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Abstract. We analyze seismic signals produced by
explosion-quakes at Stromboli Volcano. We use standard
nonlinear procedures to search a low-order effective dynam-
ics. The dimension of the reconstructed phase space depends
on the number of samples. Namely larger time lengths cor-
respond to dynamical systems of different complexity. If we
restrict the analysis to the signal associated directly to the
source (Chouet et al., 1997), we obtain a phase space dimen-
sion equal to two. We reproduce this part of the signal with a
simple single self-sustained oscillator.

1 Introduction

In basaltic eruptions, the relative motion of the gas with re-
spect to the liquid produces either an anular flow (Hawa-
ian Fire Fountains) or a Slug flow (Strombolian explosions).
Both behaviours are generated by complex processes of
magma flow and turbulent degassing. The dynamics underly-
ing the generation of these behaviours is not well understood,
even though experiments on laboratory scale (Jaupaurt et al.,
1988; Mader et al., 1994) have reproduced well some of their
characteristics.

Theoretical models have been produced and much insight
on the processes has come from acoustic emission studies
(Ripepe et al., 1999; Schik et al., 1988; Vergniolle et al.,
1996) . In this paper we focus on the Strombolian explo-
sion quakes to reconstruct a dynamical system that can rep-
resent the source in this regime. We assume a complemen-
tary point of view, compared with the many fruitful models
previously quoted that look at the generation of a slug from
the degassing process and that want to reproduce the var-
ious features of acoustic emission and seismic signals. In
fact, following the line of the seminal paper of Chouet and
Shaw (Chouet et al., 1991) we want to extract from the ex-
plosion quakes signals recorded at Stromboli some “essential
dynamics”. In other words, we seek a dynamical model that
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can represent either the average properties or some of the
universal features of the complex dynamics generating these
seismic signals. We use standard methods (see, for example
Abarbanel, 1995, and references therein) to extract essential
dynamics from the the experimental time series. As we shall
see the phase space dimension of the “effective dynamical
system”, in our case, depend on the time length of the sam-
ple. This is due to the fact that by increasing the sample
length we look at the same dynamical system, with a more
and more complex structure. We find that the correlation di-
mension of the attractor (which gives the number of variables
involved in the effective dynamics) is in the rangeda = 2÷3.
Then there are low-dimension dynamics that can be consid-
ered as an effective description of a complex physical system
that generates the signal. Starting from this result, we try to
simulate the first few seconds with a simple self-sustained
oscillator. It is actually in this part that conventional wisdom
recognizes a well distinguished trace of the source. We ob-
tain the true signal from the analytical model in the regime
of a limit cycle.

2 Data

We select explosion-quakes to study seismic signals recorded
in April 1992 with small arrays of seismometers, by USGS,
University of Aquila and Vesuvian Observatory. An accu-
rate description of the deployed network and the instrumen-
tation can be found in Chouet et al. (1997). We are specif-
ically interested in the following: the wavefield effectively
comes from craters and it is composed of body waves in the
first few seconds (see also Del Pezzo et al., 1992). In or-
der to extrapolate an “effective” dynamics from the scalar
time series, we apply some standard techniques of smooth-
ing. The aim of these procedures (described in the follow-
ing) is to eliminate the high dimensionality due to the scat-
tering with respect to the dimensions of the source dynamics;
note that these operations do not affect the spectral content of
the signal. First, we introduce the usual instrumental correc-
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Fig. 1. Normalized amplitude of the average earthquake after the
application of the nonlinear denoising.

tion. Then we construct an average earthquake using beam
forming based on the knowledge of the apparent velocity of
the first pulse and of the position of the stations. This av-
erage signal was built using 70 explosion-quakes recorded
at 15 stations. This filters the background scattering radi-
ation generated by the random distribution of the points of
scattering. Then we correct the signal for the envelope in or-
der to make it stationary at the second order, i.e. we impose
that the signal has to mean of zero and constant variance.
This is necessary since superimposed dissipative dynamics
causes the phase space to contract at a point, preventing the
presence of an attractor representative of effective dynamics.
Finally, we eliminate the noise by means of a nonlinear tech-
nique. We prefer to use this method rather than the standard
linear filter. Namely the signals from nonlinear sources can
exhibit genuine broad band spectrum and there is no justifi-
cation to identify any part of spectrum as noise as necessary
using spectral or other linear filters. The nonlinear denois-
ing takes into account the fact that deterministic signals form
smeared-out lower dimensional manifolds, then the denois-
ing identifies such a structure and projects the signal onto
these manifolds in order to reduce the noise (see Grassberger
et al., 1993; Kostelich et al., 1993). The final signal is shown
in Fig. 1. Again, these transformations do not affect the spec-
tral content of the signal. Now we are ready to perform our
analysis.

3 Phase space reconstruction

As stated in the introduction, we wish to recognize the low
dimension dynamics of the seismic signal recorded at Strom-
boli Volcano by reconstructing the phase space.

It is well-known that any dynamic process is characterized
by the trajectories in the phase space. In some cases they
are confined to a limited portion of the whole space defin-
ing an attractor of the dynamics. Sometimes the dimension

of the attractor is fractal, thus the attractor is called strange.
A standard procedure in the analysis of experimental data to
reconstruct the asymptotic time evolution is to use the time
delay method. This method relays on the mathematical for-
mulation due to Takens (1981). If{
si

}n

i=1
(1)

is a time series ofn scalar observations sampled at equal in-
tervals (our explosion-quake signal), the reconstructed attrac-
tor consists of points of the form

xi = (si, si+τ , ..., si+(m−1)∗τ ), (2)

where m is the embedding dimension andτ is the time de-
lay. Takens shows, under suitable hypotheses, that this re-
construction is equivalent to the original attractor ifm is large
enough. Thus the numerical problem is to determinem and
τ . There is a lot of literature on this problem (see, for exam-
ple, Abarbanel, 1995). Among different but in essence equiv-
alent methods we select mutual information (Fraser et al.,
1986) and false nearest neighbours (Kennel et al., 1992) to
calculate, respectively, the time delay and embedding di-
mension. Mutual information is the extension of the auto-
correlation function to the nonlinear domain. The false near-
est neighbours technique is based on the projection of the
points of the dynamics onto spaces of increasing embedding
dimensions. The points appear nearest to the neighbours of
some others until the dimension becomes the proper one of
our embedding space. When the fraction of these false near-
est neighbours with respect to the total number of points is
zero, then we can stop our process. Note that the value ofm,
so obtained, does not represent the value of the embedding
dimension used to estimate the dimension of the attractorda ;
indeed it represents the lower limit for the embedding dimen-
sion necessary to evaluateda . Moreover, it is an upper bound
for da . Now we are able to estimate the dimension of the
attractor. In order to do this, we use the standard technique
of Grassberger et al. (1983) based on the calculation of the
correlation integral

C(l) =
1

N

∑
i

1

N − 1

∑
j 6=i

ϑ(l− | xi − xj |), (3)

wherexi are the vectors previously defined in Eq. (2), andϑ

is the Heaviside function. The slope ofC(l) in the scaling
region (where it has a power law behaviour) is the correla-
tion dimension of the attractor. Here we evaluateda first in
a moving window of 3.5 s. This choice of window length is
due to our capability to model only about 3.5 s of the signal:
we have to compareda of experimental data withda of simu-
lated signal.C(l) can be evaluated for different values of the
embedding dimension, up to a value at whichda saturates. In
Figs. 2a–2d we showda versusm for the value ofτ (0.07 s
for all windows) selected with mutual information. Then we
perform the same analysis on the other two windows (10 and
20 s). Although the estimatedda for the last two windows
is not completely comparable, due to the different accuracy
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Table 1. The correlation dimensionsda for the adjacent time win-
dows of 3.5 s;m is the embedding dimension as evaluated by means
of false nearest neighbours

Time windows (3.5 s) da m

first window 1.92 2

second window 1.90 2

third window 1.93 3

forth window 1.94 3

Table 2. The correlation dimensionsda for the time windows, re-
spectively, of 10 s and 20 s. Again m is the embedding dimension
as evaluated by means of false nearest neighbours

Time windows (s) da m

10 2.4 3

20 2.8 5

of the evaluation forda , these values contain some informa-
tion on the evolution of dynamics and on the stationarity of
our signal. The choice of the window length is also deter-
mined from the results of Chouet et al. (1997) who suggest
that the source is limited to the first 10 s of the signal while
the other part is affected by strong scattering. The analogue
of Fig. 2 for the other two windows is shown in Fig. 3. The
dimensions of the various attractors, reproducing the effec-
tive dynamics for the three different window lengths, change
from about two up to about three (see Tables 1 and 2).

These results are in good agreement with the previous
ones: Capuano et al. (1999) obtained a fractal dimension
da = 2.75 for the whole signal. It’s very interesting to note
that the bidimensional projections of the reconstructed phase
space (in the first few seconds this is the proper phase space
becauseda ' 2) exhibit a behaviour close to a limit cycle, as
one can see in Fig. 4a.

Figures 4b–d show the reconstructed phase space for the
other three adjacent 3.5 s time windows. As we can see in
particular in the last two, even if the dimension is lower
than two, the scattering becomes present, partly obscuring
the presence of a limit cycle. Finally, Fig. 4e and f show the
phase space for time windows of 10 and 20 s.

4 Analytical effective dynamical model for the source

The result of a dimension equal to two for the first few sec-
onds of the signal could lead us to interpret our observation in
terms of an harmonic oscillator, but the variability of the di-
mension throughout the time indicates the presence of a more
complex dynamics (with a strange attractor and a dimension
2 < da < 3) which starts its evolution over a limit cycle. A
complete model of our signal requires a fluid-dynamic equa-
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Fig. 2. Correlation dimension vs. embedding dimension as esti-
mated by means of Grassberger and Procaccia method for the fourth
adjacent 3.5 s time windows. As we can see, in all cases,da tends
toward two.

tion reproducing the signal and the phase space of Strom-
bolian earthquakes. Here we limit our attention on an ana-
logic model which should reproduce the characteristics of
our signals. The idea is to choose, among various nonlin-
ear oscillators, the one that best fits our data. The choice
of a self-sustained oscillator has no particular reason except
the one that it is the simplest nonlinear oscillator for which
nonlinearity is clearly recognizable in the balancing of dis-
sipation and loading mechanisms. An analogical example
of self-sustained oscillations can be furnished by a valve os-
cillator with the oscillating circuit in the anode circuit and
inductive feedback. Nonlinearity is produced by the mutual
dependence between grid voltage and anodic current by in-
ductive feedback. The system is described by the following
adimensional couple of equations:

ẍ + h1ẋ + h3x = 0 for x < b,

ẍ − h2ẋ + h3x = 0 for x > b. (4)

whereb is the first point of return of the limit cycle;x is
referred to a variable dynamically significant (current in the
case of valve oscillator, ground displacement in our case);
h3 is a parameter connected to the characteristic frequency;
h1 is a dissipation parameter andh2 is a loading parameter.
For a detailed description of this equation, see Andronov et
al. (1937). A discussion of the true physical meaning ofh1,
h2, h3 is not possible at this stage, because our modelling is
only analogic (see conclusion).

We fix b observing the first return of the trajectory in the
reconstructed phase space. To estimate the parametersh1,
h2 andh3, we construct a tridimensional matrix, whose ele-
ments generate, separately, a signal that can be compared to
the true signal. We choose the best term in a sense of mini-
mum square, i.e. we fix those parameters that generate a min-
imum root mean square deviation with respect to the original
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Fig. 3. Correlation dimension vs. embedding dimension as esti-
mated by means of Grassberger and Procaccia method for two win-
dows, respectively(a) 10 s and(b) 20 s long.

signal. The value ofω so obtained corresponds, within the
statistical errors, to the first peak of the FFT of the original
average earthquake, i.e. 1.1 Hz. In Fig. 5 one can observe the
original signal and the simulated one. The correlation coeffi-
cient between the two signals isr = 0.98, the corresponding
standard deviation is 0.04. By changing instantaneously the
value ofb, it is possible to also simulate the next part of the
signal, composed of the other 3–4 s. The entire signal can be
obtained using Eq. (4) and introducing, where necessary, a
short time instability by hand.

We have considered the explosion-quakes seismic signals
of the Stromboli Volcano by studying their behaviour by
means of standard non linear analysis of dynamical systems.
The aim was to reconstruct an effective low-dimension dy-
namics characterizing the Stromboli source during this tran-
sient regime.

5 Conclusions

As a result, we have extracted phase space dimensions for
the asymptotic time evolution. The dimension depends on
the time length of the sample considered and ranges from 2
to 2.80. This result could suggest that the signal is not sta-
tionary, but very simple statistical tests (multivariate analysis
of the average value and of the variance) reveal that it is sta-
tionary at the first and second order. Such a peculiar result
cannot be easily explained, but we suggest that the dynamics
evolves in such a way that the whole phase space, in the first
seconds, is not visible. In other words, the system should be
in a stationary state which can be viewed only looking at the
whole signal. The first seconds of the signals evolve on a
stationary state but on a manifold of the phase space of lower
dimensionality.
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Fig. 4. Bidimensional projections of the reconstructed phase space
with τ = 0.07 s. Figures(a), (b), (c), (d) show the phase space
relative to 3.5 s time windows. Figure(e) shows the phase space of
10 s and Fig.(f) shows one relatively to the whole earthquake.
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Fig. 5. Simulated earthquake and original one for the first 3.5 s
(directly connected to the source); the coefficient of correlation is
r = 0.98 and RMS=0.02.

We have focused our attention on this manifold because
it is very simple to be reproduced. We have simulated these
first seconds of the signal taking the general Eq. (4). This
equation can give, fixing suitable parametersh1, h2, h3 and
b, all kinds of behaviour, i.e. harmonic, forced, damped and
self-sustained oscillations. The best fit with the correlation
equal to 0.98 and RMS equal to 0.04 singled out the self-
sustained oscillator in the limit-cycle regime (see Fig. 5).

The estimated values ofh1 andh2 give a numerical ac-
count of the balancing between dissipation and loading en-
ergy onto the magmatic system to generate the seismic sig-
nal. The characteristic oscillation frequency of this oscilla-
tor, h3, coincides with the first peak of FFT of the true sig-
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nal. Note that our simulation is based on an analogic model
which is able to simply reproduce the signal; this implies
that a physical model should be based on more general equa-
tions which, with some simplification or averaging, should
be transformed into Eq. (4). This and the reproduction of the
whole phase space should be a matter of forthcoming papers.
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