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Abstract. Waves in pair plasmas have a fundamentally dif-
ferent dispersion due to the equal charge-to-mass ratios be-
tween negative and positive charges. In view of possible ap-
plications e.g. to electron-positron and fullerene pair plas-
mas, it is shown that there are no stationary large amplitude
nonlinear structures in symmetric unmagnetized pair plas-
mas.

1 Introduction

Plasmas are an intrinsically nonlinear medium that can sup-
port a great variety of waves, far too many to detail here, and
discussed in quite a number of classic texts. For ordinary
plasmas the great disparities in mass between the negative
and positive charge carriers induce quite different time and
length scales that can be advantageously exploited to disen-
tangle some of the wave characteristics, not only for linear
modes but also for their nonlinear counterparts.

Pair plasmas are radically different from the more usual
plasma compositions, because the negative and positive
charge carriers have the same mass but opposite charges. Ex-
amples of pair plasmas treated in the literature are electron-
positron plasmas, of importance in pulsar dynamics and radi-
ation (Sturrock, 1971; Lominadze et al., 1983; Shukla, 1985)
and in laboratory studies (Surko et al., 1989; Boehmer et
al., 1995; Liang et al., 1998). More recently, pair plas-
mas were created by using charged fullerenes, consisting of
C+

60 and C−

60 in equal numbers (Oohara and Hatakeyama,
2003). Fullerenes are molecules containing 60 carbon atoms
in a very typical geometric arrangement, and a fullerene pair
plasma is a way of mimicking electron-positron plasma be-
haviour without having to worry about annihilation, so that
longer time scales can be considered.

Since the positive and negative charged particles respond
on the same scales, the characteristics of waves in pair plas-
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mas cannot always be translated from what obtains in ordi-
nary plasmas by simply lettingmi→me, wheremi andme

are the respective masses of the positive and negative charged
particles. According toOohara and Hatakeyama(2003), the
longitudinal-electrostatic modes can be easily measured in
pair-ion plasmas, but such linear modes are of the Langmuir
type, as is recalled in section 2 below and has also been dis-
cussed earlier (Iwamoto, 1993; Zank and Greaves, 1995).

More recently, it has been claimed that ion thermal waves
in pair plasmas can be modulated due to their coupling
with quasistationary density perturbations (Shukla and Khan,
2005). However, such treatments are weakly nonlinear ex-
tensions of linear modes, and it is therefore of interest to
investigate what happens to larger amplitude stationary soli-
tary nonlinear waves. As is shown below in Sect. 3, large
amplitude stationary solitary wave structures cannot be sus-
tained in “unmagnetized symmetric” pair plasmas, neither of
the longitudinal nor of the transverse type. The description
of solitons in “magnetized” symmetric pair plasmas has been
given in several papers (Berezhiani et al., 1993; Verheest and
Cattaert, 2004, 2005), and the present paper indicates that an
external magnetic field is a necessary prerequisite for large
amplitude stationary solitary structures to exist.

2 Formalism and invariants

In unmagnetized plasmas the reference frame can be chosen
such that the waves propagate along the x-axis. The model
includes the continuity and momentum equations,

∂nj

∂t
+

∂

∂x
(njvjx) = 0, (1)

∂vj

∂t
+ vjx

∂vj

∂x
+

1

njm

∂pj

∂x
ex = ±

e

m
(E + vj × B), (2)

wherenj refers to the number densities of the positive ions or
positrons (j=i) and of the negative ions or electrons (j=e),
both species having chargee in absolute value and massm.
Similarly,pj andvj refer to the respective pressure and fluid
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velocities, whileE andB are the electric and magnetic fields,
respectively. The system is closed by Maxwell’s equations,

ex ×
∂E
∂x

+
∂B
∂t

= 0, (3)

ex ×
∂B
∂x

=
1

c2

∂E
∂t

+ µ0e(nivi − neve), (4)

ε0
∂Ex

∂x
= e(ni − ne), (5)

and the parallel magnetic field vanishes,Bx=0. Parallel and
perpendicular are with respect to the direction of wave prop-
agation. The pressures will be assumed polytropic,pi∝n

γ

i

andpe∝n
γ
e , with the same constant of proportionality and

the same polytropic indexγ , for reasons of symmetry be-
tween the positive and the negative particles.

Before addressing the nonlinear development, we linearize
and Fourier transform the relevant Eqs. (1)–(5) for small
disturbances varying as exp[i(kx−ωt)], with frequencyω

and wave numberk. We recover two well known results
(Zank and Greaves, 1995), the dispersion laws for longitu-
dinal plasma waves,

ω2
= ω2

p + k2c2
s , (6)

and for transverse electromagnetic modes,

ω2
= ω2

p + k2c2. (7)

Remark that the total plasma frequencyωp in pair plasmas
is defined throughω2

p=2n0e
2/ε0m, because both densities

simply add up. In addition,cs is the thermal velocity, given
throughc2

s =γp0/n0m in the polytropic description used, and
c is the velocity of light.

Next, in view of the nonlinear stationary structures to be
studied, we transformx and t to a combined coordinate
ξ=x−V t , with V the velocity of the stationary solitary struc-
ture, and replace all derivatives by the usual chain rule,

∂.

∂x
=

d.

dξ
,

∂.

∂t
= − V

d.

dξ
, (8)

as used in many studies of nonlinear modes (Adlam and
Allen, 1958; Sagdeev, 1966; McKenzie and Doyle, 2003;
Sauer et al., 2003; McKenzie et al., 2004; Verheest et al.,
2004). In some of these studiesV =0 has been taken, but
then the undisturbed parallel plasma velocities are−V , al-
though this shift in point of view does not induce signifi-
cant changes. Requiring that all variables have this stationar-
ity property rules out envelope solitons where the amplitude
profile behaves as a stationary nonlinear hump or dip, but
the phase shifts slowly in time. There are, however, nonlin-
ear electromagnetic structures, the oscillitons (Sauer et al.,
2003), that superficially look like envelope solitons but have
both stationary amplitude and phase. These are, however,
outside the scope of the present paper and do not seem to
occur in symmetric (magnetized) pair plasmas (Verheest and
Cattaert, 2004, 2005).

All derivatives now being with respect toξ , several of the
basic equations can be integrated, with the typical boundary

conditions at infinity for stationary structures. For e.g. the
densities these are

ni |ξ→+∞ = n0 = ne|ξ→+∞ ,

dni

dξ

∣∣∣∣
ξ→+∞

= 0 =
dne

dξ

∣∣∣∣
ξ→+∞

, (9)

with analogous conditions for the pressures. The other vari-
ables and their derivatives have zero values at infinity. It is to
be remarked that periodic structures are thereby excluded, as
is typically the case in all Sagdeev-McKenzie treatments.

The continuity Eqs. (1) express conservation of parallel
(mass) flux, in its integrated form,

ni(V − vix) = ne(V − vex) = n0V, (10)

and from Faraday’s law (3) there follows that

E⊥ = V B⊥ × ex, (11)

Because the perpendicular components of the equations of
motion (2) reduce to

m
dvj⊥

dξ
= ±e ex × B⊥, (12)

the conservation of perpendicular momentum simply is

vi⊥ + ve⊥ = 0. (13)

We have shown (Verheest and Cattaert, 2005) that stationary
nonlinear structures in symmetric pair plasmas are always
charge neutral for propagation parallel to the external mag-
netic field. A similar proof holds for symmetric unmagne-
tized pair plasmas, as we briefly sketch for the sake of com-
pleteness and readability. We subtract the two parallel equa-
tions of motion, contained in Eq. (2),

m(vix − V )
dvix

dξ
+

1

ni

dpi

dξ
= e[Ex + (vi⊥ × B⊥) · ex],

m(vex − V )
dvex

dξ
+

1

ne

dpe

dξ
= −e[Ex + (ve⊥ × B⊥) · ex],

(14)

from each other, so that only the parallel electric fieldEx

remains on the right hand side, due to Eq. (13). After one
derivation with respect toξ we eliminateEx with the help
of Poisson’s equation (5) and express all parallel velocities
in terms of the densities, using Eq. (10). The result can be
written as

d2

dξ2

[
n2

0mV 2

2

1

n2
i

+
γp0

(γ − 1)n
γ

0

n
γ−1
i

]
−

2e2

ε0
ni

=
d2

dξ2

[
n2

0mV 2

2

1

n2
e

+
γp0

(γ − 1)n
γ

0

n
γ−1
e

]
−

2e2

ε0
ne, (15)

given the symmetric polytropic pressures that have inpi∝n
γ

i

and pe∝n
γ
e the same constant of proportionality and the

same polytropic indexγ . Though complicated, Eq. (15) is
a second order ordinary differential equation forni , given
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ne, or vice versa. It is obvious that Eq. (15) admitsni=ne=n

as a solution, and in view of the boundary conditions, this so-
lution is unique. For electron-ion plasmas such a reasoning
fails becausemi 6=me.

The conservation of mass flux (10) in charge neutral
pair plasmas immediately leads to equal parallel velocities,
vix=vex=vx and from Poisson’s equation (5) also to the
vanishing of the parallel electric field,Ex=0, given the
conditions at infinity. Since from Eq. (13) we see that
vi⊥=−ve⊥=v⊥, we can express all fluid quantities in terms
of the positive particle variables, omit the species index and
get for the parallel equation(s) of motion that

m(vx − V )
dvx

dξ
+

1

n

dp

dξ
= e(v⊥ × B⊥) · ex . (16)

We now multiply this equation of motion byn, use what re-
mains of Amp̀ere’s law (4),

0ex ×
dB⊥

dξ
= 2µ0env⊥, (17)

and flux conservation (10) to derive the parallel momentum
invariant

vx =
0B2

⊥

4µ0n0mV
+

p − p0

n0mV
. (18)

Here 0=1−V 2/c2 is a correcting factor that reduces to 1
in the strictly nonrelativistic limit. However, it plays no es-
sential role in the description and, in view of our using the
nonrelativistic equations of motion, it should stay close to 1
anyway.

Finally, we project Eq. (12) uponv⊥ and add this result to
Eq. (16). After integration the energy integral is obtained,

m(v2
x + v2

⊥
) − 2mV vx +

2γ

γ − 1

(
p

n
−

p0

n0

)
= 0. (19)

Scalar multiplication of Eq. (12) by B⊥ and vector multipli-
cation of Eq. (17) by v⊥ together give that

B⊥ ·
dv⊥

dξ
= v⊥ ·

dB⊥

dξ
= 0, (20)

and consequently

B⊥ · v⊥ = 0. (21)

Upon using this result in the scalar multiplication of Eq. (17)
by B⊥ yields that

B⊥ ×
dB⊥

dξ
= 0, (22)

which is only possible when both vectors in this product are
parallel, in other words, when the wave magnetic field is lin-
early polarized. So then is the wave electric field. We thus
can orient without loss of generality the reference frame so
thatB⊥=Byey andv⊥=vzez.

3 Search for nonlinear stationary solitary structures

To summarize at this stage, we have two remaining first inte-
grals, namely Eqs. (18) and (19), and the nonzero projection
of Eq. (17),

dBy

dξ
=

2µ0e

0
nvz. (23)

Sincep is polytropic inn, and the latter can be expressed in
terms ofvx with the help of mass conservation (10), there re-
main three variables to be determined,vx , vz andBy , with the
help of two algebraic relations and one ordinary differential
equation.

To see where this leads us, introduce dimensionless vari-
ables as follows: velocitiesux,z=vx,z/V0, Mach number
M=V/V0, densityν=n/n0, pressure$=p/n0mV 2

0 , length
scaleζ=eB0ξ/mV0 and wave magnetic fieldb=By/B0. We
also put0=1 for simplicity, but that could be scaled out if
wanted. Here the reference valuesV0 andp0 have been con-
nected byp0=n0mV 2

0 , so thatV0 is a measure of the thermal
velocity cs , up to a factorγ . Next,V0 andB0 are connected
by B2

0=2µ0n0mV 2
0 to get rid of all the physical constants.

It is seen that this choice forB0 corresponds to makingV0
the Alfvén velocityVA, if the plasma were magnetized with
a static magnetic strengthB0.

We express$ andν as functions ofux and have to discuss

ux =
b2

2M
+

1

M

[(
M

M − ux

)γ

− 1

]
,

u2
x + u2

z − 2Mux +
2γ

γ − 1

[(
M

M − ux

)γ−1

− 1

]
= 0,

db

dζ
=

M

M − ux

uz. (24)

The two algebraic relations are solved foruz andb as func-
tions ofux , values which are then substituted into the ODE
in Eq. (24). The resulting expression can be written in the
form of an energy integral, to get rid of the square roots and
to correlate it with treatments of related nonlinear problems
in the Allen (Adlam and Allen, 1958)/Sagdeev (Sagdeev,
1966)/McKenzie (McKenzie and Doyle, 2003) pseudopoten-
tial approaches. Hence we obtain(

dux

dζ

)2

= F(ux) ≡
4M2G(ux)H(ux)

(M − ux)2

(
dH(ux)

dux

)−2

,

(25)

where

G(ux) = 2Mux − u2
x −

2γ

γ − 1

[(
M

M − ux

)γ−1

− 1

]
,

H(ux) = 2Mux − 2

[(
M

M − ux

)γ

− 1

]
. (26)

Because G(0)=H(0)=0, one sees thatF(ux) and
dF(ux)/dux both vanish for the initial valueux=0.
The necessary prerequisites are fulfilled to have a double
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the origin, and the pseudopotential has the proper convexity
there, since

d2F

du2
x

(0) = 2
dG

dux
(0)

/
dH

dux
(0) = 8 > 0, (27)

at all values ofγ ≥ 1 andM .
Let us first consider a cold pair plasma, in which all pres-

sure effects are omitted, obtained by formally lettingγ → 0,
so that onlyB2

0 = 2µ0n0mV 2
0 remains to connect the differ-

ent dimensional quantities. ThenF (ux) reduces to

F (ux) =
2Mu2

x(2M − ux)
(M − ux)2

. (28)

It is immediately seen thatF (ux) → +∞ whenux → M ,
whether from below or from above, which from (10) leads to
an infinite compression in both positive and negative species,
giving the physical limitation to possible solitary wave am-
plitudes. As the only other root ofF (ux), outside the double
rootux = 0, is the one in2M , it is inaccessible from the ini-
tial conditions and there are no stationary solitary wave struc-
tures in symmetric unmagnetized cold pair plasmas. This is
in contrast to what occurs in magnetized ones, both at par-
allel (Verheest and Cattaert, 2004) as well as at oblique or
perpendicular (Verheest and Cattaert, 2005) propagation with
respect to the direction of the static magnetic field.

We now investigate whether the introduction of finite pres-
sure effects can save the day. Rather than plot the pseudopo-
tentialF (ux) for specific values ofγ andM , as is more com-
monly done, and discuss its possible roots and poles, we will
follow a different approach, explained below. This has the
advantage of giving clear answers for allM at specificγ val-
ues, results which can then be easily visualized for allγ ≥ 1.

Although no special physical significance can be attached
to γ = 2, we shall consider this case first, as analytic results
are simpler and lead to expressions that are easier to interpret,
and hence can guide us for other values ofγ. We writeF (ux)
in a mixed notation as

F (ux) = 2u2
xK(w), (29)

explicitly showing the double root inux = 0 and where

K(w) =
w(w2 + Mw − 4)(Mw2 − w −M)

(w3 − 2M)2
(30)

has been written in terms ofw = M − ux. Because initially
ux starts from zero,ux → M gives an infinite compression
in both species, which translates forw into starting fromM ,
such thatw > 0 needs always to be observed. In other words,
going fromw = M to w = 0 is not an option for physically
meaningful solitary structures. The remaining two quadratic
factors in the numerator ofK(w) in (30) each have one pos-
itive root, namely

wA =
1
2

[√
M2 + 16−M

]
,

wB =
1

2M

[√
4M2 + 1 + 1

]
, (31)

1 1.41 2 3
M

1

1.41

2

3

w

O

P

wA

wB

wC

Fig. 1. The graphs forγ = 2 of wA andwB as functions ofM ,
representing acceptable roots of the pseudopotential and hence pos-
sible soliton amplitudes. The graph ofwC represents the asymptote
for which the species are infinitely compressed, indicating the limit
to possible soliton amplitudes. At a givenM and starting on the di-
agonal (representing the initial valuew = M ), the first curve to be
encountered determines the existence or not of a stationary solitary
wave. It is seen that the asymptote is reached first and no solitons
can exist.

whereas the denominator ofK(w) vanishes for the positive
value

wC = 3
√

2M. (32)

It can be checked thatwA is a zero forK(w) coming from
G(ux) = 0, henceuz = 0. Similarly, wB is a zero coming
from H(ux) = 0, indicatingb = 0, whereas the asymptote
in wC corresponds to a zero fordH(ux)/dux, which is also
a zero fordb/dζ. We will use the same labelling convention
also when discussing other values forγ.

When the curveswA, wB andwC are plotted together as
functions ofM in Figure 1, it is seen that they all go through
M =

√
2 with the value

√
2, and moreover, the curves for

wA andwB are tangent there, in such a way thatwA ≤ wB

for each value forM . The bisectrix represents the line where
w = M , i.e. the initial values. Hence at a givenM , w starts
on the bisectrix and goes upward or downward, hoping to
reach one of the rootswA or wB of K(w), which would then
give the soliton amplitude. Unfortunately, none of these roots
can be reached, because the asymptote inwC is hit first, its
curve lying closer to the bisectrix than the others. And as in-
dicated already, the curvew = 0 is physically not acceptable.
As in the cold plasma case, there are also here no stationary
solitary nonlinear structures in symmetric pair plasmas with-
out an external magnetic field.

Fig. 1. The graphs forγ=2 of wA andwB as functions ofM,
representing acceptable roots of the pseudopotential and hence pos-
sible soliton amplitudes. The graph ofwC represents the asymptote
for which the species are infinitely compressed, indicating the limit
to possible soliton amplitudes. At a givenM and starting on the
diagonal (representing the initial valuew=M), the first curve to be
encountered determines the existence or not of a stationary solitary
wave. It is seen that the asymptote is reached first and no solitons
can exist.

root in the origin, and the pseudopotential has the proper
convexity there, since

d2F

du2
x

(0) = 2
dG

dux

(0)

/
dH

dux

(0) = 8 > 0, (27)

at all values ofγ≥1 andM.
Let us first consider a cold pair plasma, in which all pres-

sure effects are omitted, obtained by formally lettingγ→0,
so that onlyB2

0=2µ0n0mV 2
0 remains to connect the different

dimensional quantities. ThenF(ux) reduces to

F(ux) =
2Mu2

x(2M − ux)

(M − ux)2
. (28)

It is immediately seen thatF(ux)→+∞ when ux→M,
whether from below or from above, which from Eq. (10)
leads to an infinite compression in both positive and nega-
tive species, giving the physical limitation to possible soli-
tary wave amplitudes. As the only other root ofF(ux), out-
side the double rootux=0, is the one in 2M, it is inaccessible
from the initial conditions and there are no stationary solitary
wave structures in symmetric unmagnetized cold pair plas-
mas. This is in contrast to what occurs in magnetized ones,
both at parallel (Verheest and Cattaert, 2004) as well as at
oblique or perpendicular (Verheest and Cattaert, 2005) prop-
agation with respect to the direction of the static magnetic
field.

We now investigate whether the introduction of finite pres-
sure effects can save the day. Rather than plot the pseudopo-
tentialF(ux) for specific values ofγ andM, as is more com-
monly done, and discuss its possible roots and poles, we will
follow a different approach, explained below. This has the
advantage of giving clear answers for allM at specificγ val-
ues, results which can then be easily visualized for allγ≥1.

Although no special physical significance can be attached
to γ=2, we shall consider this case first, as analytic results
are simpler and lead to expressions that are easier to interpret,
and hence can guide us for other values ofγ . We writeF(ux)

in a mixed notation as

F(ux) = 2u2
xK(w), (29)

explicitly showing the double root inux = 0 and where

K(w) =
w(w2

+ Mw − 4)(Mw2
− w − M)

(w3 − 2M)2
(30)

has been written in terms ofw=M−ux . Because initially
ux starts from zero,ux→M gives an infinite compression in
both species, which translates forw into starting fromM,
such thatw>0 needs always to be observed. In other words,
going from w=M to w=0 is not an option for physically
meaningful solitary structures. The remaining two quadratic
factors in the numerator ofK(w) in Eq. (30) each have one
positive root, namely

wA =
1

2

[√
M2 + 16− M

]
,

wB =
1

2M

[√
4M2 + 1 + 1

]
, (31)

whereas the denominator ofK(w) vanishes for the positive
value

wC =
3
√

2M. (32)

It can be checked thatwA is a zero forK(w) coming from
G(ux)=0, henceuz=0. Similarly,wB is a zero coming from
H(ux)=0, indicatingb=0, whereas the asymptote inwC cor-
responds to a zero fordH(ux)/dux , which is also a zero for
db/dζ . We will use the same labelling convention also when
discussing other values forγ .

When the curveswA, wB andwC are plotted together as
functions ofM in Fig. 1, it is seen that they all go through
M=

√
2 with the value

√
2, and moreover, the curves forwA

andwB are tangent there, in such a way thatwA≤wB for
each value forM.

The bisectrix represents the line wherew=M, i.e. the ini-
tial values. Hence at a givenM, w starts on the bisectrix and
goes upward or downward, hoping to reach one of the roots
wA or wB of K(w), which would then give the soliton am-
plitude. Unfortunately, none of these roots can be reached,
because the asymptote inwC is hit first, its curve lying closer
to the bisectrix than the others. And as indicated already, the
curvew = 0 is physically not acceptable. As in the cold
plasma case, there are also here no stationary solitary nonlin-
ear structures in symmetric pair plasmas without an external
magnetic field.
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One can go through the same exercise for the more com-
monly encountered valuesγ = 1 (isothermal case) andγ = 3
(adiabatic case), but now some of the curves have to be de-
termined numerically. Forγ = 3, K(w) becomes

K(w) =
w(w + M)(w2 − 3)(Mw3 − w2 −Mw −M2)

(w4 − 3M2)2
.

(33)

The admissible roots ofK(w) arewA =
√

3 andwB as the
only positive root ofMw3 − w2 −Mw −M2 = 0, but, as
shown in Figure 2, the pole inwC = 4

√
3M2 is always closer

to the bisectrix, whenw starts fromM , at any givenM .

1 1.73 2 3
M

1

1.73

2

3

w

O

P

wA

wB

wC

Fig. 2. Analogous curves as in Figure 1, but forγ = 3, the adiabatic
case. It is seen that also here the asymptote is reached first and no
solitons can exist.

Similarly, K(w) becomes forγ = 1

K(w) =
w(wM − 1)
(w2 − 1)2

[
M + w − 2 ln(M/w)

M − w

]
. (34)

The admissible roots ofK(w) arewB = 1/M andwA as the
only positive root (to be determined numerically) of

M + w − 2 ln(M/w)
M − w

= 0. (35)

The last expression is written in this peculiar form, to indi-
cate that the rootw = M (or ux = 0) has to be taken out.
Nevertheless, also here the pole inwC = 1 is always closer
to the bisectrix, as indicated in Figure 3, precluding the exis-
tence of stationary solitary waves.

Hence, although the curves are different (some of them be-
coming a straight line at a constantw value), the conclusion
inexorably is the same: there cannot be stationary solitary
nonlinear structures in symmetric pair plasmas unless a static
magnetic field is present.

1 2 3
M

1

2

3

w

O

P

wA

wB

wC

Fig. 3. Analogous curves as in Figures 1 and 2, but forγ = 1, the
isothermal case. Once again, the asymptote is reached first and no
solitons can exist.

These conclusions also hold for other values ofγ ≥ 1, as
briefly indicated now. RewriteG(ux) = 0 asG(w) = 0
and definewA as the positive root which is different from
w = M , with an analogous definition ofwB coming from
H(w) = 0. One can then show that the curves ofwA and
wB are tangent in the pointw = M =

√
γ, with a common

slope(γ − 3)/(γ + 1). In addition,wA ≤ wB , although
that is not an essential result. However, the curve ofwC also
goes throughw = M =

√
γ, but with a quite different slope

(γ − 1)/(γ + 1). Since

γ − 3
γ + 1

<
γ − 1
γ + 1

< 1, (36)

the curve forwC always lies between the diagonal and the
curves forwA and wB , which corroborates for generalγ
what has been inferred from the three integer values dis-
cussed in detail.
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Waves in pair plasmas have a fundamentally different dis-
persion due to the equal charge-to-mass ratios between neg-
ative and positive charges, which mix different timescales.
In view of possible applications e.g. to electron-positron and
fullerene pair plasmas, we have investigated stationary non-
linear structures in symmetric unmagnetized pair plasmas.

Contrary to what is possible in magnetized pair plasmas
under symmetric pressure conditions, large amplitude sta-
tionary solitary structures cannot exist in the absence of an
external magnetic field. This seems to limit the possible
modes in such a system to linear longitudinal, electrostatic
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case. It is seen that also here the asymptote is reached first and no
solitons can exist.
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The last expression is written in this peculiar form, to indi-
cate that the rootw=M (or ux=0) has to be taken out. Nev-
ertheless, also here the pole inwC=1 is always closer to the
bisectrix, as indicated in Fig. 3, precluding the existence of
stationary solitary waves.

Hence, although the curves are different (some of them be-
coming a straight line at a constantw value), the conclusion
inexorably is the same: there cannot be stationary solitary
nonlinear structures in symmetric pair plasmas unless a static
magnetic field is present.
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Langmuir oscillations or transverse, electromagnetic waves
(Zank and Greaves, 1995; Oohara and Hatakeyama, 2003),
or else to weakly nonlinear modulations of combinations of
these (Shukla and Khan, 2005).

Even though immediate experiments are not foreseen for
electromagnetic modes in moderately magnetized fullerene
pair plasmas, it would be interesting to see whether larger
amplitude (electromagnetic) structures could then emerge.
Studies of waves in pair plasmas have also been of impor-
tance in understanding aspects of pulsars and active galac-
tic nuclei, where the violent surroundings preclude nonlinear
phenomena of small amplitude only, and for which the static
magnetic field is then an essential ingredient.
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