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Abstract. A lot of discrete configurations for the four- derived for the first time by Hasselmann (1962). In Eq. (1)
wave nonlinear interaction processes have been calculated (k1) is the wave action spectrurk, (i = 1, 2, 3, 4) are the

and tested by the method proposed earlier in the frame ofvave vectors of interacting waves, = o (k;) are the corre-

the concept of Fast Discrete Interaction Approximation to thesponding angular frequencies of the waves due to dispersion
Hasselmann’s kinetic integral (Polnikov and Farina, 2002). Itrelation, Ty (k) is the nonlinear transfer of wave action, and
was found that there are several simple configurations, whichV/(...) are the matrix elements describing an intensity of in-
are more efficient than the one proposed originally in Has-teraction of four waves. In this paper the relation

selmann et al. (1985). Finally, the optimal multiple Discrete 12

Interaction Approximation (DIA) to the kinetic integral for o (k) = (gk) @
deep-water waves was found. Wave spectrum features havgjll be used, which is valid for the ocean surface gravity
been intercompared for a number of different configurationswaves  is the gravity acceleration).

of DIA, applied to a long-time solution of kinetic equation.  The delta-functions in Eq. (1) assure that the four interact-

On the basis of this intercomparison the better efficiency ofing waves should meet the following resonance conditions
the configurations proposed was confirmed. Certain recom-

mendations were given for implementation of new approxi-k1 + k2 = k3 + k4, 3
mations to the wave forecast practice. o1+0o2=o03+04. 4)

A joint solution of Eqgs. (2—4) defines a resonance 3-D-
surface in the 8-dimension#tspace. In a discrete repre-

sentation, this surface gives rise to a set of 4—wave config-
urations for wave vectors contributing to the real nonlinear

It is well known that the nonlinear wave-wave interactions :
lay a principally important role in the wind waves evolution transfer of wave action (and energy as well) among waves.
playap pally Imp Due to the very complicated form of kinetic integral in

(Young and van Viedder, 1993; Komen et al., 1994). UnderEq. (1), in practical wind wave models this integral is substi-

some qon;trgmts they are described by the so-called fourt'uted by some kind of approximation. At present, this point is
wave kinetic integral of the form

very well elaborated, and the only problem is to find the opti-

1 Introduction

ON(ks) mal approximation to the kinetic integral, which has the best
ar Ty (k) balance of accuracy and speed of calculations. This prob-
5 lem was considered in detail in our previous paper (Polnikov
= 4”/dk1/dk2/dk3M (klv k2, ks, k4) and Farina, 2002), where one can find a good list of proper
references.
x [N(kl)N(kZ) (N (ka) + N(k4)> On the basis of specially constructed mathematical mea-
sures and definitions (which is called PF-methodic), the au-
_N(k?’)N(k“) (N(kl) + N(kz))] thors of PF have shown that among different modern approx-
slo(k o) — o (ka) — o (k imations of the kinetic integral the best one is the so-called
x <G( 1) tolke) —o(ks) — o 4)) Discrete Interaction Approximation (DIA), proposed in Has-
S(k1+ k2 — k3 — ka) (1)  selmannetal. (1985). We will not dwell on the DIA, as far as

. it is well described in the literature (for example, see Komen
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Eq. (1). Thus, first of all, one should introduce the principal
parameters of the grid. Then, the features of configurations
in FDIA could be described.

An integration grid for the kinetic integral will be con-
sidered in the polar coordinates, where each of the inter-
acting wave vectok; (i = 1,2, 3,4) is represented by the
frequency-angular poirib;, 6;). In our case, the integration
grid is given by the formulas

o(h=0p-e'"t  A=<I=<N), (5a)
0 J)=—-nm+ (=1 -A0
(1< J < MandAb = 2n/m). (5b)

Thus, parameters of the grid are as follows: the lowest fre-
guencypp; the frequency exponential incremegitthe max-
imum number of frequencie®y; the angle resolution in ra-
Fig. 1. Visual representation of the configuration used in DIA. Con- d!ans,AQ, a.nd.the maximum number of anglet, To our

) i ) . . aims, the principal parameters arand A6, as far as they de-
tour lines correspond to the possible end points of interacting vec-f. h luti fh id. Th b dM should
tors permitted by Eqs. (3) and (4). ine the resolution of the grid. The numbe&ysandM shou

be rather large (several tens), but for the concept under con-

sideration their explicit values are not principal. Note only

et al., 1994; Hashimoto and Kawagushi, 2001; Van VIedder,that the FDIA concept is valid for the rather fine grid when

2001; PF). But we mention that the original DIA requests, < 11 and  A# < 7/10. (6)

some interpolation procedures for the spectrum function un-

der the integral in Eq. (1), provided by a mismatch of the Everywhere below restriction (6) should be met. Particularly,

integration grid nodes and location of some interacting waveln our further consideration, the resolution parameters have

vectors used in the DIA configuration. In PF the concept ofvalues

gfast DIA (FDIA) was proposed, which does not_need thee — 105 and A6 <7/18, @

interpolation procedure. The FDIA concept permits one to

increase several times (at least two times) the speed of theshat is related to the ‘standard’ integration grid introduced

calculation in the DIA, preserving the same accuracy if thein PF for the exact calculation of the kinetic integral (1).

integration grid is rather fine. In the FDIA the basic (simple) configuration is described
In this paper the FDIA concept is used in the frame of by the following ratios:

PF-methodic with the aim to find the optimal approximation 1 P (8a)

to the kinetic integral. The outline of the paper is the fol- a=%

lowing. In Sect. 2 the FDIA concept is described briefly. where the current wave vectéris located at the grid node

The principal formulas of the PF-methodic are presented inand represented in the polar coordinates by the proper fre-

Sect. 3. The set of configurations investigated is describeduencys and angle;

and classified in Sect. 4. Results of configuration testing by

the PF-methodic are given in Sect. 5. In Sect. 6 the Iong-terrr?) ks =k . (8b)

spectrum evolution features are intercompared for differeniynerer, is represented bys = o (1 + azs) andés = 6 +

approximations of the kinetic equation Eq. (1). Section 7 is Ab3g;

devoted to conclusions and recommendations.

3) ki~ ky~ (ka+k3)/2=k,/2, (8c)

wherek, is directed along the angle = 6 + Af,4 and its
value is given by formula (12).

Thus, we have two main parameters of configuration: the
frequency incrementsy, defining the value o&3, and the

As it was shown in PF, all modern, theoretically grounded . -

. L g ._ proper angular incrememtfsy, defining the angle between
and effective approximations are based on using in the SIXVectorsks andks. By varving these parameters. one can va
fold integral (1) only the interacting wave-wave configura- 4 3. Byvanying P ' ry

tions located at the singular sub-surface of the C%—D—resonancEG,ahe configuration as a whole (including the valuegofand
surface defined by resonance conditions (3) and (4). An ex- a) due to Eq. (3).
. The main differences between the configurations used in

ample of such a conflguratlon u_sed_ln the original DIA (Has- FDIA and in the original DIA are as follows:
selmann et al., 1985) is shown in Fig. 1.

The main idea of FDIA is to use such types configurations, (a) all wave vectorks, ko, k3, andk4 should be allocated
which are adjusted to the integration grid for the integral in at the nodes of the integration grid;

2 The concept of the fast Discrete Interaction
Approximation
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(b) vectorski; andk> may be unequal, i.e. they may have 3 PF-methodic of approximation efficiency estimation

some (but small) discrepancies both in values and in di-
rections; The term ‘efficiency of approximation’ was specified in de-

tail in PF. It is based on the rigorous formula for the averaged
(c) the resonance conditions (3) and (4) may be met rathefe|ative error of approximation (ARE)X erel >, and phe-
approximately than exactly. nomenological formula for the efficiencg7. In turn, the
valuee¢e (defined below) is named as a mean relative error
(MRE). There are two situations, and the formulas for them
re as follows.
For a simple FDIA configuratich

The main common feature of all the configurations is that
they are allocated in the vicinity of the ‘figure-of-eight’ in
the k-space (see, Fig. 1). This requirement is expressed b
the following ratios (Polnikov, 1989):

-2
ko = 02/2, @ Effi=(<ee>)". (16)
where In the case of a multiple FDIA configuration, the efficiency
. . ) s 12 is estimated by the formula
ke = [0% + 05 + 20°05 cos(Abz4) |77, (10) o B
| Effi=(<ee>)2(No) ", 17)
an
where N, is the number of simple configurations in a multi-
04 =0 +03. (11)  ple one, andR P is the so-called relative part of CPU time,

taken by the nonlinear sub-routine in calculations by certain
numerical model as a whole (for details, see PF). To our aims,
we can accept the following estimations:

Equations (9)—(11) determine the value of incremafia,
for the giveno andos. After that, the expression fax6,4 is
deduced from the resonant condition (3):

RP =0. f e=2 1
o2 5in(Af3a) } 03 for N, (18a)

02 cos(Afzg) + 02

Abya = arctg[ (12)  and
To fix the FDIA configuration, it needs to define several RP =035 for Ne=3. (18b)

integer values. corresponding to requiremgnt (a).mentio_neqlzOr the higher values oN,, estimation ofRP requires a
above (allocation of the vectors on the grid). This require-se of some software mentioned in the referenced paper. At

ment can be expressed by the following equations: present it seems that this point is not so important.

o3 =0 - "3, o1 =0 e, oy =0 -e" . (13a) . For a certain wave energy spectrusio, ), the rgla—
tive error, €|, is estimated on the basis of comparison of

and the approximated calculation of the 2-D nonlinear transfer,
Tap(0, 6), and the ‘exact’ calculation of the same transfer,

AO34 =n3- A0, AByq = na - A6 . (13b)

T.. (o, ), for the same wave spectrum at the same ‘standard’

Af34 and A6,4 by formulas be expressed in the same dimensional units, whilst the val-
uesT,, (o, 0) should be adjusted to the valugs (o, 0) in
n3 = Int(A6zs/A0), na = Int(Aba/A0). (13c)  accordance to the equation

Here,m1, m2, n3, andna are the integer values to be found

for any given integem3; and the function Int(.. ) repre-

sents the integer number which is nearest to the argument. ) o o .
Requirement (b) mentioned above (inequality of vectorsWhereC,,; is the adjusting coefficient, and super-indey

k1 andk>) means that one can use the following choice for means the dependence of coefficient on a spectrum shape

2
[Tex(a, 0) — C9 T, (0, 9)] do d6 = min | (19)

modulus parameters of the vectarsandko: (hereafter this index is omitted). Eventually, in PF-methodic
the following estimation of the mean relative error (MRE),
ml=m2 or ml=m2+1, (14) €rel, Was proposed:
and the corresponding choice for the angle parameters of the I Tex (o,T@)(—Tg,;(o.G) ‘ do do
vectorskq andk;: ex 0
6reI(Qe) = do do (20)
n2, n3=na or n2, n3=na+1, (15) Qf o

wheren2, n3 are the angular parameters of the vectors
andk; corresponding to Egs. (8c) and (13c).

Hereby the algorithm of the FDIA configuration calcula-
tions is totally described. The set of configurations under 2Mmore clarification for the classification of configurations will
investigation will be presented in Sect. 3. be done in Sect. 4.

Here, Q. is the fixed part of the integration frequency-angle
space used for the estimationa). In the present worlk,
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Table 1. A set of parameters for spectra used in calculations

No. fr1s Op1, i S1 R2  fp2, 0p2, 2 S2
ofrun conv.un degrees conv.un  degrees

1 1 0 1 2 0
2 1 0 1 8 O
3 1 0 33 2 O
4 1 0 33 12 0
5 1 0 1 8 ™ 2 0 33 4
6 1 0 1 8 12 2 0 33 4
7 1 0 1 8 12 2 -60 33 4
8 1(swell) 0 3 8 2 0 33 4
9 1(swell) 0 3 8 W 2 0 33 4

Note: ‘(swell) in the first column means that the first-mode spectrum has the tail
of the form: S1(f) o f~10,

is corresponding to the 10%—threshold domain defined by the Note that all calculations are made on the standard in-
ratio tegration grid given by ratios (5) with parameters (7) and
fo = oo/2r = 0.7462 N = 41, M = 36. The approx-

Qe = Qaow € [Tex(f,0)| = 0.1R, (21) imated nonlinear transfer for the energy spectrfica, 6)
is defined by the typical DIA formulas (Hasselmann et al.,
where
1985):
—_ 7Tt -
k=1 ! (e2) 35(a.9) =1(k, ki, k1,k2,), (26a)
andT™ is the positive extremum of the exact 2-D nonlinear ot
transfer, whilstl' ~ is the negative one. M =1(k, ki, ki, ko), (26b)
Finally, the mean relative errog ¢ >, is estimated as dt
a simple average of the valueg, obtained for the so-called 95(01, 61) =—1(k ki ki, ko), (26¢)
representative set of spectrum shapes. ot
According to PF, for the nonlinear transfer calculations the 95(02. 62) _ 1 (k ko, k1, k) (26d)
following two-mode spectrum representation has beenused 9t e
where
S(f,0) = S1(f. 0, fp1, Op1, Y1, 51) 1 4
+ R2- 821,06, fp2,0p2, v21, 52) , (3) (ke kike)=Co [SlSZ(S3 + (93/0)"54)
where each of the modes has a typid@NSWAPspectrum —S354((02/0)*S1 + (01/0)452)] (27)

shape of the kind andsS; = S(oi, 6;). The fitting constan€ in Eq. (27) is taken
— -5 _ 4 to be equal to 1, as far as it finally is merged by the adjusting
exp(—(f—fp)?/0.0Lf7
v, ( 3 ”)qj(s,e,e,,). (24)
4 Alist of the classifications of configurations studied
In Eqg. (24) the coefficient is taken to be equal to 1, and the

angular spreading function is of the form Due to the discrete nature of configuration parameters, there
) are, in principle, only a fixed number of configurations that
W(s.0.6p) = I;c0S (0 —6)) (25)  should be tested. For convenience of further consideration, it

is worthwhile to classify them in the following manner.
First of all, we distinguish two types of FDIA configura-
tion

with normalization coefficient; taken to be equal to 1, for
simplicity (as far as the normalized values of the nonlinear
transfer is used for comparison). Coefficigt2 is respon-
sible for the changing relative intensities of the modes. The — a simple one (a symbol of the configuration type
extended set of parameters, defining the representative set of is S), represented by a set of integer parameters:
the spectra used in our investigations, is presented in Table 1.  m1, m2, m3, n1, n2, n3, andna (see Sect. 2), and

3In the energy spectrum representation we prefer to use the — a multiple one, which is called a construction (a symbol
cyclic frequency,f = o/2r, instead of the angular one, of the construction i3/1).
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Table 2. Parameters for the set of simple configurations studied
Index of m3 ml m2 n3 na nl n2 Afzg, Abu4, X
configuration  (general) (general) (general) degree degree
S1 8 4 5 3 2 2 2 33.2 22.9 4.4
S2* 4 5 3 2
S3 9 5 5 4 3 3 3 37.8 27.0 5.0
S4* 4 5 3 2 . -
S5 10 5 6 4 3 3 3 42.7 314 5.6
S6 (or. DIA) 6 6 - 3 3 - -
ST+ 6 6 s 4 3 . -
S8* 11 6 7 5 4 4 3 47.5 36.1 6.2
S9 6 6 4 4 - -
S10 12 7 7 5 4 4 4 53.1 41.3 6.9
s11 6 7 4 4
Notes. 1. Index of configuration includes the symbol of the configuration type (S or M) and the
conventional number of configuration.
2. Configuration S6 is marked as the closest one to the original DIA configuration.
3. Parametera& 3, n3, na are marked as ‘general’ as fara8 is an independent parameter,
andn3 andna are directly defined by formulas (13c) and constant for a gix8n
4. Super-index “*" means that the configuration is indirect.
Note that in the general _Case’, t“e‘yPe anstructlon§ N~ Taple 3. The set of multiple constructions studied
clude severalS-type configurations with different weights,
wl, w2 and so on, which are used instead of faatbin —
Index of Composition
Eq. (27). configuration  of simple configurations
In turn, the simple configurations can be shared by sub-
. ; ; . : ; M1 S1+4-S3
groups: (a) direct ones, i.e. configurations with equal values \
of anglesd1 andé, (equalnl andn?2); (b) indirect configu- mg iﬂ;g
rations: ones with unequal values of anglesand6,. All M4 $140.6%S5
M-type constructions can be specified by the numbes-of M5 S1t Sé
type configurations used in the construction. But it seems M6 $1+40.7%58
that this specification is principally not so. M7 $1+S510
An experience of the configuration testing shows that the M8 §1+0.7%510
direct configurations conserve total energy, wave action and M9 S1+511
momentum rather well (conservation errors are less, or of the M10 §14+0.7511
order of 5-10%), whilst the nonconservativity of the indirect
ones is remarkable (especially for the momentrBut, as
far as the specially proposed formulas are used for approx-
imation efficiency estimation, conservative features do notgqs, (10) and (12) and the value
play any significant role in our study. Moreover, for some
spectrum shapes, the indirect configurations are more effi-
cient than the direct ones. x =1In(oa/2)/In(e) (28)

Analysis of efficiency for different simple configurations
permits one to restrict the range of values for paramefar

are presented for generality and for clarification of the choice

generating the FDIA configuration as a whole (see belowfor the integer parametefs.

Sect. 5). Due to this, the variety @ff-type constructions In this work we have restricted ourselves Mytype con-

under consideration is also restricted. The final list of all structions, including only twd-type configurations. The

types of configurations tested is presented in Tables 2 and 3/-type constructions with composition of three or mére

for simple and multiple FDIA, respectively. configurations have not been studied in this paper due to the
Note that in Table 2, in addition to the integer val- reasons stated below in Sects. 5 and 6.

uesml, m2, m3,nl, n2, n3, andna, the exact solutions of

5As one can see, the valueplays the role of the reference value

4For the proper formulas, one may refer to PF. for the choice ofnl andm?2.
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frad The reference values of the average relative error (ARE)

and efficiency was taken as follows:

< €rel >R= 0.48 (28a)

and
Effir =43, (28b)

which are valid to the FDIA configuratiof5, correspond-

ing to the original DIAS In the frame of our purpose, only
such configurations are of interest which have efficiency pa-
rameters that are better than the ones of the reference con-
figuration. Therefore, the testing results are shown only in
the proper cases. We now consider separately each type of
configurations.

oo'SsV

0.5

00°'St

0.0

1.00 150 200 3.00 350

i 5.1 S-type configurations

Keeping in mind that the original DIA configuration corre-
sponds to the value:3 = 10, we have started the testing
from small values ofrn3, corresponding to the diffusion ap-
proximation (DA) considered earlier (Polnikov, 2002; PF).
It was found that increasing3 leads to the shifting of both
main positive and main negative lobes to the higher frequen-
cies, saving their location at the general direction. Herewith,
the local lobes, located near the general direction for small
; . values ofm3, become more intensively expressed in the lat-
Ts(f,0), is well known (see, for example, Polnikov, 1989). eral directions and also shift to the hiéherpfrequencies. This

For this, there is no need to dwell here on this point. Buttopology change of the 2-IV-transfer in FDIA permits one
to analyze the topology features of approximated transfers

some proper characteristicsBf( f, 6) should be introduced. to make a choice of the most effective approximation.

To do this, we use Fig. 2, reproduced from Polnikov (2002). soﬁzglres\?;?:ea:‘tct):gise:t nvgstgsgazggzgeirtgt?;éf Igvc\)’?nsé rea-
Based on Fig. 2 and saying in short, we can state that the N 9 '

o 2 results forS1 are presented in Table 4.
principal qualitative features of the 2-B/-transfer are as The efficiency parameters of the confiquration are as fol-
follows (Polnikov, 1989): y P g

lows

Fig. 2. Two-dimensional topology for the nonlinear transfer of en-
ergy (run 1).

5 Results and analysis of the FDIA configurations
testing

A typical shape of the ‘exact’ 2-D nonlinear energy transfer,

1. existence of main low-frequency positive lobe (absolute _ €rel >= 436, (29a)
maximum) located along the general spectrum direction
(its value earlier was labeled &s"); Effi=526. (29D)
. o ) Thus, one can see that configurati®his more effective by
2. existence of main high frequency negative lobe (abso»goy than the reference ong5.
lute minimum) located along the general direction (la-
belled asT 7);

The further increase im3 leads to results the best of
which correspond to configuratio§8 andS4. They are pre-
sented in Tables 5 and 6, respectively. Comparative visual
representation of these results is given in Fig. 3.

The efficiency parameters of the last two configurations

Each of the lobes is characterized by a proper frequencfre as follows. Fof3 we have:

and angular width. Values of them, as well as values and_ ., - — 448 Eff1 = 4.98; (30)
locations of these lobes are important quantitative topology

features of the transfer. But specification of them is notand forS4 to:

needed here.

All the features mentioned above take place in the transfers®
calculated by FDIA. Herewith, locations and values of the 1, s these configurations are also more effective than con-
lobes are very different from the exact ones, which reSUItSfigurationS5, corresponding to the original DIA.
in certain relative errors and the efficiency of approximations
under study. By just comparing these features we have found 8configurations6 (closest to the original DIA configuration)
natural restrictions for the choice of configurations. has worthy efficiency features (see PF).

3. existence of two local high frequency lateral positive
lobes located symmetrically to the general direction.
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Table 4. MRE for the FDIA configuratiors'1

No of run 1 2 3 4 5 6 7 8 9
CoefficientC,; 299 149 270 168 139 124 170 182 1.77
MRE(10%) 36.7 298 564 355 359 443 56.0 540 422

Table 5. MRE for the FDIA configuratiors3

No of run 1 2 3 4 5 6 7 8 9
CoefficientC,; 2.35 1.67 294 219 164 147 177 215 279
MRE(10%) 298 340 578 514 325 410 485 534 551
RE % Doonf S1 f|elds._ Due_ to the topolqu featL_lres@ftype _conﬂguratlons,
* @ conf S3 described in the beginning of this sub-section, one should ex-
70— B conf S4 pect that anyM -constructions based &8 andS4 would be

worth in the case of the combinations of tWetype config-
urations (at least for runs 3 and 4). It is difficult to make the
same statement for av-type construction with threg-con-
figurations. Nevertheless, a hint to such type of conclusion is
seen from the results following below.

5.2 M-type constructions of tw§-configurations

The efficiency parameters for all theé-constructions con-
sidered are presented in Table 7. First of all, it should be
noted that practically for all th&/-constructions considered,
average relative errors (ARE) are less than ones for configu-
rationsS1, 3, andS4. Herewith, only the six last construc-
Fig. 3. Comparative diagrams of mean relative errors for configu- tions have an efficiency better than one . Second, the
rationssS1, $3, andS4. In horizontal axes the number of runs from last six constructions have values of ARE which are less than
Table 1 is presented. ARE for theM-construction of 3 configurations, presented in
our previous paper (PF). Here, we remind the reader that this

) ] ) ) construction (called as 3C-DIA) has the parameters
Testing all the rest of the configurations presented in Ta-
ble 2 shows that none of them is more effective than config-< €rel >3c-pIa=0.39, Eff> =4.4. (32)
uration S5. For this reason, detailed information for them is Below, this fact will be used in the discussion of the problem

not necessary. Nev_ertheless, they are interesting for the ainy; multiple configuration constructions.
of M-type constructions.

N touch fi i i oty It | Returning to Table 7 we should note that from a practi-
__Now we fouch on configuration properties variety. 1S ., point of view only thoseM-constructions which have
important to mention that a different configuration is the best

. . : ~'the best accuracy are of the most interest. For this rea-
for a different spectrum shape under consideration. Partiall

Yson the detailed results are given only for the four kst
con_flguratlonS‘1 is the best for runs 3,_4 and_ 9; (_:onflguratlon constructions:M5, M6, M7, andM8. In a visual form they
S3 is the best for runs 7 and 8; configurati4 is the best

. . o are presented in Fig. 4.
forruns 2, 5.and 6; and configuratics IS the bes-t for run 1 From the results obtained one may conclude the following:
(mean relative erroge; = 0.12!). Herewith, configurations

S$10 andS11 are more effective thafi8*, though they are 1. There is no exact regularity in the efficiency parameters

No of run

—
n
“—
c
Q
o

less effective thas5. Just this information initiated making of constructions. While changing a form of construc-

M -type constructions presented in Table 3. tion one may improve the accuracy for some spectral
From Table 3 it is evident that ali/-constructions are shapes, but make worth parameters for other shapes. As

based on configuratiafil. A preference of using this config- a rule, the constructions with rather different values of

uration is provided by the fact that just the spectrum shapes  parametem3 for theS-configurations used are the most
for runs 3, 4, and 9 are the most typical for real wind wave effective.
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Table 6. MRE for the FDIA configuratiors4

No of run 1 2 3 4 5 6 7 8 9
CoefficientC,; 1.63 099 169 151 100 097 123 129 161
MRE(10%) 322 251 618 401 248 36.0 509 556 464

Table 7. Efficiency parameters for th® -type constructions studied

Index of construc. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

ARE 0.416 0.406 0.416 0413 0.351 0.355 0.355 0.356 0.366 0.364
Eff1 578 607 578 586 812 793 793 789 746 755
Effs 468 491 468 475 657 643 643 639 605 6.11

Note. ParameterBf f1 are related t& f f> by the ratioEf fo> = 0.8L Ef f> (see Eq. 17).
So, the values of f f1 are here given for comparison only.

50 e mended, as far as they have the best accuracy for runs 3
MRE% 45 | mM6 and 4.

40 oM7

35 EM8 On the basis of these conclusions, one may make some

speculations about possibly increasing the efficiency of the
approximation by means of increasing the numbes-gbn-
figurations in theM -construction. This point will be touched
on below at the end of Sect. 6, after obtaining some experi-
ence in testing the best of configurations found here in the
long-term solution of Eq. (1).

No of run .
! 6 Some results for long-term spectrum evolution and

Fig. 4. Comparative diagrams of mean relative errors for construc- prospective

tions M5, M6, M7, andM8. For legend, see Fig. 3. . . o . .
As it was mentioned earlier in PF, all the estimations of ef-

ficiency presented above are valid only for one time step in

2. The greatest errors take place for the spectra with sharf1€ long-term evolution of the wave spectrum, described by
changes in the shape of the frequency and of the angl&d- (1). In reality, one should estimate the efficiency of ap-
(runs 3, 7, 8, and 9). It seems that additional configu-Proximation for the long-term evolution as a whdéldo do
rations with small values of3 could improve the ef-  this, one needs to solve Eq. (1) numerically, both in exact and
ficiency of M-construction (though it is not evident at @pproximated form for the kinetic integral and then to inter-
present). compare the features of the spectrum shapes for both cases.

Evidently, this is a very complicated task (see remarks in our

3. The role of weighting coefficients (for the constructions previous paper). Herewith, this task will partially be fulfilled
using S-configurations) is not so clear. Partially, con- here by means of intercomparison of some integrated param-
structionM’5 is the best for runs 1, 5, and 6, whilt6 eters of the spectrum shape, following from the long-term
is for run 2; constructiorM 7 is the best for runs 4 and solutions of Eg. (1) for different kinds of approximations.
7,andM8 is for runs 3, 8, and 9. First of all, we cite the main results of the ‘exact’ numer-

. ical solution of Eq. (1), obtained in Polnikov (1990) and re-

4. Due to some small difference between parameters fogenly confirmed in Lavrenov and Polnikov (2001). They are
the last six constructions presented in Table 7, all of 55 follows.

them are more or less equivalent in accuracy and effi- o, the time scales of the order ot (1P — 10F) £-1(0)
p

ciency. Thus, to choose the b@gtconstruction among (where £, (0) is the peak frequencny initial spectrum), the

equivalent ones, one needs to specify the preferablgpecirum takes a universal (self-similar) shape, depending
spectral shapes under consideration. For practical pur-

poses, the construction®#7 and M8 can be recom- 7So-called long-term evolution efficiency (PF).
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Table 8. Typical spectrum shape parameters for the self-similar
solutions of Eq. (1), obtained in different approximations

Type of Spectrum shape parameter
approximation n 8 Ap
EXACT 7+1 0.25+0.03 1.05:0.05
Original DIA 10+1 0.30+0.05 0.65+0.05
S-configuration  90.5  0.28:0.03 0.85:0.1
M-construction  8.50.5 0.25+0.03 0.9:0.1
ZPA 4.3+0.1 0.75:0.1 1.10.1

Note. Results for Zakharov—Pushkarev diffusionApproximation
(ZPA) are given from the paper by Polnikov (2002).

slightly on an initial spectral shape. Therefore, one may esti
mate the long-term efficiency of any approximation by mean
of comparison of the proper representative spectral param
ters for solutions of Eq. (1) at the evolution time- 7.

In Polnikov (1990) the following features for the self-
similar spectral shape were revealed:

(a) the one-dimensional spectruit,f), has a tail fall law
of the kindS(f) o f~" with the valuen = 7+ 1 in the
frequency intervalf, < f < 1.5f);

(b) the frequency widthj, defined by the relationship

5= [ scrar/scp sy (39)
has a small varying value of the order &f= 0.25 +
0.03;

(c) the angle narrowness at the peak frequengy,defined
with respect to the general wave propagation direction,

6,, by the relationship

A = Ay = S(fp. 6,)/ f S(fp0)d6 .  (34)

has a small varying value of the order4f, = 1.05+
0.05.

Thus, the criterion of the approximation quality is an extent

of the proper parameters’ closeness to the values given abO\%

at the evolution time > t.

Instead of dwelling on the technical details of the numer-
ical solution for Eq. (1), let us discuss some generalized re
sults for the mentioned parameters, found for the long-ter
evolution in different approximations. They are presented in
Table 8.

The principal long-term features of the approximations are
as follows:

1. Original DIA vyields too strong a fall of the spectrum
tail at higher frequencies, compensated by a rather wid

S
€

m

433

2. FDIA with the S-configurations gives intermediate re-
sult: a more slower tail fall with a more narrower peak
frequency domain;

. FDIA with an M -construction gives the shape of a self-
similar spectrum with parameters better corresponding
to the exact solution (with respect to FDIA wiflicon-
figuration).

In contrary to FDIA, the Zakharov-Pushkarev diffusion
Approximation (ZPA), proposed in Zakharov and Pushkarev
(1999) and corresponding to the configurafion

k1= ky = ks =k, (35)

gives the spectrum shape with too slow a tail fall, which is
compensated by the extremely narrow angular spreading at
the peak frequency domain (for details, see Polnikov, 2002).
Finally, one may conclude that FDIA with/-construc-
tions andS-configurations really has a long-term efficiency

that is better than the efficiency of the original DIA. Despite
the rather small difference for spectrum shape parameters
found for these approximations, the results obtained confirm
our previous conclusion about the better efficiency of the ap-
proximations constructed. Moreover, it seems that the effi-
ciency of FDIA could be enhanced, if one includes into the
M -construction some addition8tconfigurations with small
values of configuration parameteB (which are correspond-

ing to configuration (35)). This work could be made in the
future.

For the sake of the paper let us say several words about
possible future work. The topology basis for making better
M-constructions is related to the better reproduction of loca-
tions and values for main positive and negatives lobes of the
2-D N L-transfer (see, Fig. 2). From a first glance, it seems
that a simple addition of an§-configuration should lead to
improving the features o#f-constructions. But the results
of testing show that this is not true (compare efficiency pa-
rameters forM7(S1 + S10) in Table 7 to the one for 3C-
DIA in Eq. (32); the latter corresponds td-construction
(814 S5+ S10). Itis evident that the weighting coefficients
here play the key role. The choice of the coefficients is very
cumbersome work.

Moreover, the optimal number d&f-configurations in the
M-construction is not known. It should not be so great as
to restrict the time of the one-step calculation and the value
f RP (see Eqg. 17), yet not so small as to provide a proper
ecreasing ARE. All these details make for a rather un-
clear prospective of seeking an effectideconstruction with
three or mores-configurations. For this reason this point was

not elaborated in the present paper.

7 Conclusions and recommendations

In this paper the main ideas of the Fast Discrete Interaction
Approximation (FDIA) to the kinetic integral, proposed ear-
lier in PF, were elaborated and clarified. Classification of

e

angular spreading in the peak frequency domain;

8For details, see PF.
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the discrete configurations was given, and many of examplesiasselmann, K.: On the non-linear energy transfer in a gravity

of simple (S-type) and multiple #-type) FDIA have been wave spectrum, Pt.1. General theory, J. Fluid Mech., 12, 481-

tested in the frame of the PF method, with the aim of choos- 500, 1962.

ing the optimal approximation. Hasselmann, S., Hasselmann, K., Allender, K. J., and Barnett, T. P..
It was found that three-configurations are more effec- Computations and parameterizations of the nonlinear energy

tive than the original DIA configuration. The best of them  ransfer in a gravity-wave spectrum, Part I, J. Phys. Oceanogr.,

. . . ) - 15, 1378-1391, 1985.
are ?Onflguratlonsgl and 4, having an,e,mCIenCy value Komen, G. J., Cavaleri, L., Donelan, M., et al.: Dynamics and Mod-
1.5 times greater than the one for the original DIA. Both of

: ] ) . eling of Ocean Waves, N.Y., Cambridge University Press, 532,
them may be recommended for implementation into wind- 1gg4.

wave forecasting practice. Lavrenov, |. V. and Polnikov, V. G.: A study of properties for
Additionally, six M-constructions of twa-configurations non-stationary solutions of the Hasselmann’s kinetic equation,

were found to have an efficiency better than the best of the Izvestiya, Atmos. Oceanic. Phys., 37, 661-670, (English transla-

S-configuration,S4. Four of them M5, M6, M7, andM8, tion), 2001.

may be recommended for implementation. Polnikov, V. G.: Calculation of the nonlinear energy transfer
The better long-term efficiency derived of tiseconfi- through the surface gravity waves spectrum, Izv. Acad. Sci.

gurations andV/-constructions was confirmed on the basis S_SSRl,g,g';mos. Oceanic. Phys., 25, 896-904, (English transla-
of intercomparison between the relevant integrated parame- 1°": - . . o .
ters of wave spectrum shape, following from the long-term Polnikov, V. G.: Numerical solution of the kinetic equation for

) ’ . . surface gravity waves, lbid., 26, 118-123, (English translation),
solutions of Eq. (1). The prospective of seeking an effec-

. @ seekin 1990.
tive M-construction with three or morg-configurations was  poinikov, V. G.: A Basing of the Diffusion Approximation Deriva-
discussed. tion for the Four-Wave Kinetic Integral and Properties of the Ap-

) o ) proximation, Nonlin. Proc. Geophys., 9, 355-366, 2002.
AcknowledgementsThe author is grateful to the administration of Polnikov, V. G. and Farina, L.: On the problem of optimal approx-

CPTEC and CNPq of the Brazil for the funding this work. In part  imation for the four-wave kinetic integral, Nonlin. Proc. Geo-

this work was supported by the Russian Fund for Basic Research, phys., 9, 497-512, 2002.

project # 05-01-64580. Zakharov, V. E. and Pushkarev, A.: Diffusion model of interacting
gravity waves on the surface of deep fluid, Nonlin. Proc. Geo-
phys., 6, 1-10, 1999.

References Van Vledder, G. Ph.: Extension of the Discrete Interaction Approx-

) ] ) o imation for computing nonlinear quadruplet wave-wave interac-
Hashimoto, N. and Kawagushi, K.: Extension and modification  tions in operational wave prediction model, Proc. 4th Int. Conf.

of the Discrete Interaction Approximation (DIA) for computing on Ocean Waves. WAVES-2001, San Fransisco, Sept., 540-549,
nonlinear energy transfer of gravity wave spectra, Proc. 4th Int. 501

Symp. on Ocean Waves, Measurement and Analysis, WAVES-yqng, I. R. and Van Vledder, G. Ph.: The Central Role of Nonlin-

2001, 530-539, 2001. ear Interactions in Wind-wave Evolution, Phil. Trans. Roy. Soc.
Lond., A 342, 505-524, 1993.



