z™ such that Pr[x| is proportional to [] D, (x;). We note that this distribution is
efficiently sampleable for any o > 0.

1€[m)|

6.1 Scheme E,cps

We present the E,cps[S] scheme which is similar to the scheme presented in [ACPS09]. The only
difference is that we take the distribution of secret-keys as a parameter. We also use slightly
different notation for consistency with the rest of this paper.

°In our proof, the number of hybrids H§j) and Hg(j) depend on n and on the number of queries made by A
(respectively). These parameters, therefore, factor into the advantage of the DDH adversary obtained in the reduction.
We remark that using a more complicated version of Lemma 5.3, it is possible to achieve a more efficient reduction
where the number of hybrids is O(¢), regardless of n and A (as in the security proof of [BHHOO08]). For our purposes,
however, the simpler version suffices.
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Parameters. Let p be a prime and ¢ = p?. We set £, m € N to be polynomial functions of A such

that m > 2(£ 4+ 1)logq. Let x = ¥, for 0 = o(\) € (0,1) such that o < Wl(bgA)' We also fix

some 7 = w(y/log A). Finally, let S C Zg. The secret-key space is S and the message space is Zy.
Key generation. On input 1%, sample s £ S and set sk = s.6 Then, sample A & Zg”g and
nixm and set pk = (A, A -s+n) € Z;”XK X Ly
Encryption. Define the distribution Fj 1, in Zf; X Zq as follows. E y, samples r & Dzgm -, e & U
where 7/ = 7/m(o + 2%]) and outputs (A7 -r,b? -r+e) € Zg X Zyg.

On input a public key pk = (A,b) and a message w € Z,, the encryption algorithm samples
(u,v) & Ea b and outputs

(w,v4+w-p).

Decryption. On input a secret key s and a ciphertext (u,c), the decryption algorithm outputs

|(c— ul s (mod q)) /p| (mod p) .

The proof of correctness provided in [ACPS09] applies to any s € Zf,. It states that correctness
holds if o < ——~L——. In addition, they provide a few lemmas that we will use in the remainder
pv/mw(logA)
of this section. Let us state them here.
The first lemma shows that given a public key, it is possible (with all but negligible probability)
to generate encryptions of affine functions of the secret key s without knowing s. This is useful for

simulating the KDM game without knowing the secret key.

Lemma 6.1 ([ACPS09, Lemma 5]). For all s € Zﬁ, (t,w) € Zf; X Ly, with all but negligible
probability over A,n it holds that for (u,v) & E(Ab)s

SD((u,v + (tT -s4+w) - p), (u,v) + (=t - p,w - p))) = negl(\) .

Note that (u,v+ (7 -s+w) - p) is the distribution of encryptions of t* - s + w under public-key
(A, Db).

The second lemma shows that if the b component of the public key is sampled uniformly
(i.e. independently of s), then the resulting encryption scheme almost always generates uniformly
distributed ciphertexts. This is useful since the real distribution of b is computationally indis-
tinguishable from uniform, which enables us to claim that “real” public keys generate ciphertexts
which are computationally indistinguishable from uniform.

Lemma 6.2 ([ACPS09, Lemma 6]). With all but negligible probability over (A,b) & ZZ”XZ X Ly’
it holds that SD(E(a v, U(Z4 x Zq)) = negl(\).

6.2 Amplification of KDM" Security

We state and prove a theorem analogous to Theorem 1.2. Recall that a class of functions H =
{h1,...,hg} over the same domain is entropy preserving if the function ay(x) = (h1(x), - , he(x))
is injective.

5In [ACPS09], s is sampled from the distribution x*.
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Theorem 1.3 (restated). Let p be a prime number that is super-polynomial in A and denote ¢ = p?.

Let m,£,0,x be as in the parameters of Escps. Let k < £ and set k' = %gloqg)\)' Let g = B(\) €

(0,1) be such that g = negl(\) and denote X' = V3. Let H = {hy,...,he: hi € {0,1}F — {0,1}} be
an entropy preserving class of efficiently computable functions with cardinality ¢ = poly(X). Then
under the LWEy , 1\ assumption, there exists a public-key encryption scheme that is KDM®
secure w.r.t. function class

Fro={fx) = %;]tihi(x) +w (modp): (b,w) € ZfxZy} .

Before giving the proof, let us discuss the parameters of the assumption we rely on. The
decisional LWE, ,, ;v ,» assumption (see Section 2.1) is equivalent to the search version under a
poly(q)-time reduction. The search version, in turn, is shown in [Reg05] to correspond to worst-case
lattice problems, under quantum reductions. In [Pei09], a classical reduction from other worst-case
lattice problems to search LWE is shown. Thus, we can set p and ¢ to be quasi-polynomial in A,

set B > n/q and set % to be quasi-polynomial in A\ as well (recall that for correctness we must take
o< Wl(log)\)’ so we cannot set o to be too large, but one can verify that a proper selection of
parameters does exist). Using such parameters we can relate the security of our scheme to either
the worst case hardness of obtaining a quasi-polynomial approximation factor for a lattice problem
such as GapSVP, using quasi-polynomial time quantum algorithms, or to the worst case hardness
of obtaining a classical quasi-polynomial time algorithm for a lattice problem such as GapSVP¢
with quasi-polynomial (.

To prove Theorem 1.3, we employ Theorem 1.1. As a precondition, we will need to establish
entropy-k KDM(l)—security for Eacps. Unlike in the case of the DDH scheme Egpyno, this is not
straightforward. We do this in two steps. First, we prove KDM(I)—security based on a nonstandard
assumption (see Definition 6.1 below). Then, we use a novel result of Goldwasser, Kalai, Peikert
and Vaikuntanathan [GKPV09] that implies that for the parameters of Theorem 1.3, LWE reduces
to our new assumption, thus ultimately basing our scheme on standard decisional LWE. We remark
that it may be possible to achieve better parameters than those stated in Theorem 1.3 using a more
efficient reduction, if such exists.

We proceed by presenting the new assumption. Intuitively, recalling that the key generation
of Excps I8 just generating an LWE instance, our new assumption is that LWE holds even if the
secret-key s only has min-entropy k rather than being uniformly sampled.

Definition 6.1 (entropy LWE assumptions). Consider the distributions (A, As + x) and (A, u)
in the LWE,,, ¢ assumption, with the only difference being that s & S, for some set S C Zg

(instead of s < Zfl). The LWE, ., ¢, [S] assumption is that these distributions are computationally
indistinguishable. The entropy-k LWE, ,, ¢ assumption is that the LWEq,m,&X[S] assumption holds
for all S C {0,1}¢ with |S| > 2*.

The following lemma establishes the entropy-k KDM®M-security of Eacrs[S], based on the
LWE ¢, [S] assumption. The proof is similar in spirit to [ACPS09, Theorem 2] and is deferred to
Appendix B. Recall that F¢ = {fe.w(x) = t'x+w : (t,w) € ZE x Z,} is the set of affine functions
over Zy.

Lemma 6.3. Let S C Zf). If LWEg .0, [S] holds, then Ecps[S] is KDMW secure w.r.t. Fop-
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In a recent work, standard decisional LWE is reduced to entropy-k LWE.

Theorem 6.4 ([GKPV09, Theorem 1]). Let p be a prime of super-polynomial size, and set ¢ = p©

for some constant e. Let m,{ = poly(\). Let k < { and set k' = %ﬁlg)‘). Let 0,3 € (0,1) such

that 3/c = negl(\) and set x = Uy, X' = V. Then if the IWE, , i+ assumption holds then the
entropy-k LWEg ¢\ assumption holds as well.

We remark that [GKPV09] only prove this for e = 1 (i.e. prime ¢) but the same proof can be
used for any constant (specifically for e = 2 which is used here).
The proof of Theorem 1.3 now follows.

Proof of Theorem 1.3. Fix a function class H as in the theorem statement. By Lemma 6.3, it
holds that under the entropy-k LWE ;s assumption, Excps[{0, 1}4] is entropy-k KDM®W-secure
w.r.t. F.e. Thus we can apply Theorem 1.1, setting a(x) = (hi(x),---,he(x)), and obtain a
KDMW®_gecure scheme w.r.t. Fw, under the entropy-k LWE, ,, ¢, assumption. To finish the proof,
we use Theorem 6.4 to argue that the LWE, ,, 1/, assumption implies the entropy-k LWE ,, ¢
assumption. ]

In the specific case of using the set of all degree-d monomials as the function class H, we obtain
a KDM-secure scheme w.r.t. Fg, all degree-d polynomials modulo p. We describe this scheme,
&, explicitly. In Section 6.3 we show that & is in fact KDM®™ secure w.r.t. Fy. Recall that Yi,d>
Vkd, I'k,q were defined in Definition 3.3
Encryption scheme &. Let k,d € N and consider p, ¢, m, o, X, 7, as in the definition of Excps[I'k dl,
specifically let ¢ = vy, 4. The secret-key space of & is {0, 1}* and the message space is L.

Key generation. On input 1%, select x < {0,1}* and set sk = x. We denote s = Vi.a(X)
and note that s is uniform in I'y 4. The public key pk is generated as in Excps[[k,q]. Namely,
pk = (AJA -s+1m) € Zg”g X Zg'. Note that the distributions of the public keys in & and
Eacrs|T'k,a] are identical.

Encryption. On inputs a public-key pk and message w, the encryption algorithm runs the en-
cryption algorithm of E,cps[I'yq] With the same inputs.

Decryption. On inputs a secret-key sk = x € {0,1}* and a ciphertext (u,c), the decryption
algorithm uses x to obtain s = 7, ;(x). Decryption then proceeds as in Eacps[['k,q], With inputs a
secret-key s and a ciphertext (u,c).

6.3 KDM™-Security w.r.t. Degree-d Polynomials
We show that & is KDM™-secure w.r.t. Fy.

Theorem 1.5 (restated). Consider the scheme E with p being super-polynomial in X. Let k' =
%éoqg)‘) and let § = B(N) € (0,1) be such that g = negl(\). Define X' = Vg. Under the
LWEg m k' assumption, & is KDM™ _secure w.r.t. the class of degree-d polynomials modulo p.

Note that if LWE, y,.n k7 is hard for all n = poly(A), then & is KDM™-secure for any
polynomial number of “users”. We also note that as in Theorem 1.3, the LWE assumption we rely
on is related to worst-case lattice problems. See discussion in Section 6.2 for more details.
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Proof. By Theorem 6.4, the LWE ,,.,, 1+ assumption implies the entropy-k LWE ;... ¢, assump-
tion which, in turn, implies the LWEq ;,.r, ¢+ [I's 4] assumption. Therefore, it suffices to prove the
KDM ™ _security of & based on the LWEy mn.e.x [I'k,q) assumption.

Let A be an adversary for the KDM(}Z) game of £&. We present an adversary B such that
LWEq (mn) ¢ [Tral AdV[B](A) > KDME) Adv[A, £](A) — negl(A) .7

The input to B is (A,b) € (Z((Imn)xg X Zy"). We represent them as a sequence of n pairs
(A;,b;) € (Z(’]’”‘Xz x Zy') where A; is uniform and b; is either b@(p) = A;s+mn, fors & Tk My & X",
or bl(-l) & Zy'. Let x be such that v, 4(x) = s.

B simulates the KDM%) game for A.

Initialize. B flips a coin £ < {0,1}. It also selects y; < {0,1}* for all i € [n] and computes
T = Traq(yi) € ZfIXZ, where Ty 44 is defined in Lemma 3.1. Denote z; = x @ y;, C; = A;T;.
Recall that for all x € {0,1}* and i € [n] it holds that T; -y}, 4(x) = v44(x ® yi) = Vj.a(2i) and
T? - v4.4(X) = Y5.4(x). Notice that A;-s = A; - T? - v, 4(x) = C; - vy,q(z:). This, together with
the fact that C; is uniformly distributed,® implies that {(z;, (C;, bgo)))}ie[n] is a legally distributed
set of n secret and public keys for &. B sets pk; = (C;, b;) and sends pky, ..., pk, to A.
Queries. When A makes a query (j, p) where ¢(z1,...,2,) is a degree-d polynomial in all secret
keys, B uses the vectors yi, . ..,yn to find a degree-d polynomial ¢’ such that ¢'(z;) = ¢(z1, ..., 2z,).
This is possible since

O(Z1,...,2n) =P(XBY1,.. .., XBYn) =0(2;® (Y;BY1),---,2; B (Y; B Yn))

which means we can replace each variable z; ;7 in ¢ with either z;; if (y; @ y;)i# = 0 or with 1 —z;
if (y; ® yi)# = 1. Opening the parenthesis and computing the coefficients of all the monomials
(which can be done in time poly(¢)) produces the required ¢’, or in other words, the coefficients
vector t € Zf, such that ¢'(z;) = t7,, 4(z;) (recall that v, 4(-) contains the free coefficient and
thus we do not need to add it explicitly).

Then, B samples (u,v) < E(c,p;) and sets g = (u,v) + (=t - p,0) and ¢; = (u,v). B then
returns c¢ as an answer to A.
Finish. When A terminates and returns &', B returns 1 if £ = £ and 0 otherwise.

The analysis is almost identical to that of Lemma 6.3: if b; = bgo), then (C;, b;) is a legal public-

key for &, that corresponds to secret key z;. In this case, by Lemma 6.1, B simulates the KDM%)
game up to a negligible statistical distance, and thus ‘Pr[B(A, b)) = 1] — Pr[A wins KDM™]| =
negl(\). However, if b; = bgl) then by Lemma 6.2, cg, c1 are within negligible statistical distance

and thus the views of A where £ = 0 and where £ = 1 are within negligible statistical distance.
Therefore, |Pr[B(A, b)) = 1] — %} = negl(\), and we conclude that

‘Pr[B(A,b(O)) = 1] — Pr[B(A,bM) = 1]( > ‘Pr[A wins KDM™)] — % — negl())

as required. O

"Unlike Theorem 1.4, the reduction here is directly to the cryptographic assumption. This is done to achieve
better parameters.
8We remark that this is not straightforward since Zq is not a field, however it is true in our case.
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A  Proof of Lemma 5.3

We use the fact that under the DDH assumption, the distributions (¢%,¢¥) and (g%, ¢"*), where

z,y & Zg, P& Zg4, are computationally indistinguishable. This is true by definition for £ = 2 and

extends easily for any polynomial .

Public-key homomorphism. The function P(pk, A,b) is defined as follows. For pk = (¢7, g*),
A Tzr v —rzT A= 1b
9" g )

(pk, pK') = (g%, 97" %), (g7, g (AstD)))

is computationally indistinguishable from

it samples r & Zgq and outputs (g . It remains to prove that

z —zT Tyyp —zTsr —rzT AL
(pk, P(pk, A, b)) = ((¢%,97% %), (g™ #",g7 > 5" . g "= ATPY)) |

T

for z,y < Zg, r Zq. To do this, we denote y’ = A~"z - r and notice that

(pk, P(pk, A, b)) = ((gz,g—ZTS), (gy/7g_y/T(As+b))) _

Therefore, it is sufficient to prove that (g%, g¥) is computationally indistinguishable from (g%, g¥).
Since, as we mentioned, (¢%,¢¥) and (g%, ¢g"*) are computationally indistinguishable, and since A
is invertible, the result follows.

Ciphertext homomorphism. The function C(c, A, b) is defined as follows. For ¢ = (¢?, g%), it
A-Ta gu . g—aTAflb)

(pk, pk/, C/) — ((gz’ g—sz)’ (gy7g—yT(As+b))’ (gry7 g—ryT(AS-l—b) . w))

outputs (g . We now need to prove that the distribution

is computationally indistinguishable from
_,T _oT -7 T T A1
(pk, pk/,C(C,A,b)) _ ((gz’g z S), (gy7g y (As—i—b))7 (grA z’g rzls g rzl A=1b w)) :

where z,y & Zg, T Ly
We define a random variable z’ Zg. Since (g%, ¢"*) is computationally indistinguishable from
(9%, g®), it follows that (pk, pk’, C(c, A, b)) is computationally indistinguishable from

_ T - —T,/ _ T _ T A —1
(g%, 977 %), (g¥,g Y (AsTP)) (A7 g7s . 72 ATTD L))
Denoting y' = A~ 72/, we get
5T _v7T 1 T
((¢%,97% %),(¢%,97Y (As+b))7(gy,g y'T(As+b) -w))

which is computationally indistinguishable from (pk,pk’,c’) since (g%, ¢"Y) is computationally in-
distinguishable from (g, gy/). O

B Proof of Lemma 6.3

Let S be as in the lemma statement, and let A be an adversary for the KDM%)H security of Excps|S].
We show that there exists an adversary B such that

LWEq ., [SIAdV[B](A) > KDMY Adv[A, Excrs[S]J(A) — negl()

23



where
LWE, 1m0 [S]Adv[B](A) = |Pr[B(A,A -s+n) = 1] — Pr[B(A,u) = 1]|

with A gZZI”XE, S iS, uﬁZ;” and n & X"

Let A, 1, s be as above and let b = As + 5, b(® & Zy'. B gets as input (A,b) where
b € {b® bV} and simulates the KDM%)ff game for A as if (A,b) was a legal public key for
gACPS[S]-
Initialize. B sends pk = (A, b) to 4, and flips a coin & & {0,1}.
Queries. Suppose A makes a query f;., € F.q, B samples (u,v) & E(a,p) and sets co = (u,v) +
(=t -p,w-p) and ¢ = (u,v). Then, B returns c¢ as an answer to A.

Finish. When A terminates and returns £, B returns 1 if £ = £ and 0 otherwise.
To analyze B, first consider the case where b = b(©), i.e. (A, Db) is a legal public-key for €,cps[S].
In this case, by Lemma 6.1, B simulates the KDM%)H game up to a negligible statistical distance,
and thus "
(0) o . . 1
‘Pr[B(A7b ) = 1] - Pr[A wins KDM |

= negl(A) .

Next, consider the case where b = b(1). In this case, by Lemma 6.2, ¢g and ¢; are within negligible
statistical distance, and thus the views of A where £ = 0 and £ = 1 are within negligible statistical
distance. Therefore,

PB(A ) = 1] = | = [Prfe = €] - | = new()

and we conclude that

Pr[B(A,b®) = 1] — Pr[B(A, bV) = 1]’ >

1
Pr[A wins KDM%)H] — 2’ —negl(\) .
Recalling that

LWEg,m,¢x[SIAdV[B](A) =

Pr[B(A, b)) = 1] — Pr[B(A, b)) = 1]‘

and that

. 1
KDM.%)HAdV[Aa Encrs[S]](A) = |Pr[A wins KDMY |- 3|

]:aff

the proof is complete. O
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