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Abstract. Laminated sediments, like evaporites and bio-
genic lake sediments, provide high-resolution paleo-climate
records. Yet detection and counting of laminae causes still
problems because sedimentary structures are often disturbed.
In the past laminated rocks often were analysed manually –
a tedious and subjective work.

The present study describes four automated approaches for
lamina detection based on 1 d grey-scale vectors. Best re-
sults are obtained with a newly developed algorithm, called
Adaptive Template Method (ATM) in combination with the
Hilbert transform. ATM improves the signal to noise ratio
of the grey-value signal. Its basic idea is to extract first a
characteristic waveform, the template, which describes the
typical grey-value variation transverse to the laminae. This
is a kind of ”template learning” process, which in practice
is done by an appropriate averaging method. This template
is in a second step used for processing the whole sample.
One calculates the overlap of the template with the actual
signal, the grey-value variation along the core, as function of
position in core direction. This method generates a new sig-
nal with maxima at positions, where the template optimally
matches the original signal. The new time-series is called AT-
transform. It is smoother than the initial data sequence. High
frequency noise and local trend effects are suppressed. Af-
terwards, the AT-transform can be analysed with the Hilbert
transformation for extracting phase information.

The data processing methods are tested both on artificial
data sequences and on a seasonally laminated sedimentary
record of the Oligocene Baruth Maar (Germany). Although
ATM is no panacea for highly disturbed signals, our com-
parison with other approaches shows that it provides the best
results. The combination of ATM and the Hilbert transform
allows to detect clearly long-term oscillations in the sedimen-
tation patterns and thus cycles in climatic variations.

Correspondence to:I. Rupf
(rupf@lgrb.uni-freiburg.de)

1 Introduction

To study the climate of the past, high-resolution natural
archives, so called climate proxies, are an important source
of information. The highest-resolution climate data from an-
cient environments can be found in tree rings (e.g. Briffa
et al., 1996), ice cores (Barnola et al., 1987), corals (Cole
et al., 1992), and various types of annually laminated sedi-
ments (e.g. evaporitic, biogenic, and glacial meltwater lake
sediments. For reviews see O’Sullivan, 1983; Anderson and
Dean, 1988; and Glenn and Kelts; 1991). They are driven
by several quasiperiodic and episodic forcing factors, like
changes of solar irradiance (e.g. the 11 year sunspot cycle
and multiple elements, as shown in Crowley et al., 1986;
Bradbury and Dean, 1993; Dean et al., 2002; and Brauer et
al., 1994), coupled ocean-atmosphere oscillations like ENSO
(Cole et al., 1992) or NAO (White et al., 1996; Cook et al.,
1998) and volcanic activity (e.g. Stuiver et al., 1995). All
of these paleoclimate-proxies contain striped growth or sedi-
ment structures. Seasonally laminated organic lake deposits,
so called varves, are of special interest because they reflect
the development of temperature and precipitation in the mid-
latitudes. This study deals with the automated lamina detec-
tion and counting of this type of stratification. The process-
ing of these patterns is still problematic because various sed-
imentary and postsedimentary processes often disturb rock
structures. Although literature provides a large amount of
studies on laminated sediments, the majority of these works
use traditional manual or semi-manual methods for varve
counting and thickness measurements. Common techniques
are the analysis of thin sections under the microscope (Merkt
and Müller, 1999; Brauer et al., 1999) or manually con-
ducted investigations of scanned pictures (Dean et al., 2002).
Besides the high amount of time-consuming and monotone
labour, the main disadvantage of this class of methods is
the high rate of subjectivity. Parallel varve counts of dif-
ferent researchers on the same data material of the Holz-
maar (Eifel, Germany) differed by 5.8% (Zolitschka, 1998).
Francus et al. (2002) developed a semi-manual algorithm for
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varve counting. Although parts of the investigation process
are automated, the method still contains highly subjective as-
pects of ordinary manual techniques.

There are only a few automated methods, described in lit-
erature. They are based on the analysis of scanned grey-value
pictures of the laminated patterns. Grey-scale patterns trans-
verse to the varves alternate periodically between higher and
lower values, due to light and dark sublaminae.

D’Argenio et al. (1998) and Ripepe et al. (1991) work on
1 d grey-scale pixel lines. First, they filter the data by differ-
ent approaches to diminish noise. Subsequently, Ripepe et
al. (1991) removes bent and folded varve patterns by a geo-
physical method, called “Normal-moveout”. Finally, these
studies average several parallel grey-scale lines and detect
lamina thicknesses. The main drawback of the methods is
the high dependency of individual calculation steps on the
specific object of interest. Every application on other data
requires a high amount of algorithm tuning. The quality
of the original data material and the scans have to be ex-
cellent. There should be no visible disturbances like core
cracks, irregular layers, or postsedimentary alteration of sed-
iment structures.

For future work, the method of Katsuta et al. (2003) seems
to be most promising. Instead of treating single pixel lines,
they use the full 2 d image for varve detecting. The aim of
this method is the extraction of a sequential profile even from
those laminations that show folded patterns and additional
noise. To achieve this they differentiate grey-value matrices,
calculate local slopes of laminations from the derivatives,
eliminate noise and obtain a map of local slope lines. Subse-
quently, they are able to convert the map of folded slope lines
to an unfolded representation and to compute an averaged 1 d
profile of the corrected slope line map. But quality of the in-
put data has to be even more excellent than in the techniques
developed by Ripepe et al. (1991) or D’Argenio et al. (1998)
because the calculation of local slope maps requires data sets
without lateral and vertical disturbances. In using an ordi-
nary 1 d method, irregularities due to inclined laminae can
be avoided by shifting the vertical counting axis laterally to
an undisturbed portion of the section. The Katsuta-algorithm
does not provide this possibility. This prohibits application
of this kind of technique in most of lacustrine laminites.

This study presents several approaches for automated lam-
ina detection algorithms, based on 1 d grey-scale vectors of
annually accumulated lake sediments. These methods are
tested both on artificial data sequences and on seasonally
laminated sedimentary records of the Oligocene Baruth Maar
(Germany).

2 Algorithms for the automated processing of laminites

2.1 Principles

Annually laminated sediments contain several sublayers of
different composition and colour. The simplest case is a
yearly couplet, built up by a light and a dark lamina. Annu-

ally changing accumulation rates of light and dark sediment
layers lead to thickness variations of the varves. If thick-
ness variations occur periodically, this phenomenon can be
approximated as a phase modulated oscillation of the length-
dependent grey-scale signal with a base frequency of one
year. The phase modulation probably depends on climati-
cally driven causes. One simple model for this behaviour as-
sumes the following spatial dependence of the grey-values:

gs (xn) = sin(fC 2π xn + B sin(f M 2π xn)) . (1)

fC is the so-called carrier or base frequency,fM the mod-
ulation frequency, andB the modulation index (a measure
for the ratio of the largest and smallest existing modulation
frequency).

Grey-values are disturbed by various influences of sedi-
mentary, post-sedimentary and technical processes. These
effects complicate the automated detection of annual lay-
ers. In general, disturbances with time distortion, like
badly scanned parts of pictures, can be distinguished from
short-time irregularities (e.g. smaller core cracks or irregular
siderite layers). The first category destroys information about
inherent oscillations and therefore determines the boundaries
of the individual data sequences. The second class can be
eliminated without loss of information in time. In technical
terms, disperse and visible disturbances should be separated.
The actual extent of disperse and visible perturbations de-
pends on image resolution. Disperse irregularities influence
both amplitude and phase modulation. They can be partly
eliminated by averaging over adjacent pixel rows. Visible
disturbances, like irregular siderite layers, influence the nor-
mal alternation of grey-values considerably.

Automated methods are based on two different concepts.
On the one hand, annual layer thicknesses can be extracted
from the input signal. On the other hand, phase varying prop-
erties can be detected with the help of phase estimation meth-
ods based e.g. on concepts such as the Hilbert transform and
the analytic signal. Unlike the first processing class, the sec-
ond idea takes into account intra-annual events and oscilla-
tions. Certainly, some statistical properties of the layer distri-
bution, such as thickness variations of light and dark layers,
and correlation coefficients between them, cannot easily be
detected with this second class of methods.

2.2 Automated detection of lamina thickness variations

The automated detection of light and dark layers from grey-
values is difficult. In the case of undisturbed data layer-
boundaries correspond to the inflexion points of the grey-
scale curves. But irregularities like intra-annual layers mod-
ify the shape of individual waveforms. Therefore, a previous
smoothing of the data sequences is important. Normally, the
grey-scale signal is nonstationary, so that local drift compo-
nents should be removed before automated lamina-detection
algorithms are applied. In the following, two methods will be
introduced, using different smoothing- and detrending proce-
dures.
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Fig. 1. (a)shows a phase modulated signal:s (tn)= sin(2 π tn+4 sin(2/11 π tn)) in time space, whereas(b) presents its power spectrum.
Several peaks occur in the neighborhood of the carrier frequency peak. They are generated by the modulation process. After calculating the
instantaneous frequency(c) from the analytic signal the corresponding periodogram exhibits one peak representing the modulation frequency
(d).

2.2.1 Differential Filters (DF)

Differential Filters can be used for edge-detection, that
means in terms of laminae the boundaries between light and
dark layers (Cooper, 1997). Another positive effect is the
reduction of local drift components.

y (xn) = DF (gs (xn)) = gs (xn) − gs (xn−1) . (2)

The extrema ofy (xn) correspond to the inflexion points of
the grey-scale curve and indicate the boundaries between
light and dark layers. This relationship can be used to calcu-
late the thickness distributions of annual varvesth (tn), and
their light and dark components (thl (tn), thd (tn)).

2.2.2 Moving Average Method (MAM)

Like Differential Filters the moving average is a concept
for the detection of boundaries between dark and light sub-
laminae. The main idea is to detrend the initial data se-
quence by computing the difference between the original
datags (xn) and a moving averagem (xn, q) (Brockwell and
Davis, 1991):

m (xn, q) =
1

2q + 1

q∑
i=−q

gs (xn + i), (3)

w: window size of moving average (w=2q+1).

y (xn) = MA (gs (xn)) = gs (xn) − m (xn, q) . (4)

The signaly (xn) has zeros at the boundaries between light
and dark layers which can be used to compute lamina thick-
ness variations.

2.3 Automated detection of the instantaneous phase

The Hilbert-transform is the fundamental method of the al-
gorithm category, based on phase and frequency detection.
One of the main problems of this type of automated proce-
dures is the occurrence of highly disturbed signals, so that
instantaneous properties like the phase information cannot
be detected anymore. Therefore, it advisable to filter signals
before applying a phase detection method. Natural data sets
of laminated sediments are often very noisy, so that the cor-
responding periodograms do not show a well-defined peak at
the one year base frequency. In addition intra-annual events
and years of low sedimentation rates generate periodogram
peaks in the same frequency range. These facts complicate
the usage of traditional methods of data preprocessing like
band-pass filters. Tests with simple band-pass filters, which
we applied to our real data sets before applying the Hilbert
transform, were not very successful.
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Fig. 2. A typical scanned picture of annually laminated lake sedi-
ments of the Upper Oligocene Baruth Maar and its corresponding
grey-scale diagram. The template was computed with ATM. The
AT-transform (the scalar product between the grey-scale signal and
the template) is smoother than the initial signal. High frequency
noise and local drift components are suppressed.

Alternative methods for phase estimation were used in De-
Shazer et al. (2001) and Quian et al. (2002) in the context
of synchronisation measures. DeShazer et al. (2001) define
a so called Gaussian phase, which is basically the phase of
the Gabor transform of a real signal computed at some fixed
frequency. Similarly Quian et al. (2002) generate a com-
plex signal by convolving the real time series with a com-
plex Morlet wavelet of distinct central frequency and width
for calculating phase properties. Thus both approaches try
to extract the phase at a certain predefined frequency. If the
one year base frequency and the range of frequency mod-
ulation is well defined, such algorithms provide interesting
options. But as mentioned above natural data sets such as
ours do not have this property. We also calculated the Ga-
bor transform of our data sets and found that the phase of the
transformed signal depends sensitively on the frequency ar-
gument of the Gabor transform. Therefore for our data this
is not a well suited method for determining the phase. We
attribute this to the fact that similar to the method of band-
pass filtering a fixed frequency window is used, which does
not exploit the inherent structures of the signal. Therefore, a
special filtering-method, which uses inherent data structures
and which is based on the wavelet idea (Adaptive Template
Method), was developed. It will be applied to the grey-scale
data before using the Hilbert transform.

2.3.1 Hilbert transform and analytic signals (HT)

The analytic signalz (t) as a part of the concept of the Hilbert
transform is a useful tool for the detection of time varying
signal attributes. It was first introduced by Gabor (1946).
The analytic signal is defined as:

z (t) = x (t) + i x̃ (t) . (5)

x (t) is the original real signal,̃x (t) represents the Hilbert
transform. In the time domain the Hilbert transform can be

expressed as

x̃ (t) =
1

π
pv

{∫
+∞

−∞

x (τ)

t − τ
dτ

}
, (6)

where pv is the Cauchy principle value (Pikovski et al.,
2001).

Original signal and Hilbert transform differ by a phase
delay of 90◦ in each frequency component. Therefore the
Hilbert transform of a pure sine wave is a negative cosine.
The analytic signal has several important temporal proper-
ties, which can be used to detect amplitude, phase or fre-
quency information (Cram̀er and Leadbetter, 1964). It can
be regarded as an anticlockwise rotating vector in a complex
plane (Mari et al., 1999). The time-varying angular velocity
is also called instantaneous phase$ (t):

$ (t) = arctan
x̃ (t)

x (t)
. (7)

The instantaneous frequencyif (t) can be expressed as the
first derivative of the instantaneous phase (for a detailed dis-
cussion see Boashash, 1992a, b):

if (t) =
1

2π

dω (t)

dt
. (8)

Figure 1 demonstrates the extraction of time-varying fre-
quency information from a simple phase modulated sinu-
soidal signal.

2.3.2 Adaptive Template Method (ATM)

The Hilbert transform reacts sensitively on irregularities.
Therefore the signal to noise ratio of the input signal has to
be improved. This can be done with a newly developed ap-
proach, called Adaptive Template Method (ATM). The basic
idea is to extract first a characteristic waveform, the template,
which describes the typical grey-value variation transverse to
the investigated laminae. In a second step, this template is
used for a comparison with the actual grey-scale data. The
generated signal shows maxima at positions, where the tem-
plate optimally matches the original signal.

Annual grey-scale waves differ in terms of length, shape,
and contrast. To obtain a characteristic waveform, sev-
eral annual layers should be collected and averaged. ATM
detects waves by searching for local maxima or min-
ima of the initial grey-scale sequence. A certain pre-
defined number of pixels in the surrounding of the ex-
trema are used to generate a new set of small time series
te (m, q) = {gs (xn−q) , ..., gs (xn+q)}, whereq is the half
length of the windoww=2q+1, andm an index of the ex-
tracted wave. The maximum or minimum is positioned at
the centre ofte (m, q). After standardizing the sub-samples
test (q, m), a characteristic waveform is generated by aver-
aging:

test (m, q) =
te (m, q) − µ (te (m, q))

σ (te (m, q))
. (9)
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µ (m, q) arithmetic mean ofte (m, q), σ (te (m, q)) stan-
dard deviation ofte (m, q)

te (q) =

∑M−1
m=0 test (m, q)

M
, (10)

M: number of sub-samples.
This algorithm is a kind of a “learning-process”. The com-

parison of templates and grey-scale variation transverse to
the layers is done by calculating the scalar product between
them. To eliminate the influence of amplitudes, the product
of absolute values of template and grey-scale sequence di-
vides the scalar product:

y (xn, te (q)) = AT (xn, te (q)) =
〈 te (q) s (xn)〉

|te (q)| |s (xn)|
. (11)

High accordance between grey-values and template leads to
results near 1.0, bad accordance generates values near 0.0.
The created time-series is called the AT transform. It is
smoother than the initial data sequence. High frequency
noise and local trend effects are suppressed. Figure 2 shows
an example for a typical greyscale data set and its AT trans-
form. Afterwards, the AT transform can be analysed with
traditional spectral methods. To extract instantaneous phase
information, the Hilbert transform is applied on the AT trans-
form.

The idea of the ATM is similar to basic algorithms of the
wavelet transform. The main difference is that the actual
shape of the template is adapted to the individual time series,
so that the template optimally matches the properties of each
signal. Actually, in some cases the template and the com-
plex Morlet wavelet show a comparable appearance. Then,
the results of both methods are also similar. But in general,
the ATM due its adaptive origin seems to be the more ap-
propriate method to preprocess noisy, frequency-modulated
time series.

3 Evaluation

3.1 Artificial data

The performance and robustness of automated layer-
detection methods should be tested under different condi-
tions. Therefore, we created a simple, one-dimensional grey-
value model of annually accumulated biogenic sediments.
This model supplies artificial data sets with various, ad-
justable characteristics.

To generate a synthetic signal, we used Eq. (1) with a base
period of 10 units per year (sampling rate:1x=0.1). Phase
modulates with periods of 6.7, 7.7, 11 and 16 years. These
are common climate-driven periods, found in several paleo-
climate studies (Ripepe et al., 1991; White et al., 1986). The
strength of periodicities is unknown, so all get the same mod-
ulation index.

sx = sin

(
2πx + 3 sin

(
2

16
πx

)
+ 3 sin

(
2

11
πx

)
+

Table 1. Results of tests on efficiency of methods.

Differential Moving Hilbert Adaptive
Filters Average transform Template
Method Method

Amplitude
modulation – – + ++
Phase
modulation + + – ++
Visible
disturbances – – + +
Baruth
data – – + ++

3 sin

(
2

7.7
πx

)
+ 3 sin

2

6.7
πx

)
, (12)

sampling rate:1x=0.1, number of samples:N=20 000.
For the creation of disperse disturbances, random numbers

are added to phase or amplitude. The maximum size of ran-
dom numbers is variable and depends on the desired distur-
bance strength. For the tests they increase in the scheme: 0%,
10%, 30%, 50%, 70%, 90%, and 100%. Visible irregularities
of different classes interrupt the regular sedimentation. They
are modelled as constant grey-values, for instance dark grey-
values for drill core cracks or light colours for siderites and
ash-fall layers. They range between 0% and 16.5%. A selec-
tion of resulting periodograms can be seen in Fig. 3. Table 1
summarizes the performance of the algorithms.

Irregularities of amplitude modulation appear in various
contexts. They occur as arbitrary differences in contrast,
or, as an intra-annual layering. Both Differential Filters and
Moving Average Method react on irregularities of amplitude
modulation extremely sensitive. Background noise amplifies
very quickly, so that at a disturbance portion of 30% random
peaks already hides main frequencies. The number of lam-
inae increases, whereas average varve thicknesses decrease.
The Hilbert transform exhibits a more robust behaviour. But
for irregularity-values greater than 50%, there are high spu-
rious peaks. The Adaptive Template Method works up to a
disturbance factor of 90% reliably and is therefore the best
decision for the treatment of amplitude irregularities.

Perturbations of phase modulation arise from different
layer-altering effects, like additional sediment supply or
postsedimentary processes (e.g. compaction and dehydra-
tion). The Hilbert transform without preprocessing reacts on
disturbances of phase modulation most sensitive. All main
peaks of the periodogram can only be detected at 10% irreg-
ular influence. Both varve-counting methods (Differential
Filter, Moving Average Method) work up to a disturbance
degree of 30% without problems. The Adaptive Template
Method again is the best choice for treating phase problems.
Up to 50% irregularities it supplies reliable results.

All newly developed approaches can be easily affected
by visible disturbances. Both varve-counting methods react
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Fig. 3. Automated method evaluation with artificial signals. The upper row shows the final periodogram of the undisturbed signal after
applying the automated data-processing methods. All algorithms detect the periods of 16, 11, 7.6, and 6.6 years. In the lower diagram ad-
justable perturbations (amplitude, phase, and visible disturbances) alter the original signal and thus the resulting representations in frequency
space. Please note the different disturbing factors. Best results shows the Adaptive Template Method (ATM) in combination with the Hilbert
transform.

extremely sensitive on this type of perturbations, and should
not be used for such data. Up to an irregularity influence
of 9% both Hilbert transform and the Adaptive Template
Method work. But single peaks cannot be resolved clearly
(effects of so called “peak doubling”), and background noise,
especially at lower frequency parts, increases.

3.2 Baruth Maar data

The natural data set, we used for the evaluation of automated
approaches, is based on algal laminites from drill cores of
the Upper Oligocene Baruth Maar (Germany, Saxony). The
lamination is due to light and dark layers. Light layers al-
most completely consist of central diatoms derived from al-
gal blooms. Dark layers present the background sedimenta-
tion. They are built up of pennate diatom algae, but addi-
tionally contain chrysophyte cysts, clay and authigenic min-
erals (Goth, 2000; Goth et al., 2003). The intensity of al-
gal blooms is climatically influenced. Therefore variation of
lamina thicknesses indicates paleoclimatic changes.

The topmost 20 m of laminated sediments are nearly
undisturbed. Based on an average sedimentation rate of
200µm/a, the data set contains a 100 000 a lasting cli-
mate archive. For further investigations a 1 cm broad and

20 m long drill core strip was scanned with high resolu-
tion (1000 px/cm). Subsequently several line scans were
extracted along the core thereby excluding parts with visi-
ble disturbances. For further investigations we analysed a
395 a long sample from the centre of the grey-scale image
and compared results of hand-digitisation and automated ap-
proaches in frequency space. Results are shown in Fig. 4.

Neither of the methods based on lamina detection (Differ-
ential Filters, Moving Average Method) is suitable for au-
tomated data processing. The lamina number generated by
the Differential Filter method is even three times higher than
that of hand-digitising. In comparison the lamina number
derived by the Moving Average Method is with 387 varves
nearly equal to the manual results. But signals differ both in
time and frequency space.

Nearly every periodogram peak of the instantaneous fre-
quency, derived by the Hilbert transform, reappears at the
corresponding diagram of hand-digitised results. Certainly,
several frequencies seem to be slightly displaced, and accord-
ing to amplitudes, peaks are not in the right order. Another
problem arises from spurious peaks. They appear in the HT-
periodograms with partly high spectral power.

All peaks of the ATM-treated data sequence match to those
of hand-digitising. But there remain differences in relative
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Fig. 4. Automated method evaluation with a natural data set from the Baruth Maar. The upper figure shows the resulting periodogram of a
395 a lasting hand-digitised core section. The final spectral representations after applying the different data-processing methods can be seen
in the lower four diagrams (DF – Differential Filters, MAM – Moving Average Method, HT – Hilbert transform, ATM – Adaptive Template
Method). The Adaptive Template Method in combination with the Hilbert transform shows the best results. All peaks of the ATM-treated
data sequence match to those of hand-digitising.

spectral power values and problems with spurious frequen-
cies and peak-doubling effects. Therefore, several templates
with different window-lengths should be used for data pro-
cessing. Oscillations that occur in all AT transforms can be
interpreted as non-spurious.

The Adaptive Template Method turned out to be the best
method of automated lamina-detection. A C++-program,
called ATM-Explorer, uses this algorithm. For more infor-
mation about the source code and the program please contact
the author.

4 Conclusions and future work

Climatically induced fluctuations of the sedimentation rate
of lake sediments can be approximated as phase modulated
oscillation with a one-year base frequency. Regular lamina
structures are interrupted and partly hidden by different dis-
turbances. To extract computable data from the geological
material, four new approaches for automated layer acquisi-
tion, based on 8 bit grey-scale curves, have been developed.
They have been tested on artificial data and on the annually
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laminated Baruth Maar data. The Adaptive Template Method
(ATM) gives the best results. It is an algorithm, which im-
proves the signal to noise ratio and extracts, in combination
with the Hilbert transform, instantaneous phase information.

Unlike manual or semi-manual approaches, ATM works
quickly and objectively. It reacts robust against irregularities
of the sedimentation rate (irregularities of phase modulation
in a mathematical sense). Certainly, ATM is no panacea for
strongly disturbed data sequences. Visible disturbances like
drill core cracks or irregularly accumulated ash-fall layers,
cause particular problems. In a subsequent spectral analy-
sis, spurious frequencies may occur. Therefore it is recom-
mended to use several ATM-results with different choices of
parameters to identify and exclude spurious frequency peaks.

Until now, the Adaptive Template Method is still in devel-
opment. At the moment, visible disturbances have to be re-
moved manually before applying automated data processing
algorithms. An automated detection, based on an adaptive
learning process, would accelerate the signal processing pro-
cedure. Furthermore, it would be desirable to extend the al-
gorithm for the treatment of two-dimensional data sets. This
can be done with the help of some studies described in litera-
ture (Ripepe et al., 1991; D’Arrigo et al., 1998; Katsuta et al.,
2003). This step would improve the detection of intra-annual
lamina thickness variations. The algorithms developed in this
study can not only be used for annually laminated lake sed-
iments but also for other types of time-dependent layering
structures, like isotope distributions in ice-cores, or tree-rings
in dendrochronology. They give a contribution to the quan-
tification of geosciences and related disciplines.
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