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Abstract. Local scaling and singularity properties of so- index), have shown that the linear MA filters can identify two
lar wind and geomagnetic time series were analysed usinglifferent regimes in which SW energy is dissipated within
Holder exponenta. It was shown that in analysed cases duethe magnetosphere (directly driven and loading-unloading
to the multifractality of fluctuationgy changes from pointto  regimes). At the same time, the best linear MA filters do
point. We argued there exists a peculiar interplay betweemot predict the geomagnetic output precisely, unless strongly
regularity/irregularity and amplitude characteristics of fluc- varying filter parameters are considered in each case of activ-
tuations which could be exploited for the improvement of ity level separately (Blanchard and McPherron, 1994). Dif-
predictions of geomagnetic activity. To this end, a layeredferent levels of geomagnetic activity and the nonlinearity of
back-propagation artificial neural network model with feed- the SWMC were then treated by nonlinear MA filters (Price
back connection was used for the study of the solar windet al., 1994; Vassiliadis et al., 1995) using the assumption
magnetosphere coupling and prediction of the geomagnetithat the geomagnetic activity is a nonlinear function of the
Dy, index. The solar wind input was taken from the principal solar wind input. Actually, local linear (i.e. nonlinear) MA
component analysis of the interplanetary magnetic field, proilters were used, which represent a linear approximation of
ton density and bulk velocity. Superior network performancethe nonlinear system. Nonlinear MA filters proved to be bet-
was achieved in cases when the information on lo@dtlelr  ter predictors of geomagnetic response than the linear ones,
exponents was added to the input layer. but the internal dynamics of the magnetosphere and the ad-
ditional influence of it on the geomagnetic response itself (a
feedback) was more explicitly considered within the frame
of state-input space models (Vassiliadis et al., 1995). Here
the prediction of magnetospheric states is made within a
common input (solar wind) output (geomagnetic data) phase
gace, and the local linear (nonlinear) approximation is given
y an evolution of the nearest neighbours of a phase space
point. Vassiliadis et al. (1995) found that in comparison with
linear state-input models (global aproximation), the nonlin-

. : TP . ear state-input models (local approximation based on nearest
output techniques (or linear prediction filtering) describe thenei hbours) give better predictions of geomagnetic activit
SWMC by a linear moving-average (MA) filter, assuming 9 9 P 9 9 Y-

that the convolution of a time-invariant transfer function ~An alternative to the above MA filters is represented by
(TF), with an earlier SW input, can predict the magneto- artificial qeural networks (ANN) which are global nonlin-

spheric output represented by time series of geomagnetic in€a" functions. Elman recurrent ANN was used by Mun-
dices (lyemori et al., 1979; Bargatze et al., 1985; McPherrorS@mi (2000) to model the SW forcing of the westward au-
et al., 1988). The TF characterizes the magnetospheric rg®oral electroject and the storm-time ring current. In predict-
sponse and can be estimated directly from data provided thdf'9 9eomagnetic activity, their performance was similar to

a sufficiently large number of input-output pairs is available. that of linear filters (Hernandez et al., 1993). Significantly
In fact, Bargatze et al. (1985), using thé, — AL input- better performance was achieved by gated ANNs that ac-

output datay - solar wind velocity,B. - interplanetary mag- counted for different levels of activity. Weigel et al. (1999)

netic fieldV — S componentA L - auroral zone geomagnetic used three individual ANNs for modelling low, medium and
high vB,, AL activity levels using data from the database

Correspondence taZ. Voros (geomag@geomag.sk) of Bargatze et al. (1985). The outputs of these ANNSs, to-

1 Introduction

One of the goals of solar-terrestrial physics is to predict
the response of the magnetosphere-ionosphere system

highly variable conditions in the solar wind (SW). The ques-
tion of solar wind-magnetosphere coupling (SWMC) can be
studied by means of input-output modelling. Linear input-
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Fig. 1. Period of low activity level;(a) Interplanetary magnetic field from ACE satellite (time resolution 16 [&]);The estimated time
series of Hblder exponenta (c) The energy content of the signal versus window lerigth

gether with past geomagnetic outputs, were used to train thenodelling of SWMC offers a way for considering essential
gate network. It was shown by Weigel et al. (1999) andlocal information on rapid changes, irregularities and inter-
Weigel (2000) that the gated architecture gave significantlymittence not considered enough hitherto. Intermittence of
better predictions than the ungated one or the ARMA systenSW and geomagnetic fluctuations were not built into the non-
reported by Hernandez et al. (1993). Obviously, the gatedinear filter or ANN models. Notwithstanding that SW fluc-
ANN architecture resembles the state-input space model ofuations proved to be strongly intermittent (Burlaga, 1991;
Vassiliadis et al. (1995), accounting for changing activity lev- Carbone, 1994; Marsch et al., 1996; Tu et al., 1996; Bruno
els. Local linear filters can be calculated in a neighbour ofet al., 1999) and also both nonlinear magnetotail theories
any point in state-input space; the gated ANN, however, use¢Chang, 1999; Chapman et al., 1998; Klimas et al., 2000) and
only three levels of activity. experimental works (Consolini et al., 1996; Borovsky et al.,
1997; Consolini and De Michelis, 1998; Consolini and Luli,
In this paper, we propose a method which allows one t01999; Vbros, 2000; Kowcs et al., 2001; Watkins et al., 2001)
consider the changing level of SW fluctuations. Instead ofpredict or confirm the presence of scalings, multifractality
building a more structured gated ANN architecture, we useand intermittence within the magnetosphere. Though there
the extra information on local scaling characteristics of prop-exjst competing theoretical concepts regarding the underly-
erly introduced measures which can be estimated direCt'){ng physical mechanisms which may or may not produce the
from atime series. Multifractals exhibit time-dependent scal-opserved scalings (Freeman et al., 2000; Antoni et al., 2001),
ing laws and hence, allow for a description of irregular phe-these considerations have no effect on our analysis. We sim-
nomena that are localized in time. Multifractal Scaling char- p|y ask what are the Sca"ng characteristics of fluctuations

acteristics of geomagnetic fluctuations were studied by Conand how can this information improve our ability to predict
solini et al. (1996) and ®ros (2000). Jankotgbva et al. geomagnetic activity using ANNs?

(2001), using multilayer feed-forward ANNs, have shown

that the information on multifractal characteristics of geo-

magnetic data added to the input enhanced the performance Data analysis methods

of their ANN in reconstructing AE-index time series from

geomagnetic observatory data. The inclusion of multifractal-2.1  Local scaling characteristics: thélder exponents

ity, however, somewhat amplified the noise component in this

case. We expect that the inclusion of the scaling characteriswe consider the accumulated amount of signal energy within
tics of solar wind and geomagnetic fluctuations to the ANN a window W : (t; — W, ;). The signal energy within a
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Fig. 2. Period of high activity level; — same as in Fig. 1.

window W is computed as a sum of the squared amplitudegpoint (non-stationarity). For instance, fractional Brownian

of time series through

E@)=) X i=

1,2,....N 1)
i-W
and
N
> X)) =1, 2
i=1

where X (¢;) represents a time series, is the total number
of data points. The distribution df in time is considered

motion or continuous & processes represent self-affine fluc-
tuations governed by a singledidier exponent. The global
distribution of singularity exponentsfor geomagnetic fluc-
tuations was studied by Consolini et al. (1996) andrds
(2000). It was shown that on the time scale of substorms
and storms, geomagnetic fluctuations seem to be analogous
to the simple multiplicativep-model, which describes en-
ergy cascade processes in turbulent flows. This model ex-
plains how a specific energy flux introduced on large scales
to a flow can lead to non-homogeneous, intermittent energy
distributions on small scales. On this basis, we expect that
in the case of a homogeneous energy transfer rate between

to be a measure which may also appear as singular. Mathescajes with no intermittency effects, the above defined distri-
matlt_:ally, ameasure can bg characterized by its denf5|ty. Athution will be stationary and ;) ~ 1 for all 7;. Otherwise,
erratic behaviour appears in the absence of a density for g,y < 1 indicate irregularities, sharp variations around
singular measure. Generally, singular distributions can bgypile a(t) > 1is found in regions where events are more

characterized locally by the so-called singularity abldter
exponentsy (Halsey et al., 1986; Muzy et al., 1994 gWel
and Vojak, 1998). Loosely speaking, the exponenuanti-
fies the degree of regularity or irregularity (singularity) in a
distribution or a function in a point. Usually, the measure
E(t;, W) within a windowW scales asV“. Thereforep can

be estimated by a regression method using

logE(t;, W)

a(t, W) = log IV

3)

taking different window lengths¥. For a monofractal
a(t;) = const for ally;, while in a case of multifractal
measure (non-uniform distributiony,changes from point to

regular (Riedi and ®hel, 1997). In the case of multifrac-
tal processesy changes from point to point, which usually
makes the numerical estimation @§ difficult. A number

of papers deals with this question (Muzy et al., 1994, Jaffard
and Meyer, 1996; Mallat and Hwang, 1992&hk&l and Vojak,
1998). Though the Blder exponents do not characterize the
local regularity properties of a signal completely (Guiheneuf
et al., 1998), we are going to use the simple relation (3) to
show that even a rough estimation of local scaling character-
istics of the signal may enhance the performance of ANNSs.
We note that a running numerical estimatecafay fluctuate
sharply for other, yet multifractality different, nonstationary
processes.
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Fig. 3. (a) Interplanetary magnetic fiel#, component (time resolution 1 h(b) The corresponding energy contefit (c) The Holder
exponents(d) Geomagnetidy; index.

2.2 ANN description (RMSE) and correlation coefficienp]
. N

A layered back-propagation ANN model (Rumelhart et al., out pred\2

. " "RMSE = =y N 5
1986; Kibse and Smagt, 1996) with feedback connection (;(y' i) >/ )
from output layer to input layer was constructed. The output-
input layer connection makes the output history to be an or- ZN (your — y””’)(yf’”d _ ypredy
dinary input unit in the training process. The output of the p = =1 L , (6)
model can be expressed in the form Oyout Oypred

0 wherey?*! denotes an actual outpgty’ its mean value and
T pred i~ out i

. W, y a one-step ahead prediction of ANN its mean

y(t+Ar) = F(Z wkfk(; vkl (t — jAT) value; N is their length;oyor and o, are the standard

k=1 J ..
deviations ofy®* andy?¢4,

T
+ vjkl;z)(t — jAT)
j=0 3 Data analysis
T
+ ) uiky(t —iAt) + vo) + wo), (4) In this paper, we are going to predict thg, index one hour
i=0 in advance using the layered back-propagation ANN model

with feedback connection. Prior to that, we show several
wherey denotes theD,, time series; the two inputs equal examples which demonstrate that théldter exponents esti-
IV = pcl andI® = Pc2; T the history; At the time  mated by Eq. (3) provide local characteristics of the analysed
resolution At = 1 h); u;, vjr the weights between input time series that are sensitive enough to capture the necessary
and hidden layersy; the weights between hidden and out- information on the abrupt changes and activity levels.
put layers;vp, wg the biases of the layerg) the number of Figure 1la shows the interplanetary magnetic field (IMF)
hidden units;F and f; the nonlinear activation function. In variations registered by the ACE satellite, which is contin-
our model, f is the hyperbolic tangenE represents the lin-  uously monitoring the SW at thé, Earth-Sun Lagrange
ear activation functions an@ = 6. The performance of the point. The time resolution is 16 s and 5 h of data are shown
ANN model was evaluated through root mean-squared errofrom 14 January 1998, 05:20 UT. This is a time period of
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Fig. 4. The interplay between regularity/irregularity and amplitude characterigag$nterplanetary magnetic fielg#,. (b) Geomagnetic
Dy; index.

very low activity level with a mean value of IMF ACB for a better prediction of future geomagnetic activity.
fluctuations of 3 nT. The Blder exponents estimated within  Other examples of longer period data sets (from 19 March
the variable window lengtW € (16, 16+160) s at each point  to 25 April 2001) are depicted in Fig. 3. This time, IME
are depicted in Fig. 1b. It is visible thatfluctuates around from the ACE satellite and thB,, index are considered with
its mean valugr ~ 1, which means that the measure is al- a time resolution of 1 h. The thick line in Fig. 3a correspond-
most uniformly distributed. The energy content of the signaling to B, = —10 nT highlights periods of enhanced SWMC.
E, and its scaling with window length, i.e- W¢, is shown  Gonzalez and Tsurutani (1987) have shown that the inter-
in a log-log plot in Fig. 1c. planetary causes of intense magnetic storfg (< —100
In contrast with Fig. 1, Fig. 2 shows a more disturbed pe-nT) are long in duration% 3 h) large and negative<( —10
riod of IMF ACE B variations from 31 March 2001 from nT) B, events associated with interplanetary duskward elec-
00:00 to 05:00 UT. The mean value Bfis 43 nT. Large de- tric fields > 5[mVm~1]. A comparison of Figs. 3a and 3d
partures fron = 1 are present (Fig. 1b), mainly withintime shows an agreement with the above criteria, i.e., long in du-
periods of enhanced fluctuations. These periods are charagation, negative IMFB, events occur, together with intense
terized by a sudden increase of regularity£ «) followed magnetic storms. The horizontal thick line corresponds to
by periods of low regularityd < &) or vice-versa. the limit of D;, = —100 nT in Fig. 3d. Figure 3b shows the
In fact, « appears to be a sensitive indicator of fluctua- normalized measur& and the estimated dider exponents
tions which may occur during periods of enhanced IBF are in Fig. 3c. Approximately the same behaviour is visible
amplitudes; however, when the fluctuations cease, the valas previously (Fig. 2), which may be even better visualised
ues ofa return toa ~ 1, independent of the actual ampli- by drawing 3D plots of time, IMFB; or Dy, index and the
tudes. A good example of it is visible within the time inter- corresponding Klder exponents, as in Figs. 4a and 4b. In
val t € (260Q 5000 s in Figs. 2a and 2b, whe® > 50 nT both cases, when the above mentioned physical limits of am-
anda ~ 1. Moreover, the local fluctuations ef arounda plitudes B, < —10 nT andDy; < —100 nT) are crossed,
seem to be larger when the gradientBincreases, butitis the Hdlder exponents have their local minima,< &, in-
not always valid (not shown). There is also a clear differencedicating sharp irregular variations. Intense magnetic storms
between the scalings in Figs. 1c and 2c. (Dsy < —100 nT andx < &) are usually preceeded by sud-
We conclude that, besides the amplitude of magnetic fieldden increases af > &, i.e. by short periods of increased
variations, the local scaling properties of the signal describedegularity (Fig. 4b). The same effect is present in Bhdime
by Holder exponents (Eg. 3) may represent an essential series (Fig. 4a), though, except for the large event around
piece of information, the consideration of which would allow ~ 300 h, it is less visible.
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D < index from 1 January to 28 June 2001
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time series on input.

We expect that precisely the interplay between regular-rameters withAt = 1h time resolution were used,, By,
ity/irregularity and amplitude characteristics should be un-B,, |B|, n, v. The time evolution of 1 hD,, index from 1
derstood from ANNSs to achieve superior performance. TheJanuary to 28 July 2001 was considered. The time series
simplest way to realize this is to add, besides the amplitude®f SW parameters were preprocessed using principal com-
of the analysed variables, the corresponding serietdet ponent Pc¢) analysis (Gnanadesikan, 1977; Reyment and
exponents to the ANN input. The following ACE SW pa- Joreskog, 1996). The linear combinations of normalized SW
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parameters, their derivatives and combinatioBs; By, B, RMSE = 16nT.
[Bl, n, v, nv, n|B|, v|B|, vn|B|, dBy/dt, dBy/dt, dB/dt,

d|B|/dt, dv/dt, dn/dt were used for the calculation of the
Pcs. It was shown by Jankaxva et al. (2002) that, for the

considered set of SW parameters, most of the variance of SW, - . . .
. . . - We presented a prediction technique which uses the extra in-
fluctuations is controlled by the first two components. In this

. . A formation on local scaling exponents to improve the perfor-
paper, we us@c1l andPc2 as the SW input time series. g exp P P

. o S mance of a layered ANN with feedback.

The local sca_lmg gharactensucs of the principal compo- It was demonstrated that thedlder exponents are time
nents are de;crlbgd in the same way as the gther S.W parar&épendent and change from point to point, exhibiting large
eters. The time interval under study was divided into two deviations from the mean valu@ = 1. mainly durin
subsets. The first one (part A in Fig. 5) from 1 January to L y 9

14 March 2001 was used for ANN training while the second e:;hagz«:\\sei(;tl\:gyulg\/rietls}iﬁfe flllj"l(;trlij? tl?e?;c.ureAs F}Z‘;i'é?irb;néeg
one (part B in Fig. 5) from 15 March to 28 July 2001 rep- piay 9 yrirreg y y

resented an independent set for prediction, not included ina) and amplitude characteristics of disturbances was found
 Indep " P ' . and demonstrated on examples of SW and geomagnetic data.
the ANN training process. The influence of inclusion of the

local Holder exponents on the ANN performance was teste l_(\jlllglep;eé;or(r)r;]aer;l(ietivrﬁaes:;gr]irélgc(;afn(t:lé/rlrrgsprg\r/](caj?nby;\;jvdglr? dthee_
for a set of values of history and window length¥, while P P g 9

= o magnetic past data to the input layer, yielding the least
T=W.Inall cases.analysed here, qfeedback consisting O%MSE error of 2 nT for short histon = 2 h and win-
pastT values ofD;, index was set. Figure 6 shows the de-

pendence of correlation coefficiem{Eq. 6) in three different dow lengthW = 2 h. The resuilts obtained withoutokdier
cases: (1) l@lder exponents are not considered as input at exponents were the worst ¢- 0.93 RMSE ~ 7 nT). Only

‘ ' s . a small improvement, if any, was achieved when only the
all - only Pc1, Pc2 and theD, feedback with h_'StOQT (N Lsider exponents of SWPcl and Pc2 were addedd ~
dicated by a continuous line) are considered; (8)ddr ex-

onents ofPc1l and Pc2 vectors are added as input (marked 0.94, RMSE ~ 6 nT). It means that to understand and to
Ey “: (3) z;s in casce (2), but bder exponents%escribing model the magnetospheric response better, in addition to SW
the local scaling properties of pat, values are also added input and geomagnetic history (feedback), the scaling and ir-

. . . lari larity f f heric fl i
as an extra input (depicted by “0”). The effect of the inclu- regularity/regularity gatures o) magngto_sp eric fluctuations
. N . . L . should also be taken into account. This is not an unexpected
sion of Holder exponents is evident mainly in the superior

performance of ANN in case 3. The correlation coeficientresun’ however, since recent nonlinear theories on SWMC or
. ) . ) magnetotail dynamics involve or predict the appearance of
p achieves its maximum,,,, = 0.99 atW =T =2 h and g y P P

o : ) scalings, irregularities (singularities) and turbulence (Galeev
decreases with increasiffgand W. At the same time, ANN 9 g (sing ) (

performance is practically unchanged in cases 1 and 2 Wheﬁt al., 1986; Chang, 1999; Chapman et al,, 1999; Klimas

T and W increase. We mention that without i feed- - "L BEC) (18 U SRECE LR SERCALT O O SR
back, o slowly increases witl" (JankovE€ova et al., 2002). ; 9 9 9

. : ) ) K ity features of fluctuations in different inner and outer regions
As it can be seen, the consideration of scaling properties oty 9

Pcl and Pc2 SW data enhances the performance level ofmc the magnetosphere will be necessary.
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