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Abstract. This paper presents new results for 1D BGK elec- information (Davydov, 1985; Hasegawa and Kodama, 1995)
tron solitary wave (phase-space electron hole) solutions andiwing to the fact that they retain their shape and velocity
based on the new results, extends the solutions to includduring propagation. In the last two decades, solitary poten-
the 3D electrical interactionH ~ 1/r2) of charged par- tial structures have been observed in many dynamical regions
ticles. Our approach for extending to 3D is to solve the of the Earth’s magnetosphere: the plasma sheet boundary
nonlinear 3D Poisson and 1D Vlasov equations based on @Matsumoto et al., 1994; Cattell et al., 1999; Franz et al.,
key feature of 1D electron hole (EH) solutions; the positive 1998), auroral ionosphere (Temerin et al., 1982; Rostet

core of an EH is screened by electrons trapped inside thal., 1988; Malkki et al., 1993; Eriksson et al., 1997; Mozer et
potential energy trough. This feature has not been considal., 1997; Ergun et al., 1998a, 1998b, 1999), bow shock (Bale
ered in previous studies. We illustrate this key feature usinget al., 1998; Matsumoto et al., 1998) and magnetosheath (Ko-
an analytical model and argue that the feature is indepenjima et al., 1997). The question of what role(s) these solitary
dent of any specific model. We then construct azimuthallywaves play in the dynamics of space plasma has been of great
symmetric EH solutions under conditions where electronsinterest to researchers and still requires a substantial amount
are highly field-aligned and ions form a uniform background of observational and theoretical effort.

along the magnetic field. Our results indicate that, for a sin- Solitary waves with either positive or negative potentials
gle humped electric potential, the parallel cut of the perpen-have been observed. Negative potential pulses observed in
dicular component of the electric field () is unipolar and  the auroral upward current region (Bdstr et al., 1988;
that of the parallel componenk() bipolar, reproducing the  \alkki et al., 1993) have been shown to possess properties
multi-dimensional features of the solitary waves observed bythat are consistent with Bernstein-Greene-Kruskal (BGK)
the FAST satellite. Our analytical solutions presented in thiSign mode solitary waves in 1D (Bernstein et al., 195 Z|kki
article capture the 3D electric interaction and the observedy g, 1989). Positive potential pulses detected in the au-
features off and £, . The solutions predict a dependence roral downward current region (Ergun et al., 1998a, 1998b,
of the parallel width-amplitude relation on the perpendicu- 1999) show features that are consistent with BGK electron
lar size of EHs. This dependence can be used in conjunctiopode solitary waves (Muschietti et al., 1999), also called
with experimental data to yield an estimate of the typical per-phase space electron holes (Turikov, 1984). These solitary
pendicular size of observed EHs; this provides important in-yaves have velocities parallel to the geomagnetic field and
formation on the perpendicular span of the source region agjirected out of the ionosphere(Baztn et al., 1988; Eriksson
well as on how much electrostatic energy is transported byet al., 1997; Ergun et al., 1998a, 1998b, 1999). Since solitary
the solitary waves. wave potentials trap charged particles, the outward propa-
gating solitary waves offer a means for transporting electro-
static energy and charge into the magnetosphere. However,
it is not yet known how significant this transport mechanism
is. Encouraged by the good agreement between 1D BGK

Solitary waves are coherent wave structures arising from thénodels a.nd the parallel behavior of solitary wavesiki et
balance of nonlinearity and the dispersive effect of a mediun@!-» 1989; Muschietti et al., 1999), we analytically construct
(Drazin, 1984, and references therein). They have been rec3D BGK solutions to model the positive potential pulses ob-

ognized to be an ideal way of transporting energy, charge oferved by the FAST satellite (Ergun et al,, 1998a, 1998b,
1999), with the objective of obtaining further information on

Correspondence td:.-J. Chen (lijen@u.washington.edu)  the roles played by solitary waves in ionospheric and magne-
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tospheric dynamics. 1967; Berk et al., 1970; Schamel, 1986; Krasovsky et al.,
Positive potential pulses detected by the FAST satellite arel999) and shielded by the ambient plasma (Schamel, 1986;
multi-dimensional with bipola# and unipolarE; (Ergun  Krasovsky et al., 1999). In this section, a completely differ-
et al., 1998a, 1998b, 1999). Nonzefq indicates that the ent picture will be presented.
perpendicular span of the solitary structure is finite. This The charge density distribution for an EH can be computed
combined with the fact that the solitary waves are observedrom the second derivative of the potential. For a bell-shaped
in a 3D environment dictates that a 3D model be constructedpositive potential pulse, the charge density is negative at the
The nature of electric interaction in 3D is different from that flank and positive at the core (see, for example, Fig. 1b). We
in 1D and 2D. The electric field of a charged particle in 3D use the approach formulated by BGK to calculate the den-
is E ~ 1/r2, wherer is the distance from the particle. In sities of trapped and passing electrons and demonstrate that
1D, E is constant over distance and the 3D equivalence ofthe negative charge density at the flank comes exclusively
this constant field is produced by an infinite charge sheet. Irfrom trapped electrons. In other words, the positive core is
2D, E ~ 1/r and the 3D equivalence of this field can be shielded by trapped electrons and not by the ambient elec-
realized by an infinitely long line of charges. When solving trons.
a Poisson equation in less than 3D to explain physical fea- The time-independent, coupled Vlasov and Poisson equa-
tures observed in a 3D world, one must address how thestions, with the assumption of a uniform neutralizing ion
3D equivalent systems are produced and whether their use toackground, take the following form:

explain physical features is justified. 8f (v, x) . 106 8f (v.2)

Electrons associated with solitary waves are highly field- v 0, Q)
aligned with a gyroradiug: 1 m, while the typical scale size dx 29x Qv
of the solitary waves and the Debye length are~ 100 m 52 00
(Ergun et al.,, 1999). In this case, as a reasonably good— = f (v, x)dv —1, (2)
approximation, the electrons can be treated as if they are . -

confined to move only along the magnetic field. Thus, theyynere 7 is the electron distribution function and the quanti-

Vlasoy equation for electrons can be reduced to 1D (the dijes have been normalized with the units of the Debye length

mension parallel to the magnetic field). Ap, the ambient electron thermal enerflyand the electron
The role of electrons trapped in the solitary potential takesthermal velocity, = /27, /m. The total energy = v2—¢

on fundamental importance in BGK solitary waves (Bern- ith this convention.

stein et al., 1957). In Sect. 2, we will deduce the feature For demonstration, we use a Gaussian solitary potential,

of screening-by-trapped-electrons, for 1D BGK phase space

electron holes (EH), by analytically calculating the separateg (v, §, x) = we—xz/%z, (3)

contributions from the trapped and passing electrons to the

charge density. This feature will be used in Sect. 3, whereand Maxwellian passing electrons whose density has been

we obtain azimuthally symmetric EH solutions to the cou- Normalized to 1 (the background ion density) outside the soli-

pled 3D Poisson and 1D Vlasov equations. We discuss théary potential,

properties of these solutions and how they can enhance our

understanding of the solitary waves observed in space. fp(w) = ﬁe*w- (4)
. This case has been treated by Turikov (1984) to obtain
2 Screening by trapped electrons the trapped electron distribution and to derive the width-

amplitude relation for EHs with zero phase-space density at
1D BGK EH solutions have been studied extensively sincethe hole center. We use the same starting point to calculate
1957, when BGK obtained the general solutions to the nonthe number densities of trapped and passing electrons to il-
linear time-independent Viasov-Poisson equations. Discustystrate their perspective role in how shielding is achieved.

sions on general aspects of EHs, such as phase space orbits of|jowing the BGK approach, we obtain the expression
electrons in the vicinity of a positive potential, can be found for the trapped electron distribution as,

in textbooks (Krall and Trivelpiece, 1973; Davidson, 1972)

as well as in research papers (Bohm and Gross, 1949; Gold- _ 4/—w 1_9] —4w
man et al., 1999). The basic idea is to separate electrond” ¥+ %) = ~ 52 [ - n(—)}
into two populations: electrons that are trapped inside the 2p—W

potential pulse and those that are not (called passing elec- +
trons). As demonstrated by BGK (1957), trapped electrons

are the source of nonlinearity and they play a crucial role inThe first term inf;, stems from the potential and has a single
solitary wave solutions. However, the specific details as topeak atw = %/fz This term is 0 atv = 0™, goes negative
how trapped and passing electrons contribute to macroscopiatw = —y and will always be single peaked even for other
variables such as the charge density have not been addresséxtll-shaped solitary potentials (for example, Seelts) and
EHs were taken to be positively charged (Roberts and Berksect(x/8), see Fig. 4 of the paper by Turikov (1984) for the

[1- erf(v=w)]. ®)

T
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special case of empty-centered EHs). Although the peak Io-(a)
cation may vary, it will not be at the end points, 0 angr. 100n¢r
The second term arising from the integral of the passing elec-
tron distribution decreases monotonically fram= 0~ to
w = —v. The end point behavior of the two terms im-
plies thatf;,(w = 07) > f;,(w = —y). Combining the
behavior of the two terms irf;,, it can be concluded that
fir(0 > w > —¢) > fi,(w = —). This feature off;, is
essential in making a solitary pulse and it manifests itself at ©
the peak of the potential as two counterstreaming beams.

With f,, and f;,, we can now calculate the passing and o
trapped electron densities separately and obtain

ny=e? [1 — erf(\/¢7)] : (6)

100(np -1

-20 -10

—p[1+ 2l
— +82n(¢/w)]+1—e¢[1—erf(\/$)]. @)

©)

Note that, even fopp <« 1, the linearization of:, gives
np ~ 1—2/¢/7 which is different from the leading terms
of a Boltzmann distribution. For a Boltzmann distribution,
the density~ ¢? and the leading terms aref1¢ (Jackson,
1990). The physical meaning is that under collisionless, self-
consistent interaction of electrons and the solitary potential
electrons in the vicinity of the potential are not in local ther-
mal equilibrium, ir! contrast to thg ;tandard starting point of rig 1. Trapped electron density4.), passing electron density )
local thermal equilibrium in obtaining the thermal screen- 4q charge density for (v,8) = (2 x 1075, 0.1) in (a) and(b),
ing length (Debye and titkel, 1923; Jackson, 1990; Chen, (y ) = (5,4.4) in (c) and(d) and ¢,8) = (1,4.4) in (e) and
1984). (). These examples illustrate how passing electrons alone would
To study the contributions from trapped and passing elec+esult in the positive charge density perturbation due to their density
trons to the charge density-0%¢/dx2) and how such contri-  decrease and how the addition of trapped electrons yields the excess
butions are affected by various parameters, we show in Fig. 1negative charge at the flank.
plots ofn;, andn, and the charge density as a function
of x for several values ofy andé. Figures 1a and 1b plot
100 x n4r(x), 100 x [n,(x) — 1] and 100x p(x) for (v,
8)=(2 x 107°,0.1). For an ambient plasma wify = 700 eV
andAp = 100m as found at ionospheric heights by the
FAST satellite in the environment of BGK EHs (Ergun et trapped electrons yields the excess negative charge at the
al., 1999), this case correspondsyto= 1.4 x 102V and flank. For quantitative illustration, we use a specific poten-
3§ = 10m. As shown, in this weakly nonlinear case, the tial and an ambient electron distribution but the above re-
maximum perturbation im, is only 05% and inn;, 0.4%. sult is independent of the specific model that we use and the
The perturbation in the charge densitys < 0.2% and oc-  strength of nonlinearity. To derive that the density of passing
curs within onexp. The curves ofi,(x), n;-(x) and p(x) electrons must decrease at the positive potential, one only
for (v, 8)=(5, 4.4) are given in Figs. 1c and d. This choice needs the equation of continuity (conservation of charge).
corresponds to EHs with nearly zero phase space density &telocities of passing electrons increase at the potential and
the centerw = —y. Thatisf;.(w = —y) ~ 0. One can the density is inversely proportional to the velocity, hence
see that the total charge density perturbation gee$0%  the decrease of their density. Therefore, the excess negative
negative and- 25% positive, corresponding respectively to charge cannot be from the passing electrons. It must come
electron density enhancement and depletion. With similarexclusively from trapped electrons. In other words, it is the
format, Figs. 1le and f plots cases with sagnandy = 1 trapped electrons oscillating back and forth inside the solitary
to illustrate the change im,, n;, andp of an EH with equal  potential and carried along by the potential that shield out the
width but smaller amplitude. The dip i, is filled up and  positive core of a BGK EH. This unique feature of BGK EHs
the charge density perturbation only increases to 5% positivalistinguishes them from positively charged objects dressed
and 2% negative. in negative thermal charge clouds via Debye shielding mech-
These examples demonstrate how passing electrons pr@nism and allows their size to be smaller thgn This fea-
duce positive charge density perturbations owing to the deture will be used in the next section as a constraint for the
crease in their number density and how the addition ofperpendicular boundary condition.

Mo
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1.2 should not change sign in the perpendicular direction and
£ this leads us to the eigenfunction of the differential operator
tr 1 GE + %); the Bessel function zero. The solitary potential
0.8 constructed according to this boundary condition yields
0.6 (1) = ¢1(2)Jo koo ). (11)
N
0.4 wherekgg >~ 2.404 is the first root of Bessel functiafy,
is the perpendicular scale size at whidhfalls to zero and
0.2 ¢y (z) the parallel profile of the solitary potential.
Jo comes into our solution because electrons associated
0.1 0.2 0.3 0.4 0.5 with EHs are highly field-aligned and the same mechanism
-W of screening-by-trapped-electrons of BGK EHs in the paral-

lel direction does not apply in the perpendicular direction.
negative the electron energy-{) for an EH with a perpendicu- The perpendllcular bhoun.dary Conqltlon Shet bsé.thllz.physmal
lar sizers =5 (p), parallel widths = 2.1 and potential amplitude cpnstramt se eCT‘%O’ the eigenfunction of the ra .|a ifferen-
¥ = 0.5 at a fixed radial distance. Note that at the center of thetial operator. This means that the charge density

Fig. 2. Trapped electron distribution (Eq. 17) as a function of

phase space EH;w = 0.5, f;, is at its global minimum. Jolk ¥ z 14+ 2In 7]
tr o 2) = o(k1r)¢)(2) 24 £¢\|/ ) ’ (12)
4 8
3 Electron holes in 3D magnetized plasma and the potential have exactly the same radial function as
their perpendicular profiles. This feature can be experimen-
3.1 The solitary potential tally verified if EHs can be measured along the perpendicular

direction. One would observe that variations in the charge
In the following formulation, we will assume azimuthal sym- density and the electrostatic potential track each other with
metry, that electron motion is alor§ and ions form the  different scaling coefficients.
uniform background. The first assumption is a natural start- The structure of the solitary potentiab, the correspond-
ing point for a system with a magnetic field. The seconding electric field,
is justified since the electron gyroradius L m) is much A A
less than all relevant scale lengths. The third assumption i& = £7(> 97 + Ez(r2)2
justified because the velocity perturbation of ions due to the — _ ;[ — ¢ (Z)M} + g[Jo(klr)w]’ (13)
self-consistent interaction with the solitary potential is much or 0z
smaller than that of electrons owing to the large mass ratioand the charge density will be illustrated later after we dis-
Therefore, to a good approximation, the ion density can becuss the physical parameter range in which there exist elec-

assumed uniform. tron distributions to support the potential.
In the wave frame, the 3D Poisson equation and the Vlasov
equation for electrons are 3.2 The trapped electron distribution
—V20(r) = 4rp(r), (8)  We now use the potential as given by Eq. (11) to obtain the
e trapped electron distribution to demonstrate that the plasma
v-V,.F(r,v)+ ZVCD(F) “VyF(r,v) =0, (9)  cankinetically support such a potential. With the assumption

that electrons only move alori§, Eq. (9) in normalized units
where ® is the electrostatic potentigh, the charge density becomes
andF the electron distribution function. The secondtermin 3F(r,z,v) 19®(r,z) IF(r, 2, v)
the Vlasov equation is the nonlinear term that makes solitary’ 9z + 27 9z 30 =
wave solutions possible. Equation( 8) written in the cylin-
drical coordinate systenr,(@, z) with azimuthal symmetry

0. (14)

Equation (14) stipulates that, for any< r,, there exists a
1D Vlasov equation in the parallel direction; but these par-
IS allel Vlasov equations for different are not independent.
d 92 92 Instead, their mutual relation in the perpendicular direction
[E T2t 3_12}1)(“ 2) = —4mp(r. 2). (10) s determined by the perpendicular profile®df This is be-
i i . . caused is the potential produced collectively by the plasma
Equation (10) has only two variables but it is not a 2D Pois- yaricles. Oncab is known, how the plasma distributes it-
son equation because they differ by the teffn We search  ¢gy¢ ¢4 self-consistently support the potential is determined.

for solutions which give a single humped potendlr), that  Therefore, we need only to solve the equation for a particular
is, @(r) has no node. The feature derived in the last section,. Settingr = 7, a constant, define

screening-by-trapped-electrons, only applies in the parallel _ ~
direction as trapped electrons cannot oscillate perpendicula® (2) = @ (7, 2) = Jo(k 7)) (2),
to the magnetic field. This implies that the charge density  f(z,v) = F(W(F, z,v)),
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@) (b)
.. Allowed(o)
Is 2
. 0
X Forbidden(x)
" :
(0 (d) ® in contours

Fig. 3. The inequality relation
(Ineqg. 19) between the perpendicular
size ) and the potential amplitude
(¥): (a) the relation (Ineq. 18) between
the perpendicular size, parallel siz) (
and the amplitude(b) three ry cuts
showing the dependence of the parallel
width (§)-amplitude () relation on the
perpendicular sizé€c) a sample solitary
potential as a function of andr, (d).
Solitary potentials can takes( §, ¥)
values in regions marked Allowed (O).
Regions marked Forbidden (X) give un-
physical trapped electron distributions
and are thus not allowed.

(o]
PN W A0 o N

whereW = v2 — &(r, z) is the total energy of an electron solitary waves are seen. (See Ergun et al. (1999) for multi-
and F(W) is a solution to Eq. (14), as can be readily ver- dimensional cases and Bale et al. (1998) and Matsumoto et
ified. Now substitute the potential constructed in Eq. (11)al. (1994) for 1D cases.)

into Eq. (10), replace by 7 and re-writep(r, z) in terms To obtain f,,, we follow the BGK approach with
of the trapped and passing electron distributigin,and f,, Maxwellian ambient electrons,
respectively. In terms of these variables, Eq. (10) becomes
2
PP o O fu(w) Fy(W) = —=¢ ¥ (16)
— k = d [ — )4 )
92 k1P /_ PN e v
+/Oo de 1, (15) ~ For convenience, defingy(k . 7)¥ asy. The trapped elec-
0 2w+ ¢ tron distribution obtained from Eq. (15) then reduces to
j— Im ~ w — 7 j— 2 —
Where_kl = = = andw = W(r,z,vz = v 12_ 4w 4w
Jotk 1 7)) (z) is the total energy of an electronsatravelling fir(w) = ——=+—w + 3 1-2In (—)
alongz. Electrons withw > 0 are untrapped and electrons T 78 v
with w < 0 are trapped. Equation (15) differs from its coun- 2e”" [1 —erf/=m ] 17
terpart in the 1D model by the terieriqb which couples the + JT W= ()

perpendicular part of the solitary wave into its parallel equa-

tion. The larger the perpendicular sizg,the closer Eq. (15) Different perpendicular, parallel widths and potential am-
approaches its counterpart in the 1D model. In the limit- plitudes give different constants and coefficientsfto(w)

ing case, whem, approaches infinity, the solution reduces and thus yield differentf;, values. Some combinations of
to the 1D solution which describes infinitely large charge (v, 8, /) can give negativef;, values and this means that
sheets perpendicular ® and propagating alonB. This is  there does not exist an electron distribution to support the po-
exactly the equivalent 3D system of the 1D model. Thetentials with theser(, §, ¥) parameters. As an example, we
perpendicular size of the solitary wave determines whetheplot f;, as a function of-w in Fig. 2 for a physical combina-
a spacecraft would be able to see the 3D structure or onlyion: (rs, 8, ¥) = (5,2.1,0.5). f;, is positive for the entire
the parallel feature. This offers a plausible explanation as taange of its argument and its global minimum is-at = v,
why, in the magnetosphere, both multi and one dimensionathe center of the phase space EH.
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(b)
E
0.15 ‘ r=0
“Nr=2rs/3
7.5 2.5 iy 2.5 5 Z 7.5
0.15
(©) Er in contours (d)

r=2rg/3 Fig. 4. (@)and(c)The parallel €;) and
perpendicular £ | ) components of the
electric field for the constructed BGK
solitary wave,(b) two parallel cuts of
E | along the symmetry axig (= 0) and
alongr = 2r;/3. These are symmetric
z bipolar pulses(d) a parallel cut ofE |

alongr = 2rg/3. This is unipolar just
r as observed in space observations.

3.3 Inequality relations between parallel, perpendiculargiven by the RHS as a function of the potential amplitude in
scale sizes and the amplitude order to have a physical electron distribution to support the
solitary potential.
For the solution (Eq. 17) to be physicd}, (w) has to be non-
negative. Sincef;, (0 > w > —¥) > fir(w = —v), the Figures 3a—c show plots of the allowed parameter range
condition f;,(w = —y) > 0 suffices to satisfy the require- With Fig. 3a representing Ineq. (19), Fig. 3b Ineq. (18) and
ment. From this condition, we obtain an inequality relation Fig. 3cr; cuts of Ineq. (18). For a solitary potenti@l with

betweens, y andr;, a peak amplitude’, the perpendicular size has to satisfy
Ineq. (19) with theyr on the RHS replaced by. For ex-
4In2—1 ample, if & is 0.5 (in units of T, /¢), the perpendicular size
8> - (1s) el o
Jret (1 —erf(J¥) /2 ¢ — 2.404/r2 is roughly greater than 3 (in units afy). We indicate the

We do not restrict ourselves to empty-centered EHs (EHA!lowed region by O and the forbidden by X in Figs. 3a and
with 7, (w = —y) = 0) and therefore, for an allowed pair of b. Any (8, ¥, r,) lying on or above the shaded_surface is al-
(v, ry), anys that satisfies inequality 18 is allowed. In other '0wed. For example, fow = 100 (corresponding to 10kV
words, for a fixed amplitude and perpendicular scale size, thd®" 7e = 100€V) andr; = 100 (corresponding to 10km
parallel scale size has a lower bound but no upper bound. ThEr #p = 100m) the parallel scale sizecan be as small
lower bound corresponds to EHs with no trapped electrons a@S 20 £p) and as large as several earth radii:{ o) even
rest at the bottom of the potential energy troughs; that is, thé@rger. We can look at another example with= 10" (cor-
centers of the phase space structures are empty(hence, callgfPonding to 10mV for, = 100eV) and-; = 0.2 (corre-
empty-centered EHs). The denominator on the RHS of in-SPonding to 20m fok.p, = 100m), whens is at least 0.12

equality 18 has to be positive. This yields another inequality(* p) Or larger. The inequality nature of the width-amplitude-
relation betweeny andr, perpendicular size relation means that the plasma permits

2 404 BGK EHs with any parallel width ranging from less than 1
rs > ' . (19) Ap to greater than Rg. Figure 3c shows the dependence
VeV (L—erf () /2 of the parallel width-amplitudes(— v) relation on the per-
Ineq. (19) means that, for a given potential amplitude, thependicular size,. With a fixedr,, the empty-centered EHs
perpendicular scale size of EHs is greater than a critical valugcorresponding to the equal sign in Ineq. 18) give the largest
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(b)
Fig. 5. (a) the charge density for the
constructed BGK solitary wavéb) two
parallel cuts of the charge density along
the symmetry axis( = 0) of the soli-
Ws tary wave and along = 2r;/3. The

excursions along the symmetry axis are
the largest, comparing to other parallel
cuts of the charge density.

amplitudes for the sam® For the same amplitude, EHs with metry axis { = 0) whereE is zero. Note that, is not
largerr; have smaller lower bounds fér This dependence zero at the perpendicular boundary= r;, so perpendicular

of the parallel width-amplitude relation on the perpendicular screening from the ambient electrons is needed to facilitate
size can be used in conjunction with the measured widththe decrease af | to zero. This perpendicular screening is
amplitude scatter plot to give an estimate of the typical per-not described by our solution.

pendicular size of EHs. For example, if the measured par- The charge distributiory, as a function of andz is pre-
allel widths and amplitudes (unbinned) lie between the linessented in Fig. 5a, and two parallel cutsmfre depicted in

for ry = 4 andr; = 8, we know that the typical perpen- Fig. 5b. Note that, as the radial distance from the symmetry
dicular size for these EHs is 448,. We can then estimate axis increases, the measured charge density perturbation be-
how much electrostatic energy is transported by each of theseomes smaller. Along the symmetry axis, the charge density
EHs by multiplying the measured energy density (square ofvariation is the largest with the positive excursion reaching
the electric field amplitude), the parallel width and the cross~ 24% and the negative 4%. An off-centered cut along
sectional area with the above radius. r = ry/1.5 with a positive excursion- 13% and~ 2% neg-

ative is also shown.
3.4 The structure of the potential, electric field and charge

density
4 Summary and conclusion
We next examine the structure of the potential and compar-

isons this within observations. As the solitary waves travelWe have obtained new results for 1D BGK electron soli-
along B with typical velocity ~ 1000km/s and pass the tary waves and, based on the 1D results, we have extended
spacecraft, the measurement taken on the spacecraft is andhe solutions incorporating the 3D electric interaction of the
ogous to taking parallel cuts of the involved quantities. Weplasma. One key feature of a 1D BGK EH is that its posi-
will plot the parallel cuts for comparison with the observa- tive core is shielded by electrons trapped and oscillating in-
tions. side the solitary potential. Since the thermal screening from
Figure 3d plots an example of the solitary potentiahs  the ambient plasma is not needed, the size of a 1D BGK
a function ofr andz with ry = 5, ¥ = 0.5, ands = 2.1, EH can be smaller than one, (an example can be found
in the allowed parameter range. Positivis along the direc-  in Figs. 1a and b). The 3D solution preserves the proper-
tion of the magnetic field. The potential peaks at the centetties of 1D solutions in the direction parallel to the magnetic
and monotonically drops to zero in the parallel direction asfield, hence it is like a perpendicularly confined bundle of 1D
a Gaussian and perpendicularly as a Bessel zero. The eleBGK EHs. In 3D BGK EHs, as electrons are highly field-
tric field of the solitary structure vanishes at the center andaligned, trapped electrons can oscillate back and forth along
points outward away from the center. The parallel compo-the direction of the magnetic field and, as a consequence, the
nent of the electric fieldE, = E|, is shown in Fig. 4a as a screening-by-trapped-electrons in 1D still applies in the par-
function of r andz. Two parallel cuts of£ atr = 0 and  allel direction. Since thermal screening is not needed in the
r = rs/1.5 are shown in Fig. 4b. For any < r;, E|(7, 2) parallel direction, the parallel widths of the 3D BGK EHs
is symmetric and bipolar. On the symmetry axiss 0, the  can also be smaller than ong. We therefore predict that
maximum excursion of is the largest and, asincreases, multi-dimensional BGK EHs in magnetized plasma can have
it falls off as Jo(k. 7). The perpendicular component of the parallel widths smaller than the Debye scale.
electric field,E, = E , is plotted in Fig. 4c as a contour plot ~ The extension to three dimensions utilizes the key fea-
to aid in the visualization of its parallel cuts. One example of ture, screening by trapped electrons, of 1D BGK EHSs. This
the parallel cuts is shown in Fig. 4d and it is unipolar. Any feature is an essential part of the boundary condition from
parallel cut ofE is unipolar except the one along the sym- which we obtain Bessel function zerdy, for the perpendic-
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ular profiles of the potential and charge density. The observErgun, R. E., Carlson, C. W., McFadden, J. P., et al.: FAST satel-
able is that the perpendicular cuts of the solitary potential and lite observations of large-amplitude solitary structures, Geophys.

charge density would track each other with different scaling Res. Lett., 25, 2041-2044, 1998.
coefficients. Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Muschi-

. . . . etti, L., and Roth, |.: Debye-scale plasma structures associated
We derived the physical parameter range within which the with magnetic-field-aligned electric fields, Phys. Rev. Lett., 81,

plasma can self-consistently support the solitary potential. 826-829, 1998.

T_he relations betwee_n the pf’;\rallel a”O_' perpeh_dicular SC_aI%rgun, R. E., Carlson, C. W., Muschietti, L., Roth, I., and McFad-
sizes and the potential amplitude are inequalities. The in- gen j. p.: Properties of fast solitary structures, Nonlinear Pro-
equality relations permit EHs of large scales with reasonable cesses in Geophysics, 6, 187—194, 1999.

potential amplitudes. The inequality relation between theEriksson, A. I., Malkki, A., Dovner, P. O., Bostm, R., Holmgren,
three parameters indicates a dependence on the perpendicu-G., and Bolback, B.: A statistical survey of auroral solitary waves
lar size of the parallel width and amplitude relation. This de- and weak double layers 2. Measurement accuracy and ambient
pendence can be used in conjunction with experimental data Plasma density, J. Geophys. Res., 102, 11385-11 398, 1997.

to give an estimate of the typical perpendicular size of EHs. Franz, J., Kintner,_ P. _M., and Pickett, J. S.: POLAR observations of
This information is a measure of the perpendicular span of coherent electric field structures, Geophys. Res. Lett., 25, 1277—
the EH source region and provides an estimate of the amouné 1280, 1998.

of electrostatic energy transported by the solitary waves oldman, M. V., Oppenheim, M. M., and Newman, D. L.: The-
9y P y y ’ ory of localized bipolar wave-structures and nonthermal particle

Finally, note that this paper has analytically modeled the jstributions in the auroral ionosphere, Nonlinear Processes in
electric field bipolar pulses as BGK electron holes that are  Geophysics, 6, 221-228, 1999.
time stationary solutions of the nonlinear Vlasov-PoissonHasegawa, A. and Kodama, Y.: Solitons in Optical Communica-
equations. We have not addressed the problem associatedtions, Clarendon Press, 1995.
with the dynamical and evolutionary features of the EHs thatJackson, J. D.. Classical Electrodynamics, John Wiley & Sons,
have been addressed by numerical simulations (Oppenheim 1990.

etal., 1999; Singh et al. 2000; Muschietti et al. 2000; New- Koiima, H., Matsumoto, H., Chikuba, S., Horiyama, S., Ashour-
man et al. 2001). Abdalla, M, and Andersaon, R. R.: Geotail wave form observa-

tions of broadband/narrowband electrostatic noise in the distant

) . ) tail, J. Geophys. Res., 102, 14 439-14 455, 1997.
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