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Abstract. In the MHD description of plasma phenomena
the concept of magnetic helicity turns out to be very useful.
We present here an example of introducing Euler potentials
into a topological MHD soliton which has non-trivial helic-
ity. The MHD soliton solution (Kamchatnov, 1982) is based
on the Hopf invariant of the mapping of a 3-D sphere into a
2-D sphere; it can have arbitrary helicity depending on con-
trol parameters. It is shown how to define Euler potentials
globally. The singular curve of the Euler potential plays the
key role in computing helicity. With the introduction of Euler
potentials, the helicity can be calculated as an integral over
the surface bounded by this singular curve. A special pro-
gramme for visualization is worked out. Helicity coordinates
are introduced which can be useful for numerical simulations
where helicity control is needed.

1 Introduction

Magnetic helicity is a topological characteristic of magnetic
field structures which includes the twisting and the kinking
of a flux tube, as well as the linkage between different flux
tubes (Moffatt, 1978; Biskamp, 1993). Among its numer-
ous applications are dynamo theory (Moffatt, 1978), investi-
gation of magnetic reconnection (Wiegelmann and Büchner,
2001), theory of relaxation (Taylor, 2000), and even the col-
limation mechanism of astronomical jets (Yoshizawa et al.,
2000).

Magnetic helicity is defined as a volume integral

K =

∫
�

(A · B)d3x, (1)

whereB is the magnetic field andA is the vector potential

B = ∇ × A. (2)
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Helicity (1) is gauge invariant, because under the transforma-
tion A′

→ A + ∇φ, it is then changed by

δK =

∫
�

(∇φ · B) d3x =

∮
∂�

φ(B · dS) = 0, (3)

if Bn|∂� = 0, wheren is the vector normal to the boundary
∂�. ForBn|∂� 6= 0, the surface integral does not vanish and
the helicity becomes gauge dependent. Generally speaking,
there is the possibility to define the helicity for the difference
between the original field and the vacuum field (Schindler et
al., 1988; Biskamp, 1993; Priest and Forbes, 2000) which
helps to give the helicity a physical meaning for more realis-
tic conditions. Nevertheless, we will restrict our considera-
tion to the classical caseBn|∂� = 0, leaving a more general
definition of the magnetic helicity for future studies.

When the Euler potentialsα, β are used,

B = ∇α × ∇β, (4)

there is the following problem related to helicity. It can be
easily verified that

A = −β∇α (5)

(or A = α∇β) is the vector potential (2) for the mag-
netic field (4). Then helicity vanishes at the level of the
scalar product(A · B) = 0. It is known (see, for example,
Biskamp, 1993) that the vector potential can be presented in
the following form (Clebsch representation)

A = −β∇α + ∇ψ, (6)

where the functionψ (contrary toφ in Eq. 3) must be multi-
valued. This implies that the functionψ has a surfaceSj
inside the volume� where it has a jump, then the contribu-
tion from the jump surfaceSj is added to the integral over
∂� in Eq. (3) which results in the non-zero helicity.

The solution to the questions (a) how to introduce Euler
potentials globally for the magnetic field with non-trivial he-
licity, (b) how to find the functionψ , and (c) why it has to
be multi-valued, are unclear so far. For example, it is stated
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(Biskamp, 1993) that Euler potentials cannot be introduced
globally for a magnetic field with non-zero helicity unless
the system is multiply connected. In Sagdeev et al. (1986),
it is pointed out that magnetic field lines determined by the
Lagrangian invariants do not admit any linkage, i.e. the helic-
ity has to vanish. The representation (5) is used sometimes
(Priest and Forbes, 1999; Wong, 2000) quite generally, but
it is not mentioned that helicity has to vanish in this case;
hence, the structure of the magnetic field has to be relatively
simple.

The aim of this paper is to show how one can introduce
Euler potentials (4) in a practical way, as well as the Clebsch
representation (6) for a magnetic field with non-zero helic-
ity. There is a solution of the MHD equations (Kamchatnov,
1982; Sagdeev et al., 1986) based on the Hopf invariant of
the mapping of a 3-D sphereS3 into a 2-D sphereS2 (see, for
example, Dubrovin et al., 1979). In this solution, the mag-
netic flux tubes can be linked to each other as many times as
one wants. The MHD soliton has a known helicity following
from topology; hence, in each step of the calculation, there is
an opportunity to control the situation. Besides, this solution
is relatively simple, and all the results can be obtained analyt-
ically. We will not use topological methods, because all our
results can be obtained straightforwardly if some topologi-
cal information has been taken into account from the very
beginning.

This paper is organized as follows. In Sects. 2 and 3, we
recall the details of the MHD Kamchatnov-Hopf solution.
Euler potentials are introduced in Sect. 4. A visualization of
the magnetic field structure is presented in Sect. 5. Helicity
coordinates are introduced in Sect. 6, and Sect. 7 is devoted
to the summary and discussion.

2 MHD Kamchatnov-Hopf soliton

First of all, we will recall (Chandrasekhar, 1961; Kamchat-
nov, 1982) that any solinoidal vector field, divB = 0, gives
rise to a solution of the steady-state MHD equations

ρ(v · ∇)v = −∇P +
1

4π
(B · ∇)B, (7)

(v · ∇)B = (B · ∇)v, (8)

divv = 0, (9)

divB = 0, (10)

in an incompressible plasma where the densityρ = const.
Here,P is the total (gas + magnetic) pressure, andv is the
plasma velocity. If we choosev = B/

√
4πρ, andP = const,

then Eqs. (7–10) are satisfied automatically. In this solution,
the magnetic tension is balanced by the centrifugal force.

The idea of the Kamchatnov-Hopf soliton solution is to
obtain a solenoidal vector field with known linkage using
topological methods.

A 3-D sphereS3 is defined inR4 as a set of points
(q1, q2, q3, q4), such thatq2

1 +q2
2 +q2

3 +q2
4 = 1. Let us intro-

duce two complex numbers,Z1 = q1 + iq2, Z2 = q3 + iq4,

thenS3 can also be described as|Z1|
2
+ |Z2|

2
= 1. A curve

(a circle) onS3 can be presented as

l(t) = (Z1e
iω1t , Z2e

iω2t ), (11)

where t is a parameter along the curve. It can be shown
(Dubrovin et al., 1979) that two curves corresponding to dif-
ferent initial pointsZ1, Z2 with integer numbersω1, ω2 link
each otherω1ω2 times.

A tangential fieldY onS3 generated by the curve (11) is

Y (ω1, ω2) =
dl(t)

dt
= (−ω1q2, ω1q1,−ω2q4, ω2q3), (12)

which also has the linkageω1ω2. Now we can map the curve
(11) intoR3 using the stereographic projection

xi =
qi

1 + q4
, i = 1,2,3, (13)

q4 =
1 − x2

1 + x2
, qi =

2xi
1 + x2

, i = 1, 2, 3. (14)

To obtain the vector field (12) inR3, we can just differentiate
Eq. (13) with respect to parametert

J =

[
−

4(ω2x1x3 + ω1x2)

(x2 + 1)2
,

4(ω1x1 − ω2x2x3)

(x2 + 1)2
,

2ω2(x
2
1 + x2

2 − x2
3 − 1)

(x2 + 1)2

]
. (15)

Stereographic projection conserves the topological invariant
that is the linkageω1ω2.

As a matter of fact, divJ 6= 0, but it can be easily verified
that the fieldB = J/(1 + x2) is solenoidal, wherex2

=

x2
1 + x2

2 + x2
3. The factor 1/(1 + x2) 6= 0 exists everywhere

in R3, therefore, the field obtained,

B =
2

(1 + x2)3

{
− 2(ω2x1x3 + ω1x2),

2(ω1x1 − ω2x2x3), ω2(x
2
1 + x2

2 − x2
3 − 1)

}
, (16)

has the same topological property as the field (12) onS3.
The field (16) is the basis for the topological soliton. As

was pointed out previously, if we introduce the plasma veloc-
ity v = B/

√
4πρ, and the pressureP = const, then MHD

Eqs. (7–10) are satisfied automatically. We will refer to this
solution as the MHD Kamchatnov-Hopf soliton.

3 Magnetic field lines

Let us now derive the equation of the magnetic field lines
in R3. To this end, we can solve differential equations
dr/dλ = B using Eq. (16), but it is much easier just to map
the known integral curves (11) fromS3 to R3, with the help
of stereographic projection (Kamchatnov, 1982; Sagdeev et
al., 1986)

x1(t) =
2(x10 cos(ω1t)− x20 sin(ω1t))

1 + x2
0 + (1 − x2

0) cos(ω2t)+ 2x30 sin(ω2t)
,
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x2(t) =
2(x20 cos(ω1t)+ x10 sin(ω1t))

1 + x2
0 + (1 − x2

0) cos(ω2t)+ 2x30 sin(ω2t)
,

x3(t) =
2x30 cos(ω2t)− (1 − x2

0) sin(ω2t)

1 + x2
0 + (1 − x2

0) cos(ω2t)+ 2x30 sin(ω2t)
. (17)

Using trigonometric identities, it is possible to reduce
Eq. (17) to the following form

x1 =
cos21

a + b cos22
,

x2 =
sin21

a + b cos22
,

x3 =
b sin22

a + b cos22
, (18)

where

21 = ω1t + α1, 22 = −ω2t + α2,

a =
1 + x2

0

2
√
x2

10 + x2
20

, b2
= a2

− 1 =
4x2

30 + (1 − x2
0)

4(x2
10 + x2

20)
,

cosα1 =
x10√

x2
10 + x2

20

, sinα1 =
x20√

x2
10 + x2

20

,

cosα2 =
1 − x2

0√
4x2

30 + (1 − x2
0)

2
,

sinα2 =
2x30√

4x2
30 + (1 − x2

0)
2
. (19)

It turns out that the magnetic field lines lie on the surface of
the torus

x1 = (a + b cos22) cos21,

x2 = (a + b cos22) sin21,

x3 = b sin22, (20)

which is produced by the rotation of the circlex2
3 + (x1 −

a)2 = a2
− 1 around thex3 axis. The central torus degener-

ates into a circle (Sagdeev et al., 1986),

x3 = 0, x2
1 + x2

2 = 1, (21)

which will play an important role hereafter.

4 Euler potentials

It is convenient to choose as Euler potentials the following
constants of integration (first integrals) of Eq. (19)

α = α1ω2 + α2ω1, β =
1

(2a)2
, (22)

or, in Cartesian coordinates,

α = ω2 arctan
x2

x1
+ ω1 arctan

2x3

1 − x2
, (23)

β =
x2

1 + x2
2

(1 + x2)2
.

Then we can find the gradients of these functions

∇α =

[
4ω1x1x3

(x2 − 1)2 + x2
3

−
ω2x2

x2
1 + x2

2

,
4ω1x2x3

(x2 − 1)2 + x2
3

+
ω2x1

x2
1 + x2

2

,−
2ω1(x

2
1 + x2

2 − x2
3 − 1)

(x2 − 1)2 + x2
3

]
, (24)

∇β = −
2

(1 + x2)3

(
x1(x

2
1 + x2

2 − x2
3 − 1),

x2(x
2
1 + x2

2 − x2
3 − 1), 2x3(x

2
1 + x2

2)
)
, (25)

and verify that Eq. (4) is satisfied, i.e.α, β are indeed, Euler
potentials. The potentialα is a naked angle (i.e. an angle that
is not hidden under any trigonometric functions), which can
have a non-zero contribution after integration of its gradient
along a closed contour. Therefore, it is not surprising that
first of all, α is a multi-valued function, and secondly,∇α

has a singularity on the circle (21).
The next step is to obtain the vector potentialA = −β∇α

A =

{
−4ω1x1x3(x

2
1 + x2

2)

R
+

ω2x2

(x2 + 1)2
,

−4ω1x2x3(x
2
1 + x2

2)

R
−

ω2x1

(x2 + 1)2
,

2ω1(x
2
1 + x2

2)(x
2
1 + x2

2 − x2
3 − 1)

R

}
, (26)

whereR = (x2
+ 1)2((x2

− 1)2 + 4x2
3). Remember that

the formal representation (5) leads to zero helicity, but we
know thatK 6= 0 by the topological construction, hence, the
potential (26) should have some principal disadvantage. If
vector potentialA is defined by the differential Eq. (2), then
we have to conclude thatA is indeed the vector potential of
the magnetic fieldB, since Eq. (2) is satisfied. But besides
the differential equation, there is also an integral equation∮
L

(A · dl) =

∫
S

(B · dS) = FB , (27)

whereFB is the magnetic flux through the surfaceS bounded
by the contourL. Differential and integral equations some-
times are not identical, and in our situation this is exactly the
case. If we choose any contourL which does not cross the
disc bounded by the singular circle (21), then the circulation
of A alongL gives exactly the magnetic fluxFB . However,
if the contour encounters the disc bounded by singular circle
(21), then the circulation obtains an additional contribution∮
L

(A · dl) = FB +
πω1

2
, (28)

therefore, the integral Eq. (27) is not satisfied. The formal
reason for the multi-valued character of the circulation (28)
lies in the singular behaviour of the latter at the circle (21),
or due to the fact that the functionα (22) is a naked an-
gle. Hence, we have to proceed with the Clebsch represen-
tation (6), and to find a functionψ to compensate the singu-
larity in the potential (5). It is clear that the functionψ also
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Fig. 1. Magnetic flux tube for the caseω1 = 1, ω2 = 1.

has to be a naked angle like the functionα, and its gradient
should have a singularity at the circle (21)

ψ =
1

4
ω1 arctan(

x2
− 1

2x3
) =

1

4
ω1(−ω2t + α2 +

π

2
). (29)

Then, the Clebsch potential (6) turns out to be

A =

{
ω2x2 + ω1x1x3

(1 + x2)2
,

ω1x2x3 − ω2x1

(1 + x2)2
,

ω1(1 + x2
3 − x2

1 − x2
2)

2(1 + x2)2

}
. (30)

It has no singularity in the whole space like the magnetic
field (16), and both the differential (2) and the integral (27)
equations are now satisfied.

It is interesting to note that the Clebsch representation (6)
formally looks similar to the gauge conditionA′

→ A+∇φ.
Nevertheless, there is an essential difference. The functionφ

has to be a single-valued one for the gauge transformation, at
least for the simple connected region�; hence, the integral
of its gradient along any closed contour has to vanish. Con-
trary, the functionψ in the Clebsch representation (6) has to
be a multi-valued one, and the integral of its gradient along
some closed contour can have non-zero contribution. Gen-
erally speaking, the question of whether the gauge function
is a multi- or single-valued one is not really important for
many applications in electrodynamics. But for such delicate
characteristics of the field as the magnetic helicity, the solu-
tion of this question plays the key role. It is the multi-valued
functionψ that provides the non-zero helicity.

Using the vector potential (30) and the magnetic field (16),
we can calculate the helicity as the volume integral (1)

K = −
π2ω1ω2

4
. (31)

Fig. 2. Surfaceβ = const for the caseω1 = 1, ω2 = 1.

The negative sign in Eq. (31) is connected with the parameter
t in the initial curve (11) atS3, so thateiωt gives a minus,
wherease−iωt gives a plus.

The Clebsch representation (6) leads to another way to
compute the helicity

K = {ψ}

∫
S

(B · dS), (32)

which, of course, gives the same result (31). Here,S is the
singular circle (21), and{ψ} is the jump of the functionψ on
the latter. As one can see, helicity can be calculated from the
surface integral (32) rather than from the volume integral (1),
which is simpler to do. It is also interesting that the helicity
is equal to the magnetic flux through the singular circle times
the jump of theψ function.

5 Visualization

It is worthwhile to present pictures of the magnetic field
structure of the MHD Kamchatnov-Hopf soliton solution as
mathematical examples for illustration. We start with the
simplest case,ω1 = ω2 = 1 . The flux tube looks like a
torus twisted by the angle 360◦. To see this more clearly,
the tube presented is chosen to have a rectangular cross sec-
tion (Fig. 1), so that one can easily follow the screwed colour
boundaries.

The surface Euler potentialβ = const is just a usual torus
(Fig. 2), since it stays more or less the same for allω1, ω2.
The magnetic field lines are swept around this torus.

The surfaceα = const is more complicated (Fig. 3). It is
similar to a ribbon twisted by 360◦. Such a surface cannot
be continued to the closed one inR3 without self crossing,
because∇α has a singularity at the circle (21).

There is a simple way to imagine the magnetic field struc-
ture. Let us take a paper ribbon, twist it by the angle
360◦(note that twisting by 180◦gives a Moebius sheet), glue
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Fig. 3. Surfaceα = const for the caseω1 = 1, ω2 = 1.

Fig. 4. Two linked flux tubes for the caseω1 = 1, ω2 = 1.

the edges of the ribbon together, and then cut it along the cen-
tral line with scissors. As a result, we get two ribbons linked
to each other. If we continue this procedure and cut the two
ribbons obtained along their central axis, and so on, we can
observe that each ribbon links any other one exactly one time
(Fig. 4). This behaviour is reflected in the topological invari-
ant helicityK (31).

It is difficult to imagine that the intersection of two sur-
facesα = const andβ = const for different constants can
give linked lines, nevertheless, it is so.

To complete the caseω1 = ω2 = 1, we also present the
surfaceψ = const (Fig. 5) which has a spiral structure con-
verging to the singular circle (21).

After these relatively simple pictures we can proceed to
the general case. First, we recall that two numbers are
relatively prime if and only if the greatest common divi-
sor of the numbers is one. For integersω1, ω2 such that
ω1 = n, ω2 = m are relative prime, the magnetic field
lines of the MHD Kamchatnov-Hopf soliton are linked into
(n,m) knots which are topologically nonequivalent for dif-
ferent (n,m). They form the known family of toric nodes

Fig. 5. Surfaceψ = const for the caseω1 = 1, ω2 = 1.

Fig. 6. Magnetic flux tube for the caseω1 = 2, ω2 = 1.

(Crowell and Fox, 1963).
The caseω1 = 2, ω2 = 1 is depicted in Fig. 6 (single flux

tube), Fig. 7 (surfaceα = const), and Fig. 8 (knot 2,1).
The more complicated caseω1 = 2, ω2 = 3 is presented in

Fig. 9 (single flux tube), Fig. 10 (surfaceα = const), Fig. 11
(central fragment of the surfaceα = const), and Fig. 12
(knot 2,3).

It is interesting that the surface of the Euler potentialα =

const for the latter case (Figs. 10, 11) is similar to a pro-
peller, and this circumstance seems not to be a pure coinci-
dence. The propeller has to create curls of air for produc-
ing a moving force, and at least some surfacesα = const
(Figs. 3, 7, 10) might be used for this aim just from topo-
logical reasons. Of course, there is the question about the
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Fig. 7. Surfaceα = const for the caseω1 = 2, ω2 = 1.

Fig. 8. Two linked flux tubes for the caseω1 = 2, ω2 = 1.

efficiency of such airscrews or waterscrews, but this is not
the subject of this paper.

6 Helicity coordinates

A magnetic field line is defined by two Euler potentialsα, β,
and a point on this line is controlled by the parametert . We
can use another parameterψ along the magnetic field line
instead oft . Thenα, β,ψ , i.e. all functions taking part in
the Clebsch representation of the vector potential (6), can be
used as new curvilinear coordinates that have some useful
property.

Fig. 9. Magnetic flux tube for the caseω1 = 2, ω2 = 3.

Fig. 10. Surfaceα = const for the caseω1 = 2, ω2 = 3.

We already have an expression for the Clebsch coordinates
via Cartesian coordinates (22, 23, 29). It is possible to sim-
plify these equations, noting that without loss of generality,
we can assumeα1 = 0 in Eq. (22) and then obtain

α = ω1 arctan
2x3

1 − x2
,

β =
x2

1 + x2
2

(1 + x2)2
,

ψ =
1

4
ω1 arctan(

x2
− 1

2x3
). (33)

Now we can also find the mapping(x1, x2, x3) → (α, β,ψ)

x1 =
2
√
β cos( α

ω2
+

πω1
2ω2

−
4ψ
ω2
)

√
1 − 4β cos(4ψ

ω1
−

π
2 )+ 1

,
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Fig. 11. Central fragment of the surfaceα = const for the case
ω1 = 2, ω2 = 3.

x2 =
2
√
β sin( α

ω2
+

πω1
2ω2

−
4ψ
ω2
)

√
1 − 4β cos(4ψ

ω1
−

π
2 )+ 1

,

x3 =

√
1 − 4β sin(4ψ

ω1
−

π
2 )

√
1 − 4β cos(4ψ

ω1
−

π
2 )+ 1

. (34)

After some algebra one can find the Jacobian of this transfor-
mation

J =
D(x1, x2, x3)

D(α, β,ψ)
=
A

B
, (35)

where

A = 8(
√
(1 − 4β)+ 4βγ 2

√
(1 − 4β)+ 2(1 − 4β)

3
2γ 2

− 8βγ + 2γ −

√
(1 − 4β)γ 2),

B = ω2ω1(−γ
5
+ 12βγ 5

− 48β2γ 5
+ 64β3γ 5

− 5(1 − 4β)
5
2γ 4

− 10γ 3
+ 80βγ 3

− 160β2γ 3

− 10(1 − 4β)
3
2γ 2

− 5γ + 20βγ −
√
(1 − 4β)),

γ = cos(−4
ψ

ω1
+
π

2
). (36)

This equation is a bit complicated, but nevertheless, it is pos-
sible to verify thatJ 6= 0 in the whole space, hence, the
coordinates(α, β, ψ) can be introduced inR3.

Let us compute the magnetic helicity using these new co-
ordinates

K =

∫
R3

(A · B)dx1 ∧ dx2 ∧ dx3

=

∫
R3

(∇ψ · [∇α × ∇β])dx1 ∧ dx2 ∧ dx3

=

∫
R3

D(α, β,ψ)

D(x1, x2, x3)
dx1 ∧ dx2 ∧ dx3

Fig. 12. Two linked flux tubes for the caseω1 = 2, ω2 = 3.

=

∫
�′

dαdβdψ, (37)

where it is assumed that the whole space is mapped into the
region�′,R3

→ �′ under the transformation(x1, x2, x3) →

(α, β, ψ). Therefore, it turns out that in the new variables,
magnetic helicity is equal to the volume of the configuration
space(α, β, ψ). It is easy to verify that the new formula (37)
gives the same result (31) for the helicity if we take into ac-
count that the coordinates(α, β, ψ) are varied within the fol-
lowing limits

α ∈ (−π, π ]; β ∈ [0,
1

4
);

ψ ∈ (−
1

4
ω1ω2π,

1

4
ω1ω2π], (38)

where brackets ( or [ are used to show that the element close
to the bracket is excluded or included in the list of elements,
respectively.

One can see that the spaceR3 is mapped onto the paral-
lelepiped (38), in which the straight lines(α = const,β =

const) represent the magnetic field lines. It is surprising that
the complicated magnetic structure is converted into a very
simple geometrical object, that is the parallelepiped (38). In
fact, the situation is not that simple. To make field lines
which are closed, we have to glue the end points. The points
on the left boundaryα = −π have to be considered identical
with those on the right boundaryα = π , and the points of the
bottom boundaryψ = −

1
4ω1ω2π are identical with those on

the upper boundaryψ =
1
4ω1ω2π after the rotation of the

latter by the angle 2ω1ω2π .
We note that helicity coordinates can be particularly im-

portant for numerical simulations where helicity control is
required.
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7 Discussion and summary

It was shown that Euler potentials can be introduced globally
for a magnetic field with non-zero helicity even for the sim-
ply connected region (the spaceR3 in our case), contrary to
the remark of Biskamp (1993). Therefore, most of the co-
ordinate systems (Pudovkin and Semenov, 1985; Pustovitov,
1999) based on Euler potentials (4), such as the helicity sys-
tem (34), can also still be applied to magnetic structures with
non-zero helicityK 6= 0. On the other hand, one has to be
particularly careful with the vector potential. Remember that
the simple representation (5) is not appropriate for the mag-
netic field withK 6= 0, instead the Clebsch representation (6)
has to be used.

As we have seen, the functionψ plays a key role in cal-
culating the magnetic helicity. The multi-valued character of
this function is connected with the singular behaviour of the
gradient of at least one Euler potential (α in our case). In its
turn, the singularity of the Euler potential is the consequence
of the fact that theα = const surface is highly twisted for the
caseK 6= 0 and cannot be continued to a closed surface in
R3.

The helicity turns out to be equal to the magnetic flux
through the singular circle times the jump of the functionψ ,
hence, the calculation ofK can be reduced to a surface inte-
gral. It seems that the simple formula (32) can be extended
to the general case as

K =

∑
j

{ψj }FBj , (39)

whereFBj is the magnetic flux through the surface bounded
by thej -singular curve of the Euler potential and{ψj } is the
jump of the functionψ at this surface.

If, by chance, it is known that all singular lines of the Euler
potentials (separatrices) lie on a surfaceS (the surface of the
Sun, for example), then the magnetic helicity can be found
using only data of the normal component of the magnetic
field Bn on S from Eqs. (32) or (39), which is an important
problem for solar physics. But if a singular line is inside the
Sun, it is not possible to find the helicity using surface data.
The maximum of what can be done is to estimate the helicity
if one could somehow control the magnetic flux closed under
the Sun’s surface.

The Kamchatnov-Hopf solution seems to be the simplest
one that can describe the magnetic field with such a non-
trivial helicity. Therefore, it may play the same role for
the investigation of different helicity problems as the Harris
(1962) layer in plasma physics or the Petschek (1964) solu-
tion in reconnection theory.
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