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Abstract. A new model for simulating non-negative
random processes is developed. The model is based on a
bounded random multiplicative cascade with a lognormal
generator with the scale parameter dependent on the
number of steps in the cascade. It is shown, both
analytically and numerically, that the simulated field has
multiaffine properties within some restricted range of
scales. This type of random processes is defined here as
quasi-multiaffine. A procedure for retrieving the modeling
parameters from real data is also discussed.

1 Introduction

Multiscaling models have been increasingly popular in
different areas of geophysics in the last decade. They have
been used for the statistical description and simulation of
atmospheric  turbulence, rainfall processes, water
distribution in clouds and in many other applications. These
models are based on the empirical evidence about scaling
properties of many geophysical fields and the analogy with
the random multiplicative cascade models in fully
developed turbulence. Cascade models are
phenomenological, though there have been some attempts
1o justify them by a quite remote analogy with the energy
cascade process in fully developed turbulence, the latter
having a semi-phenomenological character itself. For most
geophysical applications the existence of a cascade-type
process in space and/or time and its physical origin is even
less clear. In our view, at present stage, the best possible
justification for the use of cascade-type models should be
based on the following two properties:

- the ability to provide a robust statistical description of
random field incorporating its scaling properties with
few parameters, and,

- the ability to simulate a synthetic random field that

reproduces the observed statistical properties based on
the derived parameters.

We shall consider here a non-negative one-dimensional
random field, F(x), where x can represent the time or space
coordinate of a one-dimensional field or a one-dimensional
cut through a multi-dimensional field (e.g., rainfall time
series, liquid water content in clouds, temperature fields
etc.). A primary means of identifying the scaling properties
of a random field is its power spectrum, P(k), which must
have a scaling behaviour:

Plkye< k%, (1

As we will see below, the power spectrum exponent 8 plays
an important role in the classification of scaling random
fields.

The more sophisticated multiscaling characteristics of a
random field are:

- the continuous spectra of exponents K(p) defined as
(Freo)e 7, @

where Ff{x) denotes the field average over the interval I
centered at x, and <...> denotes the ensemble average;

- the continuous spectra of exponents {(p) defined as
G, =(|F(x+D=F(o|" ) 157, 3)

The left-hand side of the equation (3) is usually referred to
as a generalized structure function. Following Benzi et al.
(1993) we shall refer to the random fields showing a scaling
behaviour in the sense (3) as multiaffine. It is important to
note that (2) and (3) define two different and mutually
exclusive types of scaling fields. In the definition (2) F{x)
is a positively defined stationary random field with a power
spectrum exponent < | (e.g., Menabde et al,, 1997a},
whereas (3) cannot be realized for nonnegative and
stationary random fields for all I-s (e.g., Veneziano et al,,
1996). Cascade models, presented in the literature, such as
discrete cascades (e.g., Gupta and Waymire, 1993) and the
continuous cascades of Shertzer and Lovejoy (1987)
produce multiscaling random fields satisfying (2) with the
power spectrum exponent 8 < 1. Many geophysical fields,
however, usually exhibit 8 > 1. Several authors (c.g.,
Marshak et al., 1994; Davis et al., 1996) argued that the
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power spectrum exponent in the typically observed range
1 < < 3 can be used as an indicator of nonstationarity of
the random field and its statistics can be described by (3).
Shertzer and Lovejoy (1987) used power-law filtering in
the Fourier space in order to produce fields with a required
B. This procedure is, however, ambiguous as the zero
frequency component of the field remains undefined and
negative values are produced. The field, of course, can be
made nonnegative by inverting the negative values or
redefining the zero-frequency component, but the scaling
properties of the field will then change and they will not be
described by the original parameters, used in simulation.

On the other hand, we have recently demonstrated
(Menabde et al., 1997b) the existence of a positively
defined stationary random process with an asymptotically
scaling power spectrum in some range, k >> kp and with a
power exponent, §> 1. Such a process, being a stationary
random process, may have only an asymptotically
multiscaling structure function, as in (3}, in some restricted
range [ << l/k;. This condition does not seem to be very
restrictive, since in practice real geophysical fields only
exhibit scaling, if any, within a limited range of scales. It is
the aim of this paper to introduce a new model, based on
the multiplicative bounded random cascade, which
produces a positively defined stationary random process,
yet having a multiscaling structure function G,{f) in some
restricted interval. We propose to refer to such type of
processes as quasi-multiaffine random processes.

2 Theory

Consider a homogeneous distribution of a field, Fy, over
an interval L. On the first step of the cascade we divide the
initial interval into two halves (the theory can be easily
generalized to the casc of an arbitrary branching number)
and assign to each of them value F; = Fyw(l} and
Fy, = Fgw(2), where w(j) are different realizations of a
random variable W produced by some generator with a
probability density, g(W), and having <W> = 1. On the
next step each haif is again divided into halves and the
procedure is repeated N times leading to a discrete random
field:

Fx(ju, ju-ojn) = FowiGoway 2. - wai(i Ja ) 4
where Fy represents the piecewise constant function on the
N intervals of length Iy = 2L and the set of binary indexes
Jis Jas---s ju indicate 2" different possible realizations of the
random field. In contras. to the commonly used self-similar
cascade models, we will use a generator, g(W), which
explicitly depends on the number of steps in the cascade
and has the scale parameter decreasing with increasing
resolution. This type of cascade is called a bounded
random cascade (Cahalan et al., 1990; Marshak et al., 1994,
Menabde et al,, 1997b). Dificrent types of generators can
be used to build a model, and due to its phenomenological
character, there are no fundamental theoretical reasons for
preferring any of them. From a practical point of view we
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need a generator which, on one hand, has enough adjustable
free parameters and on the other hand, is simple enough to
be treated analytically. We will consider below a simple
casc of a lognormal generator. On the n™ step of the
cascade the generator has the form:

W, = C,exp( - 6, X), (5)

where C, is a normalization constant, defined from the
condition

w,)=1, (6)

o, is a scale parameter decreasing with #, and
X = Norm(1, O), is a normal random variable with a unity
width and a zero shift. The moments of the lognormal
distribution are given by (e.g. Devroye, 1996):

{exp(X)) = exp(r’). (7
Conditioned by (6) the generator (5) takes the form:
W, =exp(-0: -0,X). (8)

We choose the scale parameter o, in (5) to be exponentially
decreasing with the cascade step:

6, =02, ©

and, therefore, our model has two free parameters, ¢ and H.
Normalization of the field to the required mean intensity
provides the third free parameter for the model.

The normal random variables have an important property -
stability under addition:

Zcixi =Gl;nX ’ (10)
i=1
where X; are independent identically distributed copies of X,
and

oL, =207, (11)
i=l

Using the property (10) we can derive the one-point
statistics of the simulated field. From (8)-(11) we get that
the field values at the highest resclution in the limit of large
N are disiributed as a lognormal random variable

exp(—0, —0,X) with the scale parameter ¢& given by the

formula:
2

. ]
0'5:20'.-2 =4H—1-’ (12)
i=l -

The properties of the two-point statistics can be derived
analytically under some assumptions specified below.
Considering all pairs of points separated by a distance [, =
L 2", we get the following expression for the structure
function:

— . L¥al
G,d,) ‘21"* G, (13)
where the combinatorial factor A, is given by
zkvl
Al = ) (14)
o
and
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G} = lim (w,” W

(o YW W) 05

Here W,,_, and W, are given

Wi = exp(_olz;k—l — O XD, (16)
and,
W,. =exp(-0;_ ~0,.X), amn

where the scale factors o, and o, _are defined as in
{10).

Consider now the case of small distances [, i.e. for n
satisfying the condition:
n>> l/H. (18)
In this case, as it follows from (13) and (14), the
asymptotically largest contribution to the structure function

comes from the terms with & close to n. The first factor in
the formula (15) can approximately be calculated as:

(W) =exp{ ﬁ_;”l 3 (19

The second factor in the formula (15) can be calculated if
we notice that for » satisfying (18), the lognormal random
variables W,... can be replaced by the uniform random
variables, ¥,, with the probability distribution function

1126, [i-y<e,

. 20
0, ll—yl>8k ¢

ply)=

Indeed, when the condition {18) holds and for small enough
p, moments of the lognormal random variable are
approximately equal to

(Wp.)=1+0}.(p* - p). @1

On the other hand, in the same approximation the moments
of the uniform distribution are given by:

l+g,

(Y:)—— f y“dy~l+ e (p’ - p) (22)

‘cls

Comparing formulae (21) and (22} we can see that we have
to take

e, = 6o, =8 o (23)

Now we can calculate the second factor in the formula (15).
The difference of two uniform random variables Y, and Y,
with a width g is a random variable AY = ¥,-¥, ,with a
triangular probability density function (Springer, 1979):

1-|As)/2 Ayl < 2€,;
p(Ay) = 2€k( b2z o< o (24)

0, |Ay = 26,

In this approximation for W we get:

65

P

<|W W > = (|AY|") :———2——5,{’ (25)
(p+D(p+2)

Substituting (14), (19) and (25) into (13) we get the

following expression for the structure function:

fpy1-c”

—_— 26
2" -1 ¢-1 (26)

G,U,)=

where ¢ =277, and fip) is some function of p, which
explicit form is irrelevant to further consideration.
Consider now the ratio

G,2,) G, ) @ ~i-¢""
G,() G, (1) (@7 -1-c")’
In the limit of large n we get:
G,y [20, p<lH,;
im——=
n= G (L) 2, p>11H;
Thus, the structure function exponent has the form:

H, 1/H;
Lip)y= {p p= 29)

(27)

(28)

p>1/H;

As it follows from (9) and (21) this results are valid for the
distances [, satisfying the condition

2
Gz(pz—p)[[—i] << 1. (30)

The same result for the structure function was derived by
Marshak et al., (1994) for a different type of a bounded
cascade model. This fact probably indicates that the form
(29) of a structure function exponent is universal for
different types of bounded cascades models, with the width
of the generator exponentially decreasing with the number
of steps.

The results of some simulations are presented below in the
Section 3, and they confirm that the structure function is
scaling over a limited range. The power spectrum of this
process has an asymptotically scaling behaviour for large
frequencies with the power exponent fB=1+{(2) (see
Appendix). The analytical properties of one- and two-point
statistics of G,([), as given, respectively, by (12) and (29),
provide a method for the model parameter estimation from
real data. From the slope of the structure function at the
origin we can find the H parameter, and by fitting the
probability distribution of a given data set by a lognormal
distribution we can find the o parameter.

3 Simulation

In order to illustrate the theoretical results we have
performed some simulations using a 15-step cascade model
with a lognormal generator, thus producing series of 32,768
data points. The typical realizations of this field with two
different sets of parameters are shown in Figure 1. To
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Fig. 1. Two different rcalizations of the ficld simulated by the bounded

random cascade: (a) 0=1.0, H=02,{b)oc=10,H=05.
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estimate the statistical characteristics for each set of
parameters we simulated an ensemble of 100 realizations of
the random field for a given set of modeling parameters.
The exceedence probability curves for different ¢ and the
same H are shown in Figure 2.
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Fig. 2.. Exceedence probability for different realizations of the random
field with H = 0.35 and different o.
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tog, |

Fig. 3. Scaling of moments of the structure function for the field with
o=1.0 H=035

Figure 3 represents a typical behavior of different moments
of the structure function. Wec can see that in this case the
scaling range is approximately 0< ! <I;2%, where I is the
smallest scale resolution. Figure 4 shows the structure
function behavior for the same o and different H.
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Fig. 4. Structure function for different realization of the random field
(®-0=10,H=02;0-0c=10, H=035 ¥ 0=10 H=050

We can see that the slopes of the curves for H < (.5 are
biased, as compared with the theoretical prediction (29),
due, probably to the finite number of steps in the cascade.
However, the dependence of the siope on the modeling
parameter H can be established numerically for any given
g, which can be estimated independently from the
exceedence probability calculated from the experimental
data. Figure 5 shows the power spectra for the same field
realizations as in Figure 4. The power spectra P(k) were
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Fig. 5. Power spectra for the same field realizations as in Figure 4.

calculated using the standard FFT algorithm, and then
averaged using an octave bining procedure analogous to
that found in Davis et al. (1996),

gmer_y

{log Pk} =7 DlogPik)). (31)
j=2"
where
_ 1 27
logk, =— > logk; . (32)
2 S

As we can see from Figure 3, the value of 8 substantially
deviates from the theoretical prediction given by (A3), for
H < 0.5. Moreover, we have found out that 8 depends on
the type of the averaging procedure used while calculating
the power spectrum. In our view, the power spectrum
should be uscd as a qualitative, rather than a quantitative
characteristic of the random process, with § = 1 as a
threshold value. Power spectrum with 8 > 1 indicates that
the process can be described by a quasi-multiaffine model,
while one with § < 1 can be described as a self-similar
random field (e.g. Menabde et al., 1997a).

Conclusion

We have introduced a new, quite general type of stochastic
model based on the bounded random cascade with a
lognormal generator. It produces a nonnegative stationary
random process which has a multiscaling structure function
within some restricted range of scales. We refer to this
class of random processes as quasi-multiaffine. This type
of behaviour is quite typical for a wide class of geophysical
processes and the model has potential as a useful tool for
their statistical description and sirmulation. The model has
3 free parameters and provides a simple procedure for their
estimation, based on fitting the one- and two-point statistics
of the real data.

a7

Appendix. Power spectrum of quasi-multiaffine random
process.

Consider an isotropic and homogeneous 1D random field
F(x) which can be represented as a Fourier-Stieltjes integral

F(x) = [exp(iknZ(dk), (A1)
where Z(dk) is a random measure satisfying the condition

(Z(dk)i(dq)) = P(k)8(k — g)dkdg . (A2)
Here Z denotes the complex conjugate, &(k-g) is the delta-

function, and P(k) is the power spectrum. Substituting
(A1) and (A2) to the formula (3} we get.

G, (D= (|F(x+1) - F(x)|2) = SJP(k)sinz(kHZ)dk . (A3)
i}
If P(k) o k' for some k >> kg, then for distances I << 1/,

neglecting the non-scaling terms of order (kD from (A3)
we gel:

G,y(I)ec 177 (A4)
and
B=1+{2). (AS).
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