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Abstract. Lattice models for earthquakes have been shown
to capture some of the dynamical properties possessed by
natural fault systems. These properties include: 1) a
scaling (power law) region in the curve representing event
frequency as a function of magnitude and area; and 2) space-
time clustering of events. To understand the physical
origin of these and other effects, we examine the simplest
kind of "toy" slider block model. We obtain results
indicating that this model displays several additicnal kinds
of phenomena seen in real earthquake favlts, even though
“realistic” physics is missing from the model. Asperity-
like slip distributions in this model arise from strong
elastic coupling, rather than the spatially heterogeneous
frictional strength often inferred for real faults. Simulation
results indicate that “"characteristic” earthquakes can be
produced as a consequence of the nonlinear dynamics. Thus
segmentation on faults may be a result of the nonlinear
dynamics as well as being due to geometric properties of
fault systems. These conclusions may be modified when
more "realistic” physics is added to the model, although the
presence of dynamical effects in the toy model calculations
similar to those observed in nature demonstates alternative
pussibilities for the origin of these effects.

1 Introduction

Understanding the physics of earthquakes is complicated by
the fact that the large events of greatest interest recurr at a
given location along an active fault only on time scales of
the order of hundreds of years (e.g.,, Richter, 1958;
Kanamori, 1983; Pacheco et al,, 1992), To acquire an
adequate data base of similar large earthquakes therefore
requires the use of historical records, which are known to
possess considerable uncertainty. Moreover, instrumental
coverage of even relatively recent events is often
inconsistent, and network coverage and detection levels can
change with time (Haberman, 1982). Understanding the
details of the rupture process is further complicated by the
spatial heterogenity of elastic properties, the vagaries of
near field instrumental coverage, and other factors {see for
example Heaton, 1990; Kanamori, 1993). We are therefore
motivated to use methods that provide insight into details
of the rupture process which are complementary to the
usual observational techniques (e.g., Kanamori, 1993).
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For many problems in statistical mechanics, numerical
simulation is the only- only practical means of obtaining
experimental information about the behavior of a nonlinear
system (Binder, 1979; Binder, 1984; Mouritsen, 1984,
Ma, 1985; Yeomans, 1992). Numerical simulation has
been used extensively to study earthquakes in the recent
past (Rundle, 1988, 1989; Rundle & Klein, 1989; Carlson
and Langer, 1989; Bak and Tang, 1989; Rundle & Turcotte,
1993; Sahimi et al., 1993). In the case of earthquake
faults, the long time scales involved, comparable to the
human lifetime, and the (at present) unpredictable nature of
the events make earthquakes difficult to  study
systematically in the field. For this reason, il is most
advantageous to develop simulation techniques so that the
physics of earthquakes can be studied easily in the
computer.

In developing numerical simulation techniques, there are
several issues that arise. The first is the use of massless
cellular automaton models, instead of models with mass,
whose dynamics must be obtained by solving a set of
coupled differential equations. The original Burridge-
Knopoff model (Burridge and Knopoff, 1967) and its CA
successors (Rundle and Jackson, 1977) were not motivated
by a first principles derivation, but only as an
approximation to a fault Moreover, the relative
importance of inertia in the tupture process, which is
responsible for generating seismic radiation, is still not
clear. Kanamori and Anderson (1973) estimated that the
seismic efficiency 1), which measures the fraction of energy
in the earthquake lost to seismic radiation, is less than 5%-
10%. CA models are in fact dynamical maps, which are
known to have a tundamental connection to the dynamics
generated by the associated differential equations (Smale,
1967; Arrowsmith and Place, 1990). Finally, it was
shown by Nakanishi {1990) that massless CA's can be
constructed that give the same quantitative results as the
massive slider block models examined by Carlson and
Langer (1989). These results include not only the rupture
patterns, but also the scaling statistics. There is also
clearly a time evolution process in the CA, with a
separation of loader plate and source time scales, just as in
models with inertia. The physical interpretation of the CA
time scales is discussed by Gabrielov et al. (1994). To
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summarize, this issue of the presence or absence of inertia
has been examined in the literature and shown to have little
significance.

In every simulation, massive or massless, there are a
series of fundamentat approximations. For example, faults
are usually assumed to be planar; boundary conditions
might be periodic, or fixed at the ends; interactions between

fault segments might be nearest neighbor, 13, or long
range of some other variety. Friction might be simpie
stick slip (Mohr-Coulomb); have simple but unrealistic
velocity dependence as in the original Bumidge-Knopoff
model; be based on overly idealized laboratory friction
experiments on clean, dry, dust-free sliding surfaces; ignore
the effects of pore water; or ignore effects associated with
variable normal stress on the fanlt. All of these various
models have their advantages and disadvantages, their
adherents and opponents.

In this paper we use the simplest possible model, which
we term a "toy” model. There are several important reasons
for studying such a toy model. Any dynamical model,
which includes both differential equations as well as maps,
gives rise to an observed dynamical behavior as a
consequence of the physical nature of the model, Tt is of
fundamental interest to ask what minimal set of physics
must the model possess in order to demonstrate dynamical
effects that are seen in nature. We are therefore making a
fundamental distinction between models that previous
experience tells us are 'realistic', and 'minimal' models
which nevertheless demonstrate important similarities to
natural phenomena. The toy model that we examine in this
paper is of the latter category. One expects 'realistic'
models to match natural fault dynamics well.

The true value of the toy model lies exactly in the
somewhat surprising fact that a significant body of natural
phenomena are reproduced by the dynamics, including both
scaling of earthquake distributions, and as demonstrated
here, ‘asperities’.  This fact leads to the important
conclusion that the observed phenomena may either have
several origins, or that the true origin is not in the physics
included in the more 'realistic' model. In short, the
objective of this paper is to ask the question, how little
physics can one include in a model and still get interesting,
unexpected results?  For example, massless cellular
automaton slider block models obtain the same kinds of
scaling distributions for earthquakes as do massive models
which possess inertia. Moreover, neither massive nor
massless models include elastic waves, attenuation,
viscoelasticity, etc. The logical question is then to what
extent the presence of inertia, waves, and so forth play any
role in the scaling properties of the phenomena. Another
example, which is a major subject of this paper, is that
massless slider block models with a uniform failure
(strength) threshold can reproduce much of the phenomena
usually cited as evidence for the asperity model for
carthquakes (Lay et al., 1982).  Asperities are usually
thought to be associated with a spatially heterogeneous
failure threshold, but the results cbtained here raise

questions about the origin of these

phenomena.

true physical

Picture of the two-dimensional slider block

Fig. 1.
model.

The toy model we use here has been introduced elsewhere
(Rundle, 1977; Narkounskaia et al., 1992; Olami et al.,
1992). Other papers have focused on examining the scaling
properties of the model and establishing its universality
class (Narkounskaia et al,, 1992; Rundle et al., 1994).
Here we explore the phenomenology of the model,
beginning with a short description of the model, then give
a graphical display of a series of representative results. We
compare these to observed data from seismology. 1In
general, one obtains Heaton-type pulses (Heaton, 1990)
rather than crack-like solutions (Kostrov, 1964), because
healing takes place immediately after a block slides, rather
than at a delayed time after slip everwhere is complete.

2 Model

The model used here has been described elsewhere (Rundle
and Jackson, 1977), It consists of a massless cellular
automaton (CA) version of the model originally proposed
by Bumidge and Knopoff (1967; see figure 1). Later
versions of this model have been proposed by, among
others, Nakanishi (1991), Brown et al. (1991),
Narkounskaia et al. (1992) and Olami et al. (1992). In this
model, a network of massless blocks sliding on a frictional
surface are connected to nearest neighbor blocks by
coupling springs with spring constant K. A Tloader
spring with spring constant K1, connects each block to a

loader plate moving with a velocity V, increasing the force
on each block at a steady rate. In the original BK model
with massive blocks, the frictional force has a velocity
dependence that produces lower stress with increased sliding

velocity. Once a static force threshold oF is equaled or



exceeded, the full inertial equations of motion are solved in
the BK model to obtain the slip of each block.

The solution of coupled differential equations makes the
simulation of systems with large numbers of elements
extremely difficult. Moreover, it is important to simulate
as large a system as possible to eliminate the effects of the
finite size of the lattice. By contrast, the CA approach for
these systems can be made far more computationally
efficient since only simple algorithms are used. In slider
block models, eliminating the mass in turn eliminates the
possiblity of waves and radiation damping. If the seismic
efficiency is low, of the order of 5%-10% as is generally
assumed (e.g., Kanamori and Anderson, 1975), a case can
be made that inertia is less important than other entropic
and internal energy effects.

Only the simplest kind of stick-slip friction is used in
our CA model. "Clusters” or avalanches of failed blocks
can appear because an initially unstable block increases the
force on its neighbor blocks as a result of the coupling
springs, thereby inducing instability in its neighbors. Each
of the clusters of failed blocks represents an earthquake in
the simulation. The energy funciional for the system of
blocks and springs is:

H = (1/2) % { KL (5§ - V©)2
+ (112) KC Zjlsi-si 12} (1)

In (1), si represents the total slip of block i, V is the

loader plate velocity, t is time, and the sum over j is carried
out over the blocks that are nearest neighbors to block i.
The sum over j excludes site i, and the factor (1/2) corrects
for the double counting of site i . Equation (1) can be
written as:

H = (1/2) % { KL 5 - V)2
+ KC I IG5 - V-5 - V]2 )
= (D)% {KLoiZ + Ko Zj [0 -6i 12 }

where 0; =s{ - Vt is the negative of the slip deficit of
block i.

The force 6; (or stress if unit area is assumed) on block i
is '

oi = -dH/0¢; = - { KL ¢
+KCc Zj (¢ -¢i 1} 3)

A rule that generates evolution through time must be
specified, this being the friction law. For the simulations
here, we adopt the Mohr-Coulomb law with a spatially

constant static failure threshold oF , and a spatially
constant residual stress GR. Upon slip, when 6; 2 oF |
each block jumps forward a distance Asj = (6] - oR )/
KT, KT =Kj, + 4K, whereupon it sticks (heals).

Different Monte Carlo prescriptions have been used in other
realizations of the model (Rundle et al., 1994)., The
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statistical distributions obtained as well as qualitative
properties of the results are independent of the time
evolution rule used, suggesting that there may be some
universal aspects of the phenomena.

The energy functional (1) for a slider block model can be
formally obtained from the expression for the energy
change due to slip on a planar fault surface in an infinite
elastic medium. The expression for the energy contained
within an elastic medium due to quasistatic slip on the fault
surface S is:

HEL = -Jg 42X { p(x) s(x.0
+ 172 IS d2x' T(x-x") s(x,t)) s(x',t)) } )

The important assumptions are: 1) the constant applied
stress field p(x) =0 ; 2) a shift to a moving reference
system, so that slip s is replaced by slip deficit ¢; and 3)
the Green's function T(x - x") falls off sufficiently rapidly
as |l rl=1x-x'1increases. This last assumption implies
that the system {earth) is not ideally elastic, and that there
is some infrared "cutoff”, In fact, the earth is not ideally
elastic, inasmuch as wave attenuation, material creep,
plasticity, fluid flow, and other processes are important in
fault zones and throughout the lithosphere. The issue of
whether there exists an infrared cutoff is equivalent to the
problem of whether the elastic interaction is screened by
competing interactions due to defects in the solid (Ma,
1985). An example of a Green's function with an infrared

cutoff is the asympiotic form e %I / r3, rather than 143,
the form appropriate to a perfectly elastic solid. We discuss
below the effect a nonzero screening parameter ¢ has on the
value of K¢ / KJ..

Using a gradient expansion (Ma, 1976} of $(x'.t")
around x, retaining terms up to the second derivative in x,
and integrating by parts, the local interaction energy

HE 19€ is obtained:

HEL = HEL'¢=
172 [g d2x (k1 ¢2(x.0) + ke (V ¢(x.0) )? | (5)

where the spring constant densities k] and k¢ are related to
the Green's function by:

ki, = - IS T(r) d2r (- oth moment of )
©)
ke =172[g T(r)r? d?r (274 moment of T)

7

To obtain the slider block energy, (5) is spatially coarse
grained by averaging the integrand over squares of side
length a. Then ¢(x) — ¢i. and noting that Vo(x) = (¢j -

$j)/a, the slider block energy (2) is obtained. In energy
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functionals like (5), k¢ is the "range of interaction”, and
k. is the "mass" (e.g., Ma, 1976, 1985; Amit, 1984,
Yeomans, 1992).

Finally, it should be pointed out that some authors prefer
models with considerably more physical detail, specifically
with infinite range interactions and a five-parameter friction
law (e.g., Ben Zion and Rice, 1993). While that approach
has advantages, it has the disadvantages that 1) infinite
range interactions means always having to deal with
boundary conditions and finite size effects, and 2) it is often
difficult to identify the physical origin of various
phenomena. Our approach is to begin with as simple a
model as possible (minimal model) and progressively add
more levels of detail as the effects of the different
parameters are clarified.

Since a major concern at present is computational and
analytic simplicity, we use a slider-block CA model with
spatially constant failure threshold of and residual stress
oR to simulate seismicity on a fault. The effect of
randomness in the mode! is examined elsewhere (Rundle et
al., 1995a,b). The time evolution of the CA model is
generated by a jump rule giving the position of the block
as a function of the state of stress on the block. The jump

rule for the ith block is given by:
si(t+ 1) =5si(t) + T(oi ) ®(oj - oF ) (8)

where © (x) is a Heaviside step. The the jump function
J(oj ) is

J(oi) = (oj - o®) /(KL + 4K¢) %)

In the work described in this paper, the simulations were
started with the blocks having random initial positions, on
lattices of 100 x 100 blocks. The calculations proceed as
follows:

1. The loader plate was moved (updated) until the
stress on the least stable block reached threshold (o; = GF).

2. The position of the least stable block is adjusted
using (8) - (9).

3. A "Monte Carlo” sweep (iteration) through the
entire network (laitice) is carried out and the stress on each
block is caiculated using equation (3).

4, The position of ali blocks at or above threshold

(= oF) are simultaneously adjusted according to (8) - (9.

5. Further sweeps and block position adjustments are
carried out until all of the blocks are in states with ©j <
F
ol

6. The loader plate position is
according to step 1.

again

updated

The time evolution process described in steps 1 - 6 is
contained in the equations (3), (8), (9). This model is a V
— 0 model, because the loader plate moves so slowly that
there can only be one initiator block in each avalanche

cluster of failed sites (Rundle et al., 1995a). This is the
same basic model described by Narkounskaia et al. (1992)
and Olami et al. (1992). Growing avalanche clusters will
never coalesce into larger clusters, so that each cluster in
this (nearest neighbor) model grows outward from only one
site. This is evidently an important distinction among
various slider block models (Rundle et al,, 1995a) with
respect to scaling exponents and limit cycle behavior,

3 Simulation results

A fundamental question is whether even such a simple
model as the one described here can display effects presently
thought to be characteristic of real faults. Specifically, we
ask whether "asperity - like" features and "characteristic
earthquakes” emerge from these models, even though these
features are not put into the model "by hand”. ¥ these
features are present in the simplest models, the presence of
these effects in more realistic detailed models cannot
therefore be taken as evidence of the importance of these
details. Examples of such details includes realistic fault
geometries, crustal structures, inelastic earth rheologies, or
heterogeneous frictional strength distributions.

The results of our simulations are shown in figures 2 -

11. In these calculations, a spatially constant threshold o'
= 350 was used, together with a spatially constant residual

stress o = 10, Values used for spring constants were K¢
=1 (always), and K], = 1 or K1, = .04 (as noted in the
figure captions and described below). The objective was to
examine the extent to which changes in only one
parameter, the coupling ratio K¢ / K1, can determine the
fundamental phenomenology of the dynamical process. In
all cases, simulations were begun from random initial
conditions, then the models were run for at least several
hundred thousand events to eliminate transients before data
were obtained.

Fig. 2 shows simulated earthquake statistics for 20,000
events in a model with K¢ / K, = 1. In these and
subsequent figures, the seismic moment Mg for an
avalanche of failed blocks is defined as:

Mg = KL E(all failed blocks) {slip}
= K|, (average slip) (total area) (10}

The summation is carried out over all failed blocks in the
avalanche. Magnitude M is defined by:

M=Log1¢ {Mo) (11)

The top left corner plot of figure 2 shows M as a function
of time, where time is defined as the position of the loader
plate. The apparent horizontal solid lines in the lower
portion of the plot are in reality individual dots
representing, from the bottom, the one-block events, next
the two-block events, and so forth, until at higher
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Fig. 2. Results from simulation with Ko/ Ky, =1, K1, = 1. (a) Top
left is magnitude-time plot of synthetic events, with magnitude as
defined in the text. (b) Middle left is cumulative moment-time plot,
(c) Bottom left is event time plotted against sequence number for the

largest events shown in (a) and (b).

(d) Top nght is cumulative

magnitude-frequency relation for all events. Note that b-value of
.85 should not be compared with Gutenberg-Richter values for real

data since magnitude is defined as Log] () (moment). (&) Probabiliey
density for frequency of occurrence plotted against area of event.
Note that slope of -1.89 is close to the slope of -2 for real data, and

is independent of assumptions about constants in the magnitude-
frequency relation,
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SYNTHETIC EVENTS

Fig. 3. Plots of the area covered by the furst five largest events
shown in figure 2 top left. Sequence of events proceeds from top
left to top nght to middle left, ete. The similarity of one event to the

" next can be seen, lending credence to the characteristic earthquake

idea, however, event configuration is changing also.
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T= 832

SEQUENCE NQ. = 37
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Fig. 4. Moment rate plotted against itcration {event) time (on lcft) for the first three large events shown in
figures 2-3. Evolution of the spatial configuration of the events is associated with evolution of the moment

rate function.
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T= 832
SEQUENCE NO. = 37

ITERATION NO. = 1

T= 632
SEQUENCE NO. = 37

ITERATION NOC. = 80

T= 632
SEQUENCE NO. = 37

ITERATION NO. = 180
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SEQUENCE N{. = 37

ITERATION NO. = 40

T= 632
SEQUENCE NO. = 37

ITERATION NO. — 120

T= 632
SEQUENCE NO. = 37

ITERATION NO. = 200

Fig. 5. Space-time pattern of failure (rupture) progression for the first large event that was also
shown in figure 3-4. Initiation point (hypocenter) is shown at top left, other snapshots of failure
are shown al intervals of 40 iteration time steps proceeding from upper left to bottom right.
Lightest shading indicates sites that are yet to fail, darker shading indicates sites that have failed,
and darkest shading are sites that arc failing on the indicated iteration time step. In this casc, the
latter also constitute the rupture front, since in this model almost all sites fail only once.
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Fig. 6. (a) Top is three dimensional perspective plot of the slip in the first large event shown in
figure 5. (b} Middle is plot of stress drop. (c) Bottom is energy dccrease.
are nearly constant as a function of spatial position.

Note that all quanities
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Fig. 7. Results from simulation with K¢/ K, =25, K[ = .04. (a)
Top Ieft is magnitude-time plot of synthetic events, with
magnitude as defined in the text. (b) Middle left is cumulative
moment-time plot. (c) Bottom left is event time plotted against
sequence number for the largest events shown in (a) and (b), (d)
Top right is cumulative magnitude-frequency relation for all
events. Unlike figure 2, the magnitude-log frequency relation is
not well represented by a straight line. {¢) Probability density for
frequency of occurrence plotted against area of event. Again,
these synthetic data are not well represented by a line (i.e., power
law for frequency-area).
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magnitudes where events with many failed sites are resolved
into single isolated points. That the one-site events appear
as a horizontal line is due to limitations in resolution of
the laser printer. The first three largest magnitude events,
near the top of the plot, are approximately equidistantly
spaced in time, and are followed by a sequence of ~3 large
events clustered more closely in time. These large events
are examined in more detail below,

In figure 2, the left middle plot shows cumulative
magnitude as a function of time, and resembles many such
plots of real data (e.g., McNally, 1981). The left bottom
plot shows the largest events in the form of a "recurrence
plot” of event time in terms of event sequence number,
similar to that commonly used to present Parkfield data
(Bakun and McEvilly, 1984; see also Scholz, 1990, p.
246). Temporal clustering of the large events can be seen,
implying that earthquake straight-line forecasting/
prediction, using time-predictable or slip-predictable ideas,
is possible for only limited time intervals in this model,
The top right plot is the cumulative number N of events as
a function of magnitude (Gutenberg-Richter plot} for the
events, and these simulation data conform to the relation:

logjpN = 5.1-85M 12)

The b value of .85 is not in agreement with the value near
1 observed in nature, because the observational datz uses a
relation between M and Logyg M,, different by a factor of

2/3. However, it may be significant that the relation
between Log1( {Frequency} and Logi {Area} has a slope
{-1.89: lower right plot). Note that the "frequency"” in this
frequency-area plot is the probability density function for
frequency, not the cumulative frequency. An observational-
empirical value for this exponent of -2 is implied by the
observational moment-magnitude scale, For the
cumulative frequency, an observational value of -1 is found.

Fig. 3 shows the spatial configuration of the failed
blocks for the first five largest events, as indicated along
the top of figure 2 (top left). The events resemble one
another closely. Gabrielov et al. (1994) and Herz and
Hopfield (1995) have shown that a very similar model with

a constant jump J{G)) = (()'Fj GR) ! KT leads to strictly
periodic events. For K¢ / K[, = 1, it will be seen below

that the stress transfer is small enough that the slip is very
nearly spatially constant, similar to the periodic model, so
that nearly periodic behavior is expected. For larger K¢ /

K1, =25, the spatial distribution of slip in large events is

more spatially heterogeneous, and the model shows less
evidence of approximately periodic behavior.  Seli-
organization is an intrinsic property of these models, and
originates from the long-wavelength comelation of
fluctuations. Patterns will emerge, persist for a period of
time, then disappear to be replaced by new patterns. The
events seen in figure 3 are reminiscent of characteristic
earthquakes (Schwartz and Coppersmith, 1984), in which
similar events will repeat at regular intervals for a period of
time. The most famous example of this behavior is the
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Parkfield sequence (Bakun and McEvilly, 1984). Moreover,
in the limit of weak coupling, the present slider block
model becomes identical to a model which has been shown
to demonstrate only periedic behavior (Gabrielov et al.,
1994). This result suggests that segmentation on faults
may be a result of the nonlinear dynamics, as well as the
geometric configuration of the fault zone arising from
bends and jogs in the fault (King and Nabelek, 1985).

Fig. 4 illustrates the analogue of the source-time
moment rate function (left side) for the first three of these
large events (right side). Each event develops as an
avalanche of failed blocks that occur during a series of
iteration sweeps through the lattice. The moment rate as a
function of interation time is obtained by summing the slip
produced by all the blocks that fail during each iteration
sweep. This function is the analogue to the source-time
function for real events. We remark that although our
simulations involve massless blocks, there is a clear
pattern of propagation across the lattice, at a local rupture
velocity vr = 1 grid unit per iteration sweep. Given a grid
size, these results could in principle be scaled up to natural
faults for comparison, although we do not pursue this
farther here. From figure 4, both the spatial pattern of
block fatlures and the moment rate function change with
succeeding evenis. In particular, the area under the moment
rate curve associated with the small "pre-shock”, that is
apparent at the beginning of the first event at top left,
grows in importance until by the third event (bottom left)
it represents a significant fraction of the total area under the
curve associated with the "main event”. A point to notice
is the "jagged" temporal fluctuations in the moment rate
functions, which are comparable to the mean value of the
moment rate when averaged over time.

Another view of the source process is afforded by plots
showing the time development of rupture during the event.
Fig. 5 illustrates this process for the first large event, in
which the lightly shaded region indicates all of the sites
that eventually fail, the darker region represents the
cumulative sites that have failed by the iteration sweep
shown in the upper left of each panel. The darkest sites
represent the sites that are failing on the indicated iteration
sweep, and represent the rupture front. Beginning at the
upper left, the rupture nucleation point can be seen as the
dark site near the lower lefthand corner. The plot on the
upper right is an early iteration time snapshot of the
rupture front after 40 iteration time intervals. Rupture
progression is documented at further iteration times of 80,
120, 160, and 200. It can be seen that the rupture process
in this model is as suggested by the slip pulse model of
Heaton {1990}, in that a narrow region at the rupture front
sweeps rapidly over sites on the fault, leaving slipped sites
behind the rupture front locked again. Somewhat unlike
the Heaton model, however, the rupture front is not
necessarily a continuous line of slipping sites, but is quite
irregular, sometimes consisting of only a very few sites.
After about 200 iteration steps, slip on the model fault is
complete.
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Fig. 6 shows pseudo-three dimensicnal views of the slip
(top), stress drop (middle), and energy decrease (bottom) for
the first large event in the sequence, the same event as
shown previously in figures 2-5. The distinguishing
characteristic of all three plots is the spatially constant
nature of the changes in slip, stress and energy. From the
comments above, we expect to see some evidence of
periodic behavior in a model where the slip during events is
spatially homogeneous.

Fig.s 7-10 are a series of plots similar to figures 2, 4-6,
but for a model in which K¢/ K[, =25 (Ko =1, K[ =
.04). In figure 7 top left, there is less evidence of temporal
clustering than was seen in figure 2 top left. However,
there are still a number of very large events similar to those
seen for the previous case, and these events are the subject
of the succeeding figures. Among obvious differences
between figures 7 and 2, the "Parkfield recurrence plot”
shown in the bottom left is evidently more linear than the
corresponding plot in figure 2; the magnitude-frequency
plot is not well represented by a relation of the form {12),
unlike the result in figure 2; and the frequency-area relation
is not s0 good a power law as that shown in figure 2, and
has a lower average slope (about -1.6). In fact, the
magnitude-frequency relation at top right of figure 7 is
somewhat similar to that observed for isolated segments of
major fault zones such as the Prince William sound section
of the Alaska subduction zone (e.g.. Scholz, 1990, p.188).
This type of magnitude-frequency relation has been used to
justify the characteristic earthquake model of earthquake
recurrence along a fault.

Fig. 8 is analogous to figure 4 but for the first two large
events in the magnitude-time plot in figure 7 (K¢ / KL, =
25). This figure again suggests that segmentation can arise
from dynamical causes. The source time (moment rate)
functions in figure 8 are again calculated by summing the
slip of each sliding block at a given iteration time. Unlike
figure 4, however, the moment rate functions shown here
are much smoother, having fluctuations that are only a
small fraction of the value of the function averaged over
iteration time. The reason for the difference is evidently
associated with the larger value of K¢ / K. K¢ in
equation (2) multiplies the nearest neighbor difference term,
inducing a spatial smoothing of the slip deficit ¢j(t), so the
sharp edges seen in the slip distribution of figure 6 are not
present. The same statement applies to kC and smoothing
on {x,t) in (5). Spatially smoother slip deficit is observed
to be associated with temporal smoothing in our
simulations. We believe this implies that the states to
which ¢{ can jump are nearer together in state space.
Spatial and temporal fluctuations are therefore damped, and
the source time function is smoother.

Fig. 9 is a plot of the time development of the rupiure
for the first large event shown in figure 7. The first
unstable site (hypocenter, or initiator site) is in the panel at
upper left, and the sequence proceeds at 40 iteration-step
intervals from left to right and top to bottom as in figure 5.
The most obvious difference between the two figures (5 and

9) 1s that failure takes place only at the rupture front in
figure 5, whereas there is a broad zone of failing sites
behind the initial rupture front in figure 9. This broad zone
is a result of the relatively large value of K¢ / K[ = 25,
indicating that the ratio of siress redistributed from the
failed site to the stress lost by slip of the site, is large. A
site can fail once, be loaded again by a failed neighbor to a

large value of stress in excess of oF, and fail a subsequent
time. In fact, the number of times a block can fail for large
K¢ / Kj, is in principle unbounded, resolting in a spatially
broad zone of failing sites. Models with large KC / K],
have a large value of "stress conservation".  The
terminology is unfortunate, because energy can be
conserved, not force and stress. Moreover, even in models
in which stress is fully "conserved”, it is essential that
some stress be lost at the boundaries of the lattice,
otherwise the average value of stress in the lattice will rise

monotonically until it always exceeds the threshold of.

Fig. 10 shows three dimensional perspective views of the
slip, stress drop, and energy decrease for the event shown in
figure 9. In contrast to figure 6, in which these quantitites
are essentially constant over the area of failure, figure 10
indicates substantial spatial variation of slip, stress drop,
and energy change, a result of the repeated and irregular
pattern of failure for individual sites.

4 Implications and conclusions

Two important results from the foregoing are repeated and
summarized in figure 11. On the left side top is the
moment rate function, and on the bottom is the spatial
distribution of slip, for the event with K¢/ K[, = 25 in
figures 8-10. On the right are the corresponding moment
rate (top) and slip distribution (bottom) for the ¢vent with
Ke / KL = 1 in figures 4-6. Smoother source time
functions are associated with spatially varying slip, whereas
source time functions that fluctuate more strongly in time
are associated with a slip distribution that has abrupt
changes and sharp edges.

These numerical results may be compared with data
describing the asperity model taken from the paper by Ruff
(1983) and reproduced in figure 12. This figure describes
resuits from two earthquakes, the 1964 Alaskan event (left),
and the 1963 Rat Islands earthquake {right). At the top are
long period seismograms (solid lines) together with fits
(dashed lines) using long period synthetics that were used to
obtain the moment rate functions (middle) for the events.
At the bottom are the inferred spatial slip distributions for
the events, which were obtained using assumptions about
the space-time progression of rupture on the fault plane.
According to these assumptions, the temporally smooth
moment rate function for the Alaskan event is associated
with a slip distribution that is nearly spatially constant.
On the other hand, 2 moment rate function that fluctuates
strongly in time is associated with spatially varying slip.
This is the essence of the asperity model, in which
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restricted areas on the fault have slip larger in magnitude
than that which occurs over the bulk of the fault plane
during the event.
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Fig. 12, Data and interpretation in terms of the asperily model for (a)
the 1964 Alaskan earthquake (on the left) and (b) the 1963 Rat Islands
earthquake {on the right). At top are observed (solid line) and synthetic
{dashed line) seismograms for the events. Seismogram for Alaska is
from La Paz, Bolivia, and for Rat Islands, Pasadena, CA. Middle plots
show moment rate source time functions for the events obtained by
matching synthetics to the data for a number of stations (sce Ruff, 1983).
Al bottom are cartoons showing the slip patterns obtained, assuming that
rupture velocity and directivity are constant, so that the amount of fault
area ruptured per unit time is constant (after Ruff, 1983).

The results of figures 11 and 12 are an interesting
paradox. To the extent that results from the simple toy
model may apply to real earthquakes, figure 11 indicates
that temporally smooth source time functions are associated
with spatially varying slip.  However, results obtained
from source time functions for the Alaskan earthquake,
shown in figure 12, are thought to imply relatively
constant slip. Additionally, figure 11 implies that strong
temporal fluctuations in the moment rate function are
associated with spatially constant slip in the toy model,
unlike the Rat Island earthquake data shown in figure 12.
These differences have motivated us to examine the
assumptions that underlie the observational results. For
the moment, we take as given the techniques by which
long period seismograms, can be used to obtain the moment
rate functions. In going from the moment rate functions to
the slip distributions, however, a critical assumption is
often made whose validity may be difficult to prove under
general conditions. Specifically, the assumption used in
obtaining the results in figure 12 is that rupture velocity
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and directivity during the earthquake is constant, ot
equivalently, that the amount of fault plane ruptured in a
given interval is constant (Beck and Ruff, 1984, 1935;
Beck and Christensen, 1991:; Schwartz and Ruff, 1985,
1987). If this were true in nature, smooth moment rate
functions would certainly be associated with neatly constant
slip, whereas strongly tluctuating moment rate functions
would imply strong variations in slip. Variations in slip
are then interpreted as providing evidence for large
variations in "strength". Other data that may support the
existence of strength-related asperties have been presented
by Dmoska and Lovison (1992); Engdahl et al. (1989); and
Schwartz et al (1989).

The simple toy model provides a counter example to
these assumed properties of the rupture process. It can be
seen in figures 5 and 9 that rupture velocity and directivity
are not constant. Moreover, in both the case with K¢ 7/ K[,

=1 and that with K¢ / K1, = 25, the strength (threshold

GF) is constant. For our models, variations in the elastic
coupling are the cause of spatial variations in the slip.
Whether this is also true in nature is at the present
unknown, but this result at the least provides a new
conceptual model to be tested by data.

The contrast between the rupture patterns in figures 5 and
9, leads us to speculate about the possibility of a rupture
model complementary to the Kostrov crack-like model and
the Heaton pulse model. In both models, rupture proceeds
outward from an initial nucleation point, the difference
lying in the healing process behind the rupture front. In
the former, no healing occurs until the rupture front
progression comes to an end, whereas in the latter, healing
at a point takes place immediately after the rupture front
passes. We propose a third model, whose principal
difference is that rupture proceeds outward from several sites
nearly simultaneously, coalescing into a large slipped patch
on the fault. Healing occurs as in the Heaton model, soon
after the rupture front passes by. The nearly simultaneous
appearance of several failing patches would be possible
under the conditions that (1} the rupture velocity is less
than the shear wave speed at which the shear stress is
transmitted across the fault plane; and (2) stress on the fault
is everywhere near the threshold, implying that a finite
failure correlation length exists. This "coalescence” model
has the additional property that the scaling statistics (power
law exponents) are universal, and do not depend on details
of the fault plane geometry, plate velocities, or other
details, properties that seem to be true for b-values and p-
values of seismicity distributions. These scaling powers
are those for mean field spinodal dynamics (Rundle et al.,
1995a).

The coalescence model for nucleation can occur in any
systern having long range interactions (Mongctte and Klein,
1993), or equivalently, in a slider block model having a
large value for K¢ / KT, This ratio can be shown to depend
on the blocking size a, and the characteristic fault length A
Using the definitions (6)-(7), and assuming that T(r) ~ 1/
ri3 we find that asymptotically:
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A
KL ~ -fT(r) a2r ~ (1) -wan (13)
. .
A
Kc ~1/(2a%) fT(r) r2d2r -~ (A-a)/2a2  (14)
a
50 that:
Kc /KL~ A/2a (15)

Recall that this estimate for K¢ / K1, has been derived
assuming a planar fault, and a perfectly elastic material.
The small-scale block size is a result of physical processes
that violate either of these assumptions. Estimates for the
block size a for a fault zone can range from the inelastic
fault thickness of tens to hundreds of meters (Rundle,
1993), up to characteristic nonplanar fault jog lengths of
kilometers to tens of kilometers or more (e.g., Scholz,
1990). This would imply that large faults, with A >> a
should be characterized by large ratio K¢ / K1.. However,

as discussed in connectton with (5)-(7), there are physical
reasons to expect that the real stress Green's function may
not be of infinite range, but because of local factors, might
have a screening length 1/0.. In that case, K¢ ~

e %2 f a2y K1, ~ o T(3), where I' is the Gamma function,
and assuming A >> a. The ratio K¢ / Kp is then
approximately:

Kc /K[ e0a / a2g2 (16)

If o -~ l/a, K¢ / K1, will be of order 1. Though the

physical existence of a small scale block size and an elastic
cutoff is currently the subject of considerable debate, it has
nevertheless been argued that the earth may behave this way
(e.g., Aki, 1987; Rundle, 1993; Rundle and Klein, 1993).
The conclusion is that the ratio K¢/K], appropriate for a

given fault depends on the physical structure of the fault, as
well as its overall size. Here we observe that a small ratio
corresponds to what is called an ‘asperity’, and a large ratio
corresponds to what is called a 'uniform' strength frictional
surface (no 'asperity’). There need not be a single value of
K¢/K], for the entire earth, but instead the value would
differ depending on the fault structure.

To summarize our main results, we examined a simple
toy slider block model and find that variations in slip
distribution are related to variations in elastic coupling, so
that variations in threshold strength are not needed to
reproduce the phenomena observed in nature. Moreover,
the rupture velocity and directivity for large model events
are not constant. These results do not support the usual
assumptions made for interpreting long period seismograms
in terms of slip distributions for real earthquakes. Our

results also suggest that the nonlinear dynamics of the
mode! can give rise to an apparent segmentation having a
dynamical origin, in contrast to the more common model
of segmentation arising from the geometric configuration
of the fault.
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