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Abstract. Bipolar wave structures and nonthermal
particle distributions measured by the FAST satellite in
regions of downward current are interpreted in terms of
the nonlinear evolution of a two-stream instability. The
instability results in holes, both in the electron distribu-
tion in phase space and in the electron density in real
space. The wave potential energy, which traps the elec-
trons, has a single minimum, and the associated electric
field is bipolar. The early bipolar structures are co-
herent over hundreds of Debye lengths in the direction
perpendicular to the magnetic field. After thousands of
plasma periods the perpendicular coherence 1s lost, the
structures break np, and electrostatic whistlers begin to
dominate. Simulations and preliminary analysis of this
breakup and emission process are presented.

1 Measurements

Among the most interesting nonlinear phenomena ob-
served on board the FAST satellite are the measure-
ments of bipolar waveforms and nonthermal particle dis-
tributions in the presence of downward currents at alti-
tudes in the auroral ionosphere between 2000 and 4000
km. Figure 1 shows measurements in a time interval
exhibiting bipolar structures in the component of the
wave electric field parallel to the geomagnetic field (Er-
gun et al., 1998). For the data set studied, the size of
a bipolar structure, which we define as the distance be-
tween the parallel and antiparallel wave field extrema,
was found to range from a few Debye lengths for the
less intense events (ed/T. < 1), to eight Debye lengths
for the more intense events (e¢/T. ~ ((1)). Here, ¢
is the wave potential, 7T; is the parallel temperature of
the measured (nonthermal) electron distribution func-
tion, and the Debye length is defined in terms of T.. A
typical Debye length is on the order of 100 meters. The
bipolar waveforms are inferred to be moving parallel to
B at a large fraction of the mean electron velocity drift.
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Fig. 1. Observed bipolar electric fields from Ergun et al. (1998).

The mean eleciron velocity is on the order of 2 x 10°
m/s, which corresponds to tens of eV. This data set
was selected according a number of criteria. One such
criterion was that the perpendicular component of the
waveform had to exhibit a unipolar structure. Bipolar
events not contained in this data set were sometimes
more intense (Carlson et al., 1998), less isolated, and
less symmetric in the amplitude extrema of the parallel
and antiparallel wave field of a given bipolar waveform.
For these more intense measured events, the mean elec-
tron velocity drift can be as high as several keV, electric
field peaks can be as high as one V/m, and potential
drops as high as hundreds of volts. Coincident with the
appearance of bipolar fields, magnetized waves are often
detected at frequencies lying in the range of electrostatic
whistlers, lower-hybrid, and ion-Bernstein waves.

Measurements of the particle distribution functions
reveal themn to be highly nonthermal, even at low ve-
locities. A typical contour of constant phase-space den-
sity in the electron distribution function resembles the
one shown in Figure 2. Thus, the parallel electron tem-
perature is generally much larger than the perpendic-
ular temperature. Distribution functions such as these
are typically measured over relatively long time inter-
vals containing many bipolar events. In contrast the ion
distribution functions are often observed to be pancake-
shaped, with perpendicular temperature much greater
than the parallel temperature.
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Fig. 2. Velocity-space contour of constant electron distribution
has a “cigar” shape, with Ty » T4 and a mean velocity v,

2 Two-stream electron instability and 1-D evo-
lution

The challenge to theory is to find an explanation for
both the bipolar wave structures and the time-averaged
distribution functions in terms of a minimal set of as-
sumptions. We have shown (Goldman et al., 1998, 1999;
Oppenheim et al., 1999) that the assumption of an ini-
tial two-stream instability is sufficient to explain inany
features of the measured wave structures and electron
distribution functions. These include the wave struc-
ture polarity, spatial size, speed, and intensity, as well as
the presence of low-frequency magnetized-plasma waves,
and the field-alignment and nonthermal nature of the
evolved electron velocity distribution.

The heuristic picture can be understood from long-
known results of one-dimensional simulations of the evo-
lution of the electron two-stream instability in a uni-
form and static ion background. A number of these
features follow from the basic physics of the saturation
of the two-stream instability, in which two cold coun-
terstreaming electron beams with equal densities n,/2
and velocities +v; /2 are unstable to a fastest-growing
wave of wavenumber k. o w,/vs. (The linear theory is
addressed further in the next section.)

Farly as well as recent one-dimensional kinetic simula-
tions (Berk and Roberts, 1967; Morse and Nielson, 1969;
Omura et al., 1996) of the nonlinear evolution of this in-
stability show that saturation occurs when the potential
energy e¢ of the unstable wave grows large enough to
trap a substantial fraction of beam electrons—leading to
the formation of phase space “vortices” or “holes” {with
no electrons in the lowest energy states), as shown in the
phase-space distribution of Fig. 3. For such a hole, the
wave potential energy is on the order of the “tempera-
ture” T, of the total evolved electron distribution of the
now-merged electron beamns. Furthermore, both 7, and
eg are on the order of mvg.

The potential ¢ supporting the phase-space hole is
bell-shaped, so that its spatial derivative gives a bipolar-
shaped wave clectric field. In Fig. 4, spatial profiles are
shown for a typical electron potential energy, —ed(a),
bipolar wave field, —8;¢(z), and electron density (pro-
portional to 82¢ + const. as a result of Poisson’s equa-
tion).

In the frame of one of the beams, the phase-space hole

Vx

Fig. 3. Phase-space “vortex” hole from 1-D Vlasov simulation.

and assoclated potential, bipolar structure, and density
hole all move at v,/2, which is the mean drift of the
entire electron distribution.

3 Linear theory of the two-stream instability in
a 2-D plasma with strongly magnetized elec-
trons

It is instructive to study the linear phasc of the two-
stream electron instability both with and without dy-
namic ions. Rather than restrict the analysis to one
dimension, it is just as easy to study the cold fluid lin-
ear instability in two or three dimensions, provided we
assume nfinitely magnetized electrons. The condition
for this approximation is that the electron cyclotron fre-
quency {2 be much larger than both the electron plasma
frequency w, and the wave frequency w. The FAST ob-
setvations of bipolar structures occur under just such
conditions, since Q./w, runs from 5 to 15 at relevant
altitudes in the auroral ionosphere, and we are consid-
ering only waves with w < w,. Working under these
approximations in the symmetry frame where the two
beams have equal and opposite velacities, it is easy to
show that the dielectric function ¢ is
1 1 1

€=1— 5 (Q—l—]{)? + (\(2_[\,)2 f (IJ

where Q@ = (w/w. cos ), K = kvy/2w,, and 8 is the angle
between k and B. The zeroes of ¢ determine the proper-
ties of the instability. The solutions to this biquadratic
equation are 2% = (1 +2K %)+ (1 +8K2)Y2 In Fig. 5.
growth rates and frequencies are plotted. The purely
growing mode (bold) peaks at about v = 0.4w, cos 8
and KX = 0.6. In the limit of small &, the solutions
are 22 = 1 and Q* = —K?. These correspond to the
following four solutions in this frame: € = +w, cos@
and w = i(kvs/2)cosf. The first two solutions are
stable electrostatic whistlers (which are electron plasima
waves when &, = 0), while the second two consist of
a purely growing unstable mode and a purely damped
mode. In the “laboratory” frame, in whick one of
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Fig. 4. Wave potential energy, bipolar field, and density hole as
functions of z.

the electron beams is stationary (so that the other is
moving at ), all of these modes are Doppler shifted
by dw = (kvs/2)cosé@ and, in particular, the unstable
purely growing mode becomes a kind of “beam” mode.

These results can be generalized to include ions. We
solve the linearized fluid equations in the laboratory
frame and add a component of cold unmagnetized sta-
tionary i1ons to the stationary cold strongly magnetized
electrons. This is justified because in FAST measure-
ments it is often the case that the electron cyclotron
frequency 18 much larger than the electron plasma fre-
quency {§2. > w.) while, at the same time, the ion cy-
clotron frequency is much smaller than the ion plasma
frequency (£); <« w;). The ion density is equal to the
sum of the densities of the two electron components.
The dielectric function ¢ obtained from the cold fluid
equations and Polsson’s equation is now

_ w4 (w2/2)cos® (w?/2) cos? @
w? {w — kvycosd)?

e=1 (2)

When there 1s no beam, the cold fluid dispersion re-
lation reduces to w? = w? +w? cos?§. This corresponds
to an electrostatic whistler wave at frequency 4w, cos@
connected to a lower hybrid wave at frequency w; in the
limit # — m/2. (The lower hybrid frequency reduces to
the ion plasina frequency for strongly magnetized elec-
trons and weakly magnetized ions.) The numerical so-
lution for the zeroes of (2) will be shown later when

o}/ wgcoso
.
’
‘
t oo 1’_0 A stable
= = = Realfrequency whistler
Growth rate purely growing
mode
- 0.5 ‘/

* ’
* 4
* ’

-1 0 1
K=kvp/2 0,

Fig. 5. Real and imaginary frequency solutions to ¢ = 0 for
|$2] = |w|/we cos & as a function of K = kuy/2w,.

comparing with PIC simulation results. Once again,
there will be unstable “beam” modes (Doppler-shifted
purely growing modes with a small correction due to the
ions), and stable Doppler-shifted electrostatic whistler
Both the beam modes and the whistlers are
on separate branches of the linear dispersion relation.
The frequency on the whistler branch is bounded below
by max{w;, kvpcosf) and the frequency on the beam-
mode branch is bounded above by min{w;, kv, cos#).
The splitting intc two branches is caused by the seg-
regation of waves with w > kv cos@ from those with
w < kvycosf. A new feature due to the presence of
ions will be (weakly) unstable waves on the beam-mode
branch near the lower-hybrid frequency.

waves.

4 Two-dimensional PIC simulation with dy-
namic ions

In this section, we review the results of recent particle-
in-cell (PIC) simulations used to study the 2-D nonlin-
ear evolution of the two-stream instability (Goldman et
al., 1998, 1999; Oppenheim et al., 1999) These simu-
lations include both dynamic hydrogen ions and a fi-
nite magnetic field (. /w, = 5). The simulation is ini-
tialized with two cold counterstreaming electron beams
with equal densities n, /2. A frame corresponding to the
auroral ionosphere is chosen in which one of the beams
has zero drift velocity and the other has velocity vy = 5
(in units of the initial thermal velocity of each electron
component). The ions are put in the frame of the sta-
tlonary electrons, with the same initial temperature.
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Fig. 6. Evolution of space-averaged electron velocity distribution
in units of initial rms velocity-width of one of the beams.

4.1 Ewvolution of velocity distribution

Asin 1-D simulations, the initial beams evalve after only
a few plasma periods into a nonthermal electron veloc-
ity distribution elongated along B, as shown in Fig. 6.
The reduced velocity distribution parallel to B evolves
from two cold beams into a merged nonthermal distri-
bution with residual velocity bumps. The total evolved

distribution function has a drift velocity vq & v /2 and

a parallel rms (thermal velocity) wms & v3/2. The ex-
treme elongation of the 2-D velocity distribution, the
merged shape of the evolved distribution, and the ratio
U/ Vrms ~ (1) are consistent with FAST measurements
(Ergun et al., 1998). The asymmetry in the late-time
reduced distribution is due to the presence of ions. Ve-
locity distributions measured on FAST sometimes also
appear to show residual velocity bumps.

4.2 Evolution of real-space electric fields

Snapshots of the real-space bipolar wave structures are
shown in Figs. 7a and 7c. These are density plots of the
normalized wave energy density |E(x, y)|>. The darker
regions indicate higher energy densities. All distances
are in units of the effective “Debye” length, A, = vy,/2w,.
The bipolar wave structure in z (parallel to v; and B)
shows up as two peaks separated by a (zero-value) val-
tey. Initially, there is no coherence in the y (transverse)
direction. However, in Fig. Ta at time w,t = 640, the
structures have gained transverse coherence and are sig-
nificantly wider in y than in «.

The horizontal structures are electrostatic whistler
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Fig. 7. Detail of |E{z.y}|® at early time (a) showing bipolar
structures and low-level whistlers, and at late whistler-dominated
time (b). Frame (c} shows a time history of E; at a fixed spatial
point.

waves. These whistlers, unlike the bipolar structures.
do not exhibit long-time spatial coherence. They prop-
agate at several times the velocity of the bipolar struc-
tures in the +x direction and both up and down along y.
Figure 7b shows that at much later times (& 1000w, !)
the bipolar wave structures are less intense and exhibit
a much smaller spatial half-width transverse to B (ie..
in the y direction). The whistlers dominate at late times
when the bipolar structures are weaker and broken up
transversely. At very late times, many of the remaining
bipolar structures have comparable widths parallel and
perpendicular to B, consistent with selected measure-
ments (Ergun et al., 1998).

In Fig. 7c we have recorded E,(t) at a fixed point
in the cell as the structures move by in order to sim-
ulate the spacecraft antcnna wave measurements. The
bipolar structure is evident. The inferred positive peak
to negative peak spatial widths are typically 6-8A.. in
agreement with measured widths discussed above for the
more intense events (Ergun et al., 1998). The maximum
strength of the electric field is £ = 1.9(n,7.)"/? V/m
(for n.T, in units of 100 €V cm™3). This is higher than
the fields analyzed in Ergun’s data set (Ergun et al..
1998), but in reasonable agreement with other FAST
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measurements of intense bipolar structures. (Carlson et
al., 1998).

4.3 Wavenumber and frequency spectra

In Fig. 8 we present a different visualization of the re-
sults of the same 2-D simulation. Plots are furnished of
the K,~K, and w-K power-spectra, with K = kv /2w,
and frequency in units of w.. In Fig. 8a the K, K,
power spectrum of the bipolar structures are confined in
K space to a broad parallel range A K, corresponding to
their narrow spatial extent in z (no distinction is made
between wave energy at +K,), and to a narrow range
A K, centered about 0, corresponding to their broad co-
herence in the y direction. At earlier times, before the
bipolar structures have gained coherence in the trans-
verse direction, the Ky-K spectrum of the two-stream
instability exhibits a much wider AK,, (Fig. 8b). The
contour Jines in Figs. 8a and 8b are the unstable mode
growth rates obtained from the zeroes of (2). At the ear-
lier time it is evident that the fastest growing modes cor-
respond to the linear two-stream instability. The waves
in Fig. Ba at very small angle to the perpendicular K
axis are a mixture of electrostatic whistlers (W) and
beam-modified lower hybrid (LH) waves.

Even more revealing is the w-K, power spectrum of
Fig. 9 at fixed parallel wavenumber K, =0.031. The
peak power in the branches labeled “W” are about
an order of magnitude greater than the peak power
in the branch labeled “LH”. The superimposed curves
are the real {Doppler-shifted) frequencies found from
the zeroes of (2). Note the surprisingly good fit to
both the whistlers, which are stable according to lin-
ear theory, and to the unstable lower-hybrid branch.
The peak intensity of the power spectrum is at K =
K, = 0.3, corresponding to # = 84°. At this angle,
both ions and higher order electron terms can be ne-
glected. The parallel group velocity of the whistlers is
ve & (0/2)(1 2 |K|™Y) = 4.3(vp/2), so the whistler
parallel velocity 1s much faster than the beam mode ve-
locity, vs/2, in agreement with the simulation.

We now turn to studies of the loss of coherence of
the bipolar structures in the direction perpendicular to
the magnetic field, and to the associated production of
electrostatic whistler waves.

5 PIC simulations of breakup of idealized bipo-
lar wave structures

In order to study the evolution of bipolar structures and
electrostatic whistlers in two dimensions it is desirable
to simplify the problem considerably. Simplification is
possible at several levels.

First we note that, for the parameters considered, the
evolution of bipolar structures and whistlers shown in
Fig. 7 1s virtually unchanged if the PIC cote is run
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Fig. 8. Wave power spectra in K —K'y space at (a)} late and (b)
early time.
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with infinitely magnetized electrons, and qualitatively
the same when a static homogeneous ion distribution is
used. These simplifications enable simulations to be run
longer and with greater resolution. The motion of elec-
trons in the infinite magnetization limit is strictly one
dimensional (along magnetic field lines), with the sec-
ond dimension coming in only through Poisson’s equa-
tion. The ions enter into Poisson’s equation as a space
and time independent neutralizing background density.
Thus, the reduced Vlasov-Poisson system becomes

(0 + 02 + Z8,60,) f(z,v2,9,1) = 0
m

(62 + 63] oz, y,1) = dme (f dv, f — n,-o) (3)

-0

oo

To further simplify the simulations, we initiate the
bipolar structures with an idealized form. This is ac-
complished (Oppenheim et al., 1999) by starting with
a strictly one-dimensional PIC simulation of the two-
stream instability and running it until a small num-
ber of well-separated phase-space holes (as in Fig. 3)
remain. At that time, the 2-D PIC simulation is re-
initialized with the z-v, phase space structure from
the 1-D startup extended umniformly into the {perpen-
dicular) y direction. This creates straight tubes in the
three-dimensional (z—v;—y) phase space. These tubes
correspond to the initially straight bipolar structures in
|E{z,y)|*, as shown in Fig. 10a. The evolution of the
bipolar structures in time is then apparent in F igs. 10b-
10d. Figure 10e shows the evolution of a single bipolar
structure as one rides along with it. It is clear that the
straight tubes develop “ripples” simultaneously with the
appearance and intensification of electrostatic whistlers
(the horizontal wave structures in Fig. 10). The ripple
frequency is approximately the same as the whistler fre-
quency. Eventually the rippled bipolar structures tear
apart, and the whistlers become very intense. This sim-
plified evolution is consistent with the evolution of bipo-
lar structures shown in Fig. 7 for the full 2-D run (with
ions).

6 Bipolar wave structures, BGK modes, and
linear stability analysis

It may be possible to set up an analytic approach to
model the breakup of bipolar structures and the emis-
sion of electrostatic whistlers. We seek to understand
the behavior of linear perturbations to an initial straight
tube in three dimensional z-v,~y phase space. An ideal-
ized vortex tube can be modeled as a Bernstein Greene
Kruskal or “BGK” mode (Bernstein et al., 1957) in -
¥z electron phase space—extended uniformly in the y
direction. The strategy is to find an exact nonlirear so-
lution to (3) for f and ¢ which is independent of y and
t. There are an infinite number of such solutions, so

Fig. 10. |E{z,y)|* from 2-D simulation initialized with straight
phase-space tubes at (a) ¢ = 0, (b) ¢ = 1716w !, {c) t = 250807 ",
and (d) ¢ = 3828w. !. Frame (e} contains a sequence of snapshots
centered on a single (moving) bipolar field structure as it evolves.

the challenge is to find a solution relevant to the bipolar
structures in the simulations. A general BGK solution
in 1-D (with static ions) consists of a stationary dis-
tribution of electrons fo(z,v;) and a potential ¢y(z).
We assume ¢g(z) to be unimodal and symmetric about
2 = 0. It is easy to show that f; must be a function of
constants of the motion of the characteristic trajectories
for the Vlasov-Poisson equations. One such constant is
the energy

w= %vg — edp(z) {4

For a potential energy trough of the kind in Fig. 4,
there are three classes of electrons and corresponding
distribution functions for each: trapped electrons, un-
trapped or “passing” electrons with positive velocity,
and passing electrons with negative velocity. For the
passing electrons, the sign of the velocity is a constant
of the motion. The trapped electrons correspand to neg-
ative energies in the range d0(0) < w < 0, while for the
passing electrons w > 0. The orbits in phase space are
shown in Fig. 11. The trapped and untrapped orbits
are separated by a separatriz orbit defined by w = 0.
The BGK solutions we seek here shouid not only have a
potential with a shape as in Fig. 4, but the distribution
function should go to zero at large positive energies and
vanish for a range of negative energies near the bottom
of the potential well in order to have a phase space hole
that resembles the one shown in Fig. 3. A reasonable
additional assumption is that the passing electron dis-
tribution functions be identical for positive and negative
velocities.

Even with these constraints, many solutions can be
constructed. There are three components to a 1-I sta-
tionary BGK solution to (3): the potential ¢g(x). the
trapped electron distribution fr(w), and the untrapped
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(passing} electron distribution function fy{(w). Any
two of these components may be chosen arbitrarily and
the third found by using Poisson’s equation—although
the third component so determined may not be physi-
cal. Typically, the potential is taken to be a gaussian
with ¢o = @max exp(—z?/2a®) (Muschietti et al., 1998:
Turikov, 1984; Krasovsky et al., 1997), or a hyperbolic
function, such as ¢y = Prax sechq(z/Qa) (Schamel, 1982;
Turikov, 1984). Then, for example, one may assume a
relatively simple form for fy and solve for fr. Such a
procedure was carried out for the FAST data set, using
a gaussian potential by Muschietti et al. (1998).

In order to interpret the breakup of bipolar structures
and the growth of electrostatic whistlers as a possible
instability of a BGK “state” {fo(w), éu(z)}, one can
linearize (3) about the spatially nonuniform BGK state.
That is, we seek the properties of perturbations, f; and
¢1 In the expansions f = fo(w) + fi(z,y,ve,t) + ...
and ¢ = ¢o(x) + ¢1(x,y,t) + ... The linear problem is
an elgenvalue problem which is often very challenging
to sclve. Few studies of the stability of BGK solutions
exist (Schamel, 1982; Goldman, 1970). In this paper, we
simply set up the full problem. The linecarized Vlasov
equation (3) is formally solved in terms of the first-order
potential ¢y by a Green’s function (Goldman, 1970) and
inserted into Polsson’s equation for ¢; to yield

(—=82 + kj)cﬁ](m,t) =4rpi{x,t)
¢
= ﬁcf dt' dz’ dv' §[x — zom(t — t'; 2, v')] x
0
2 {0y fola' v') 00 1 (2", 1) (5)

with the orbits satisfying

8t1'0rb = UOl‘b(t - t’a “E‘! U’), !
€
rvory = rnara,b¢0(ﬂ3orb))

Torb(0) =

Varb (0) = v’ (6)

The source term &, fodr:éy in (B) acts at the phase
space point {2’ v’} at time ¢’. and the delta-function
guarantees that this information propagates to the point
{x,v} at the later time ¢ along the orbits {zom, vorb}
given by {6) and illustrated in Fig. 11. The constant
c is just 4we?/m. The k, term arises because we have
Fourier transformed in y. If we Fourier transform in
time, thereby introducing w, and replace the velocity
v’ by the energy w defined in (4), a differential-integral
equation is obtained which must be solved together with
eigenvalues k, or w.

7 Conclusions

Using numerical simulations and heuristic arguments,
the nonlinear two-dimensional evolution of a classic two-
stream instability has been shown to lead to bipolar

Fig. 11. Trapped and untrapped arbits separated by a separatric
in the electrostatic potential associated with bipolar field struc-
tures.

wave structures exhibiting a number of the properties
measured on board the FAST satellite in the auroral
tonosphere. The simulations show that after thousands
of plasma periods these structures lose their coherence
across magnetic field lines and break up into weaker
bipolar wave structures with an aspect ratio closer to
one. The breakup process is accompanied by the emis-
sion of electrostatic whistlers which eventually come to
dominate the bipolar structures.

A formal method has been set up for studying the
linear stability of idealized stationary two-dimensional
bipolar structures modeled as BGK solutions to the
Vlasov-Poisson equations in the limit of strongly mag-
netized electrons and static ions.

‘There are several possible routes to an explanation
of the instability of idealized bipolar structures such as
those observed in the simulation of Fig. 10. The first-
order density of whistlers moving through the bipolar
structures may destabilize the trapped particle equilib-
rium. To show this would require a kinetic approach,
based on a solution of (5). We have made some progress
in this direction and results will be presented elsewhere.

It 1s also possible that the destabilization of coher-
ent bipolar wave structures involves more than one such
structure. The long paraliel wavelength of the whistlers
enables them to interact with more than one bipolar
structure and to “come around again” to the same struc-
ture in a simulation with periodic boundary conditions.
Preliminary numerical simulations based on a Vlasov
code suggest that the straighl bipolar structures may
have their own low-frequency “normal mode.” which
can resonate with a whistler, leading to growth of the
whistler.
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