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Abstract. In the MHD description of plasma phenomena
the concept of magnetic helicity turns out to be very useful.

We present here an example of introducing Euler potentials

into a topological MHD soliton which has non-trivial helic-
ity. The MHD soliton solution (Kamchatnov, 1982) is based
on the Hopf invariant of the mapping of a 3-D sphere into a

2-D sphere; it can have arbitrary helicity depending on con-
trol parameters. It is shown how to define Euler potentials

globally. The singular curve of the Euler potential plays the
key role in computing helicity. With the introduction of Euler
potentials, the helicity can be calculated as an integral ove
the surface bounded by this singular curve. A special pro
gramme for visualization is worked out. Helicity coordinates
are introduced which can be useful for numerical simulation
where helicity control is needed.

1 Introduction
Magnetic helicity is a topological characteristic of magnetic
field structures which includes the twisting and the kinking
of a flux tube, as well as the linkage between different flux
tubes (Moffatt, 1978; Biskamp, 1993). Among its numer-
ous applications are dynamo theory (Moffatt, 1978), investi-
gation of magnetic reconnection (Wiegelmann arictier,
2001), theory of relaxation (Taylor, 2000), and even the col-
limation mechanism of astronomical jets (Yoshizawa et al.
2000).

Magnetic helicity is defined as a volume integral
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whereB is the magnetic field and is the vector potential

B=V x A. @)
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Helicity (1) is gauge invariant, because under the transforma-
tion A’ — A + V¢, itis then changed by
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if B,lasq = 0, wheren is the vector normal to the boundary
Q. For B, |sq # 0, the surface integral does not vanish and
the helicity becomes gauge dependent. Generally speaking,
there is the possibility to define the helicity for the difference
petween the original field and the vacuum field (Schindler et
al., 1988; Biskamp, 1993; Priest and Forbes, 2000) which
helps to give the helicity a physical meaning for more realis-
tic conditions. Nevertheless, we will restrict our considera-
tion to the classical cask, |3 = 0, leaving a more general
definition of the magnetic helicity for future studies.

When the Euler potentialg, 8 are used,

B =Va x VB, 4)

there is the following problem related to helicity. It can be
easily verified that

A =—BVa ©

(or A aVp) is the vector potential (2) for the mag-
netic field (4). Then helicity vanishes at the level of the
scalar productA - B) = 0. Itis known (see, for example,
Biskamp, 1993) that the vector potential can be presented in
the following form (Clebsch representation)

A =—BVa+ Vi, (6)

where the functiony (contrary tog in Eq. 3) must be multi-
valued. This implies that the functioy has a surface;
inside the volume&2 where it has a jump, then the contribu-
tion from the jump surface; is added to the integral over
9% in Eq. (3) which results in the non-zero helicity.

The solution to the questions (a) how to introduce Euler
potentials globally for the magnetic field with non-trivial he-
licity, (b) how to find the function/, and (c) why it has to
be multi-valued, are unclear so far. For example, it is stated
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(Biskamp, 1993) that Euler potentials cannot be introducedthens? can also be described 822 + |Z2|%? = 1. A curve
globally for a magnetic field with non-zero helicity unless (a circle) ons3 can be presented as
the system is multiply connected. In Sagdeev et al. (1986)7 -y it
it is pointed out that magnetic field lines determined by the (1) = (£2e77, Z2e™), (11)
Lagrangian invariants do not admit any linkage, i.e. the helic-yhere; is a parameter along the curve. It can be shown
ity has to vanish. The representation (5) is used sometimegpybrovin et al., 1979) that two curves corresponding to dif-
(Priest and Forbes, 1999; Wong, 2000) quite generally, buerent initial pointsZ1, Z, with integer numbers, ws link
it is not mentioned that helicity has to vanish in this case;gach othetw, times.
hence, the structure of the magnetic field has to be relatively A tangential fieldy on $3 generated by the curve (11) is
simple.

The aim of this paper is to show how one can introducey(w1 dl() (12)

_ : : ,w2) = —— = (—w192, 0191, —®244, ©243),
Euler potentials (4) in a practical way, as well as the Clebsch dt

representation (6) for a magnetic field with non-zero helic-which also has the linkageyw,. Now we can map the curve
ity. There is a solution of the MHD equations (Kamchatnov, (11) into R® using the stereographic projection
1982; Sagdeev et al., 1986) based on the Hopf invariant of

the mapping of a 3-D sphe® into a 2-D spheré? (see, for  x; = — ' i =1,2,3, (13)
example, Dubrovin et al., 1979). In this solution, the mag- 1+4qa
netic flux tubes can be linked to each other as many times as )
. - ) 1_ ,
one wants. The MHD soliton has a known helicity following X 4 = 1+l S, i=123 (14)
X

from topology; hence, in each step of the calculation, there is 471 +x2’
an opportunity to control the situation. Besides, this solution
is relatively simple, and all the results can be obtained analyt
ically. We will not use topological methods, because all our

To obtain the vector field (12) iR3, we can just differentiate
Eq. (13) with respect to parameter

results can be obtained straightforwardly if some topologi- Awox1x3 + w1x2)  Awix1 — wox2x3)
cal information has been taken into account from the very” = | =72 )2 x2+12
beginning. P S

This paper is organized as follows. In Sects. 2 and 3, we 2wp(x] +2x2 2x3 1)] (15)
recall the details of the MHD Kamchatnov-Hopf solution. e+ 1)

Euler potentials are introduced in Sect. 4. A visualization of Stereographic projection conserves the topological invariant
the magnetic field structure is presented in Sect. 5. HeliCitythat is the linkagesiwy.

coordinates are introduced in Sect. 6, and Sect. 7 is devoted As a matter of fact, diy # 0, but it can be easily verified
to the summary and discussion. that the fieldB = J/(1+ x?) is solenoidal, where? =
x? + x5 4+ x2. The factor (1 + x2) # 0 exists everywhere
in R3, therefore, the field obtained,
2
First of all, we will recall (Chandrasekhar, 1961; Kamchat- B= (1—|—x2)3{

nov, 1982) that any solinoidal vector field, #v= 0, gives
rise to a solution of the steady-state MHD equations

2 MHD Kamchatnov-Hopf soliton

— 2(w2x1x3 + w1x2),
2, 2 2
2(w1x1 — woxox3), w2(xf + x5 — x5 — D}, (16)

has the same topological property as the field (12¥@n

p(v-V)v=—VP + i(B .V)B, 7 The field (16) is the basis for the topological soliton. As

Ar was pointed out previously, if we introduce the plasma veloc-
(-V)B = (B-V)v, (®) ity v = B//3mp, and the pressur® = const, then MHD
dive = 0, 9) Egs. (7-10) are satisfied automatically. We will refer to this
divB =0, (10) solution as the MHD Kamchatnov-Hopf soliton.

in an incompressible plasma where the dengity- const. o )
Here, P is the total (gas + magnetic) pressure, and the 3 Magnetic field lines

plasma velocity. If we choose= B/./4mp, andP = const, . : - .
then Egs. (7—10) are satisfied automatically. In this solution,.l‘et us now derive the equation of the magnetic field lines

. . . in R%. To this end, we can solve differential equations
the magnetic tension is balanced by the centrifugal force. dr/d) = B using Eq. (16), but it is much easier just to ma
The idea of the Kamchatnov-Hopf soliton solution is to " . g =q. ' ] P

) ) . ; . .~ the known integral curves (11) fros? to R3, with the help
obtain a solenoidal vector field with known linkage using ; o )
: of stereographic projection (Kamchatnov, 1982; Sagdeev et
topological methods.

. . . . al., 1986
A 3-D spheres® is defined inR* as a set of points ) _
(q1. 92, g3, 94), such thay? +¢5+¢3+q3 = 1. Letus intro- () = 2(x10COS11) — x20SiN(w11))
duce two complex numbergy = g1+ ig2, Z2 = g3+ iqa, 1+ x3 4 (1 — x3) coSwat) + 2x30SiN(war)’
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2(x20c09w1t) + x10SiN(w1t))

x2(t) = , Then we can find the gradients of these functions
1+ x3 + (1 — x2) coSwat) + 2x30SiN(wat)
o B [ 4w1x1x3 WX Aw1xox3
xa(r) = SO0 Z QX)) (212435 wf g (212
| -1+ xg + (1. _.xo) c.o-s(a)zt)- +- 2x30 Sln.(wzt) - Zwl(xf n x% B x§ B 1)] o
Using trlgonometnc_ identities, it is possible to reduce x% + xg’ (x2— 1)2 + x§ ’
Eq. (17) to the following form
€C0s®; 2 2 2 2
= V= ———5—5 (x1(x] 4+ x5 —x5—1),
t a + b cosO (1+x2)3( 17T X243
o — Sin®1 ’ xp(xf + x5 — x5 — 1), 23(x7 + x3)), (25)
a +bb.co§®2 and verify that Eq. (4) is satisfied, i.e, 8 are indeed, Euler
x3 = L, (18) potentials. The potential is a naked angle (i.e. an angle that
a+bCosO; is not hidden under any trigonometric functions), which can
where have a non-zero contribution after integration of its gradient

along a closed contour. Therefore, it is not surprising that

Or=wit +a, Oz2=—wst+az first of all, « is a multi-valued function, and secondwx

Y 1+ x2 b2 21— 435+ (1— x) has a singularity on the circle (21).
= ’ = = 2 2, i i _
2 /xfo +x2, A(x%, + x50) The next step is to obtain the vector potental= —Va
) —4w1x1x3(x2 + xz) woX2
COSO[]_IL, Sanl]_:L, A= 1 2 5 5
2 2 2 2 R x“+1
*10 1 *20 *10 20
1 ) —4a)1x2x3(xf + x%) w2X1
cosay = I — R a2+ 12
\ /4x§0 +(@1- xé)2 2w1(x% + x%) (x% + x% — x§ -1 (26)
. 2x30 R ’
Sinap = (29)

4xgy+ (1— XS)Z‘ whereR = (x% + 1)?((x? — 1)? + 4x3). Remember that

the formal representation (5) leads to zero helicity, but we
It turns out that the magnetic field lines lie on the surface ofknow thatk # 0 by the topological construction, hence, the
the torus potential (26) should have some principal disadvantage. If
vector potentiald is defined by the differential Eq. (2), then
we have to conclude that is indeed the vector potential of

*1 = (@ +bcos6y) cosOy, the magnetic fieldB, since Eq. (2) is satisfied. But besides

x2 = (a + bCosO?) sinOy, the differential equation, there is also an integral equation
x3 = bSin®, (20)

L _ _ jg(A-dl)=/(B~dS)=FB, (27)
which is produced by the rotation of the C|rot§ + (x1 — / g

a)? = a® — 1 around thers axis. The central torus degener-

ates into a circle (Sagdeev et al., 1986), whereFj is the magnetic flyx throggh the surfa&@ounded
s by the contourL. Differential and integral equations some-
x3=0, x7+x53=1, (21) times are not identical, and in our situation this is exactly the

case. If we choose any contolrwhich does not cross the
disc bounded by the singular circle (21), then the circulation
of A alongL gives exactly the magnetic flukz. However,

4 Euler potentials if the contour encounters the disc bounded by singular circle
(21), then the circulation obtains an additional contribution

which will play an important role hereafter.

It is convenient to choose as Euler potentials the following

constants of integration (first integrals) of Eq. (19) % (A-dl)=Fp+ % (28)
1
o =owztozwn, f= (2a)%’ (22) therefore, the integral Eq. (27) is not satisfied. The formal
or, in Cartesian coordinates, reason for the multi-valugd character of the circulgtion (28)
lies in the singular behaviour of the latter at the circle (21),
o = wparctan’? + w arctan 2x3 o (23)  Or due to the fact that the functiom (22) is a naked an-
X1 - X gle. Hence, we have to proceed with the Clebsch represen-
X3+ x5 tation (6), and to find a functiotf to compensate the singu-

B = 1+ x2)2° larity in the potential (5). It is clear that the functignalso
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Fig. 2. Surfaceg = const for the case1 = 1, wp = 1.

Fig. 1. Magnetic flux tube for the case; = 1, wy = 1. The negative sign in Eq. (31) is connected with the parameter
t in the initial curve (11) ats®, so thate’®’ gives a minus,
whereas '’ gives a plus.

has to be a naked angle like the functipnand its gradient The Clebsch representation (6) leads to another way to
should have a singularity at the circle (21) compute the helicity

1 2.1 1
¥ = Swrarctan’—— ) = “wor(—wt + a2+ =), (29) K ={¥) /(B - dS). (32)

4 2x3 4 2 J

Then, the Clebsch potential (6) trns out to be which, of course, gives the same result (31). Hérés the

@2X2 + WIX1X3  W1X2X3 — WX singular circle (21), anék/} is the jump of the functiony on
- (1+x22 (1+x2)2 the latter. As one can see, helicity can be calculated from the

surface integral (32) rather than from the volume integral (1),
(30)  which is simpler to do. It is also interesting that the helicity
is equal to the magnetic flux through the singular circle times
the jump of theys function.

w1(1+ x% — x% — x%)
2(L+x2)2

It has no singularity in the whole space like the magnetic
field (16), and both the differential (2) and the integral (27)
equations are now satisfied. 5 Visualization
It is interesting to note that the Clebsch representation (6)

formally looks similar to the gauge conditiot!f — A+ V.
Nevertheless, there is an essential difference. The fungtion
has to be a single-valued one for the gauge transformation,
least for the simple connected regifx) hence, the integral

It is worthwhile to present pictures of the magnetic field
structure of the MHD Kamchatnov-Hopf soliton solution as
Fhathematical examples for illustration. We start with the

fit dient al losed tour has t ish. C simplest casep; = wp = 1. The flux tube looks like a
otits gradient along any closed contour has to vanish. LoNyq,q yyisted by the angle 360 To see this more clearly,

trary, the function)r in the Clebsch representation (6) has to the tube presented is chosen to have a rectangular cross sec-

be a multi-valued one, and the integral of its gr_adl_ent alongtion (Fig. 1), so that one can easily follow the screwed colour
some closed contour can have non-zero contribution. Genboundaries

erally speaking, the question of whether the gauge function The surface Euler potential = const is just a usual torus
is a multi- or single-valued one is not really important for (Fig. 2), since it stays more or less the same forallwy
many applications in electrodynamics. But for such delicate.l.he ma,gnetic field lines are swept around this torus.
characteristics of the field as the magnetic helicity, the solu- The surfacer — const is more complicated (Fig. 3). It is

tion of this question plays the key role. It is the multi-valued similar to a ribbon twisted by 360 Such a surface cannot

funct{onw that provides the non-zero helicity. . be continued to the closed one R¥ without self crossing,
Using the vector potential (30) and the magnetic field (16)’becaus@a has a singularity at the circle (21).

we can calculate the helicity as the volume integral (1) There is a simple way to imagine the magnetic field struc-

72w ture. Let us take a paper ribbon, twist it by the angle
K=-———. (31)  360°(note that twisting by 18@ives a Moebius sheet), glue
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Fig. 3. Surfacex = const for the case) = 1, wp = 1.

Fig. 5. Surfacey = const for the case; = 1, wp = 1.

Fig. 4. Two linked flux tubes for the case; = 1, wo = 1.

the edges of the ribbon together, and then cut it along the cen
tral line with scissors. As a result, we get two ribbons linked
to each other. If we continue this procedure and cut the two
ribbons obtained along their central axis, and so on, we can
observe that each ribbon links any other one exactly one timé-ig. 6. Magnetic flux tube for the case; = 2, wp = 1.

(Fig. 4). This behaviour is reflected in the topological invari-

ant helicityK (31).

It is difficult to imagine that the intersection of two sur- (Crowell and Fox, 1963).
facesa = const and8 = const for different constants can  The casev1 = 2, w2 = 1 is depicted in Fig. 6 (single flux
give linked lines, nevertheless, it is so. tube), Fig. 7 (surface = const), and Fig. 8 (knot 2,1).

To complete the case; = wy = 1, we also present the The more complicated casg = 2, wp = 3is presentedin
surfaceyr = const (Fig. 5) which has a spiral structure con- Fig. 9 (single flux tube), Fig. 10 (surface= const), Fig. 11
verging to the singular circle (21). (central fragment of the surfage = const), and Fig. 12

After these relatively simple pictures we can proceed to(knot 2,3).
the general case. First, we recall that two numbers are It is interesting that the surface of the Euler potentiat
relatively prime if and only if the greatest common divi- const for the latter case (Figs. 10, 11) is similar to a pro-
sor of the numbers is one. For integess, wp such that  peller, and this circumstance seems not to be a pure coinci-
w1 = n,w2 = m are relative prime, the magnetic field dence. The propeller has to create curls of air for produc-
lines of the MHD Kamchatnov-Hopf soliton are linked into ing a moving force, and at least some surfages- const
(n, m) knots which are topologically nonequivalent for dif- (Figs. 3, 7, 10) might be used for this aim just from topo-
ferent(n, m). They form the known family of toric nodes logical reasons. Of course, there is the question about the
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®
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Fig. 7. Surfacex = const for the case1 = 2, wp = 1. Fig. 9. Magnetic flux tube for the case; = 2, wy = 3.

Fig. 10. Surfacex = const for the case, = 2, wy = 3.

We already have an expression for the Clebsch coordinates
via Cartesian coordinates (22, 23, 29). It is possible to sim-
plify these equations, noting that without loss of generality,

-~ . . we can assume; = 0 in Eq. (22) and then obtain
efficiency of such airscrews or waterscrews, but this is not 1 a. (22)

Fig. 8. Two linked flux tubes for the case; = 2, wo = 1.

the subject of this paper. 2x3
a = wp arctan——;,
1—x
2, .2
6 Helicity coordinates g = m
(1+x2)2
A magnetic field line is defined by two Euler potentialss, 1 x2-1

and a point on this line is controlled by the parameteve ¥ = zwiarctan s )- (33)
can use another parametg¢ralong the magnetic field line

instead oft. Thena, B, ¥, i.e. all functions taking part in Now we can also find the mappings, x2, x3) — (a, B, V)
the Clebsch representation of the vector potential (6), can be

o 4 mor A

used as new curvilinear coordinates that have some useful, _ Zﬁcos(wz t 20 " w)
i )

property. VI=4Bcos L — 3) +1
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Fig. 11. Central fragment of the surfaee = const for the case
w1 =2, wp=3.

Fig. 12. Two linked flux tubes for the case; = 2, wp = 3.

2(/Bsin( + 5% — %)

X2 = 3 )
Vi-4pcosy —3) +1 _ /dadﬂdw, 37)
B mgn(i—lfi -2 @) o
 /I—Z4Bcog® _ = '
1-4pcosy -2 +1 where it is assumed that the whole space is mapped into the

region®?’, R® — Q' under the transformatiory, x2, x3) —

(a, B, ¥). Therefore, it turns out that in the new variables,
magnetic helicity is equal to the volume of the configuration
_ D(x1,x2,x3) A (35) space, 8, ¥). Itis easy to verify that the new formula (37)

D(w, B, ¥) B’ gives the same result (31) for the helicity if we take into ac-
where count that the coordinatés, 8, ¥) are varied within the fol-

lowing limits
A =8(/(1—4B) + 4py2/(1— 4B) + 2(1 — 4)3 2 .
—8/3V+2V—\/m, «€(mal pell )
B = wpw1(—y° + 128y° — 488%y° + 648%° Ve (—:A—Lfa)lwzn, j—iwlwzn], (38)
— 51— 48)3y* — 10y3 + 808y > — 160823

After some algebra one can find the Jacobian of this transfor
mation

3 5 where brackets ( or [ are used to show that the element close
— 10 —4p)2y” — Sy + 208y — v(1 - 4p)). to the bracket is excluded or included in the list of elements,
y =cog—aY + 7). (36)  respectively.
w2 One can see that the spaké is mapped onto the paral-

This equation is a bit complicated, but nevertheless, it is posi€lepiped (38), in which the straight linge = constf =
sible to verify that/ # O in the whole space, hence, the const) represent the magnetic field lines. It is surprising that

coordinatesa, 8, v) can be introduced i®S. the complicated magnetic structure is converted into a very
Let us compute the magnetic helicity using these new co-SimPple geometrical object, that is the parallelepiped (38). In
ordinates fact, the situation is not that simple. To make field lines
which are closed, we have to glue the end points. The points
K — /(A - B)dx1 A dxy A dxs on the left boundarg = —n have to be considered identical
with those on the right boundasy= 7, and the points of the
R bottom boundarys = —wiwpr are identical with those on
= /(Vlﬂ [Va x VBdx1 A dxo A dxs the upper boundary = %wlwzn after the rotation of the
e latter by the angle @ wz.
D(a, B, ¥) We note that helicity coordinates can be particularly im-
= | —————dx1 Adxx Adx3 portant for numerical simulations where helicity control is

D(x1, x2, x .
v (¥1, X2, ¥3) required.
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