La 掺杂 Ni_{0.5}Zn_{0.5}Fe₂O₄铁氧体的制备与微波吸收性能

武小娟, 赵海涛, 张 罡, 马瑞廷

(沈阳理工大学材料科学与工程学院, 辽宁 沈阳 110168)

摘 要:采用高分子凝胶法制备了 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ (x=0, 0.05, 0.1)铁氧体,采用 XRD, TEM 和 HP8510 网络分析仪 对其结构、形貌、电磁和微波吸收性能进行了研究.结果表明,当煅烧温度为 600℃时,立方晶系尖晶石结构的 Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄ 相初步形成,La 在尖晶石结构中固溶量有限.与 Ni_{0.5}Zn_{0.5}Fe₂O₄ 铁氧体相比,掺杂 La 的 Ni–Zn 铁氧体的 tanδ_m 值降低,tanδ_e值升高.与 Ni_{0.5}Zn_{0.5}Fe₂O₄ 铁氧体相比,x=0.1 样品的吸波性能降低,而 x=0.05 样品的吸 波性能提高,其电磁波反射率小于-10 dB 的频宽可达 2.7 GHz,最小反射率为-15.6 dB.

关键词:镧,掺杂,镍锌铁氧体,微波吸收性能

中图分类号: TB383 文献标识码: A 文章编号: 1009-606X(2008)06-1237-04

1 前言

具有尖晶石结构的 Ni-Zn 铁氧体由于具有高电阻 率,在磁电子学高频领域一直有重要应用^[1,2],可用作防 电磁波辐射设备及隐身材料中的吸波剂.稀土元素因具 有特异的电、磁性能常作为添加剂加在其他吸波材料 中,用以调节吸波材料的吸收性能^[3].

Gul 等^[4]采用化学共沉淀法制备了 Ni_{1-x}Zn_xFe₂O₄. 云 月 厚 等 ^[5] 研 究 了 化 学 共 沉 淀 法 制 备 的 纳 米 Ni_{0.5}Zn_{0.5}Ce_xFe_{2-x}O₄ 铁氧体的微波吸收特性. Gama 等^[6] 和 Costa 等^[7]用燃烧合成法制备了 Ni_{0.5}Zn_{0.5}Sm_xFe_{2-x}O₄ 铁氧体,并研究了合成温度对其结构和磁性能的影响. Ahmed 等^[8]对 La³⁺取代 Ni–Zn 铁氧体的结构和电性能进 行了研究. Sun 等^[9]研究了固态反应法中 La₂O₃ 对 Ni–Zn 铁氧体电性能和磁性能的影响,但仅限于 1~300 MHz 范围.到目前为止,国内外用高分子凝胶法制备 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ 铁氧体并详细讨论复合氧化物的电 磁性能和微波吸收性能未见文献报道.本研究采用高分 子凝胶法制备 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄(x=0,0.05,0.1)铁氧 体,并研究了 La³⁺取代 Fe³⁺对 Ni–Zn 铁氧体在 8.2~12.4 GHz 频率范围内电磁性能和微波吸收性能的影响.

2 实验

2.1 试剂与仪器

实验所用试剂有硝酸镍[Ni(NO₃)₂·6H₂O, 沈阳化学 试剂厂,分析纯],硝酸锌[Zn(NO₃)₂·6H₂O, 天津市福晨 化学试剂厂,分析纯],硝酸铁[Fe(NO₃)₃·9H₂O, 沈阳东 陵精细化学公司,分析纯],硝酸镧[La(NO₃)₂·6H₂O, 国 药集团化学试剂有限公司,分析纯],丙烯酰胺(C₃H₅NO, 沈阳化学试剂厂,化学纯),*N*,*N*-亚甲基双丙烯酰胺 (C₇H₁₀N₂O₂,国药集团化学试剂有限公司,化学纯).使 用的仪器主要有 DF-101S 集热式恒温加热磁力搅拌器 (巩义市英峪予华仪器厂),KQ-100E 型超声波清洗器(昆 山市超声仪器有限公司),HH 系列恒温水浴锅(江苏金 坛中大仪器厂),箱式电阻炉(西安云汉高温炉业有限公 司).

2.2 样品制备

分别取 10 mL 0.1856 mol/L 的 Ni(NO₃)₂ 溶液和 Zn(NO₃)₂溶液,并按 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄(x=0, 0.05, 0.1) 的化学计量比称取一定量 Fe(NO₃)₃和 La(NO₃)₃溶液加 入烧杯中,经搅拌和超声分散后形成均匀、稳定的溶液. 在搅拌下将 4 g 丙烯酰胺和 0.8 g N,N'-亚甲基双丙烯酰 胺加入烧杯中,放入 80℃恒温水浴锅中,加入少量 (NH₄)₂S₂O₈(引发剂)使其慢慢成胶,在水浴中保温 1 h, 然后放入干燥箱中 90℃烘干 12 h. 在不同温度下煅烧 可制得 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄(x=0, 0.05, 0.1)铁氧体.

2.3 样品的表征

用 Philips EM 420 透射电子显微镜观察粉体的形 貌,高压 100 kV;物相分析用 X'Pert Pro MPD 型 X 射 线衍射仪(荷兰 PANALYTICAL B.V 公司),测试条件: 铜靶, λ =0.1542 nm,电压 35 kV,扫描速率 0.04°/s,扫 描范围 2 θ =20°~70°;用 HP8510 矢量网络分析仪测量试 样在 8.2~12.4 GHz 频率范围的复介电常数和复磁导率.

复介电常数 $\varepsilon=\varepsilon'-j\varepsilon''$,复磁导率 $\mu=\mu'-j\mu''$.介电损耗 角正切值 tan $\delta_{\varepsilon}=\varepsilon''/\varepsilon'$,磁损耗角正切值 tan $\delta_{m}=\mu''/\mu'$.用 专用软件计算材料的反射率曲线.

收稿日期: 2008-09-01, 修回日期: 2008-10-28

基金项目:科技部国际科技合作重点计划资助项目(编号: 2004DFA04800)

作者简介: 武小娟(1973-), 女,山西省太古县人,硕士,讲师,主要从事功能材料研究, E-mail: zht95711@163.com.

3 结果与讨论

3.1 结构和形貌分析

图1为Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄铁氧体干胶在400,600, 800和1000℃下煅烧所得产物的XRD 谱图.由图可以 看出,400℃煅烧所得产物没有衍射峰,表现出无定型 状态.当煅烧温度为600℃时,出现了立方晶系尖晶石 结构的衍射峰,证明Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄纯相初步形 成.随着煅烧温度升高,所有晶面的衍射峰变得尖锐, 相对强度增强,说明形成的晶体晶型趋向完整.当温度 升高到1000℃,产物中出现少量的第2相LaFeO₃.

Fig.1 XRD patterns of Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄ ferrite calcined at different temperatures

800℃煅烧所得 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄(x=0, 0.05, 0.1) 铁氧体的 XRD 谱图见图 2, x=0 和 0.05 时为单相尖晶 石结构. 根据燃烧理论,铁氧体形成过程可用下式表示:

 $(4-2x)Fe(NO_3)_3 \cdot 9H_2O+Ni(NO_3)_2 \cdot 6H_2O+Zn(NO_3)_2 \cdot 6H_2O+$ $2xLa(NO_3)_2 \cdot 6H_2O+2C_3H_5NO+2C_7H_{10}N_2O_2+(9/2+3x)O_2 \rightarrow$ $2Ni_{0.5}Zn_{0.5}La_xFe_{2x}O_4+20CO_2+(11-x)N_2+(63-6x)H_2O.$

图 2 800 °C下所制 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ 铁氧体的 XRD 图 Fig.2 XRD patterns of Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ ferrites calcined at 800°C

当 *x*=0.1 时,第 2 相 LaFeO₃ 出现. La 掺杂的 Ni-Zn 铁氧体中 LaFeO₃ 的出现表明 La 在尖晶石结构中的固溶 量是有限的.因为在尖晶石结构中 Fe³⁺被其他离子取代 的程度取决于取代离子的半径,而 La³⁺的半径(0.106 nm) 比 Fe³⁺的半径(0.064 nm)大,晶格中 Fe³⁺被 La³⁺取代的 程度是有限的,多余的 La³⁺在晶界处形成 LaFeO₃.

800℃煅烧的 Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄ 铁氧体的透射 电镜照片如图 3 所示.可以看到,铁氧体粉呈球形结构, 均匀分散,粒径为 30~80 nm.

图 3 Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄ 铁氧体的透射电镜照片 Fig.3 TEM image of Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄ ferrite (800 ℃)

3.2 电磁性能

图 4 为 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄(x=0, 0.05, 0.1)铁氧体的 磁损耗角正切 tan δ_m 在 X 波段随频率变化谱线. 从图可 以看出,在 8.2~12.4 GHz 范围内,Ni_{0.5}Zn_{0.5}Fe₂O₄铁氧 体的 tan δ_m 平均值为 0.091,掺杂 La 的 Ni–Zn 铁氧体的 tan δ_m 值均比未掺杂的低,且随着 La 掺杂量的增加而降 低.

图 4 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ 铁氧体磁损耗角正切随频率的变化 Fig.4 tan δ_m vs. frequency for Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ ferrites

在尖晶石结构的铁氧体中,氧离子按立方紧密堆积 排列,金属离子则分布在氧离子的间隙中,间隙分为四 面体位(A 位)和八面体位(B 位).在 Ni-Zn 铁氧体中,由 于 Ni²⁺有强烈趋势占据 B 位, Zn²⁺占据 A 位, 而 Fe³⁺ 分布于 B 位和 A 位之间, 因此, 阳离子的分布情况为^[8,10] (Zn_x²⁺, Fe_{1-x}³⁺)[Ni_{1-x}²⁺, Fe_{1+x}³⁺]O₄²⁻, 其中, ()代表 A 位、 []代表 B 位.

Ni-Zn 铁氧体掺杂 La 元素后, La³⁺将优先进入 B 位取代 Fe³⁺. 由于 La³⁺比 Fe³⁺具有更大的离子半径, La³⁺ 取代 Fe³⁺后降低了 B 位的磁矩, 因而总的净磁矩 ($m=m_B-m_A$)降低^[11]. 另一方面, La³⁺取代半径较小的 Fe³⁺ 后破坏了晶格结构,改变了材料的均一性,以上因素导 致掺杂 La 的 Ni-Zn 铁氧体的 tan δ_m 值降低.

图 5 为 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄(x=0, 0.05, 0.1) 铁氧体的 介电损耗角正切 $tan \delta$ 在 X 波段随频率变化谱线. 从图 可以看出,在 8.2~12.4 GHz 范围内,掺杂 La 的 Ni-Zn 铁氧体的 $tan\delta_{\epsilon}$ 值均比未掺杂的高,且随 La 掺杂量的增 加而增大, Ni_{0.5}Zn_{0.5}La_{0.1}Fe_{1.9}O₄铁氧体的 tan δ_{ϵ} 平均值可 达 0.714. $\tan \delta_c$ 值增大有以下两方面原因:第一,铁氧体 的电性能主要是由于界面极化和本征电偶极子极化引 起的.本征电偶极子极化主要源于电子的跃迁.Ni-Zn 铁氧体掺杂 La 元素后, La³⁺将优先进入 B 位取代 Fe³⁺, 这样会有更多的 Fe³⁺变为 Fe²⁺, 而 Fe²⁺比 Fe³⁺更容易极 化,随着 Fe²⁺量不断增加,界面极化会增大;第二,纳 米粒子有较多的晶体缺陷,当La³⁺取代Fe³⁺进入铁氧体 晶格中时会导致四面体(A 位)或八面体(B 位)产生无序 性,同时伴有少量阳离子或阴离子空穴出现,因此会增 加晶体缺陷. 大量的晶体缺陷可以提高离子跃迁极化的 可能性^[9],因此,掺杂 La 的 Ni-Zn 铁氧体的 $tan \delta_c$ 值增 大.

图 5 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄铁氧体介电损耗角正切随频率的变化 Fig.5 Plot of tan δ_{ε} vs. frequency for Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ ferrites

3.3 微波吸收性能

图 6 为 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄(x=0, 0.05, 0.1)的反射率 计算曲线(设定厚度 2 mm). 由图可见, Ni_{0.5}Zn_{0.5}Fe₂O₄ 铁氧体具有一定的吸波特性,在 9.8 GHz 处有一吸收峰, 峰值为-11.4 dB. Ni-Zn 铁氧体掺杂稀土 La 后对微波的 吸收特性发生了改变,随 La 掺杂量的增加,2 个样品 的吸收峰都向高频移动. 与未掺杂稀土 La 的 Ni-Zn 铁 氧体相比, x=0.1 样品的吸波性能降低,这与杂相的形 成有关. 而 x=0.05 样品的吸波性能显著提高,其电磁 波反射率小于-10 dB 的频宽可达 2.7 GHz,最小反射率 为-15.6 dB.

Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄ 铁氧体具有较高吸波性能的 原因可能是:第一,掺杂La后,由于Ni-Zn铁氧体的 晶格畸变造成的晶粒不规则使微波在其内部传播时增 大反射次数,所以材料在整个微波段的吸收特性得到提 高;第二,掺杂的稀土La会有部分分布在畴壁上,对 畴壁的运动起到阻碍作用,从而增大畴壁共振引起的损 耗,所以Ni_{0.5}Zn_{0.5}La_{0.05} Fe_{1.95}O₄在整个微波段的吸收特 性有所提高^[12].

图 6 Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ 铁氧体的反射率 Fig.6 Reflection loss curves of Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ ferrites

4 结论

(1) 当煅烧温度为 600℃时,立方晶系尖晶石结构的 Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄相初步形成.随着温度升高,形成的晶体晶型趋向完整.到1000℃时,产物中出现第2 相 LaFeO₃.

(2) 当 x=0 和 0.05 时, Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄是单相尖 晶石结构;当 x=0.1 时,第2相LaFeO₃出现,表明La 在尖晶石结构中固溶性有限.Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄铁氧 体粉呈球形结构,粒径为 30~80 nm.

(3) 在 8.2~12.4 GHz 内,掺杂 La 的 Ni–Zn 铁氧体的 $tan \delta_m$ 值均比 Ni_{0.5}Zn_{0.5}Fe₂O₄ 铁氧体低,且随 La 掺杂量的增加而降低;掺杂 La 的 Ni–Zn 铁氧体的 $tan \delta_{\varepsilon}$ 值均比 Ni_{0.5}Zn_{0.5}Fe₂O₄ 铁氧体高,且随其增加而增大.

(4) 掺杂稀土 La 后, Ni-Zn 铁氧体的吸收峰移向高频. 与未掺杂稀土 La 的 Ni-Zn 铁氧体相比, x=0.1 样品的吸波性能降低, 而 x=0.05 样品的吸波性能提高, 其电

磁波反射率小于-10 dB 的频宽可达 2.7 GHz,最小反射 率为-15.6 dB.

参考文献:

- Wu K H, Ting T H, Liu C I, et al. Electromagnetic and Microwave Absorbing Properties of Ni_{0.5}Zn_{0.5}Fe₂O₄/Bamboo Charcoal Core-Shell Nanocomposites [J]. Compos. Sci. Technol., 2008, 68: 132–139.
- [2] 王九经, 郁黎明, 曹世勋, 等. 镍锌铁氧体薄膜的显微结构和低 温磁性质 [J]. 功能材料, 2005, 36(12): 1855–1858.
- [3] 谢炜,程海峰,唐耿平,等.稀土吸波材料的吸波机理与研究现状状[J].材料导报,2005,19(5):291-293.
- [4] Gul I H, Ahmed W, Maqsood A. Electrical and Magnetic Characterization of Nanocrystalline Ni–Zn Ferrite Synthesis by Co-precipitation Route [J]. J. Magn. Magn. Mater., 2008, 320: 270–275.
- [5] 云月厚,刘永林,张伟.化学共沉淀法制备的纳米 Ni_{0.5}Zn_{0.5}Ce_xFe_{2-x}O₄铁氧体微波吸收特性研究 [J].材料工程,2008, (3):58-62.
- [6] Gama L, Diniz A P, Costa A C F M, et al. Magnetic Properties of

Nanocrystalline Ni–Zn Ferrites Doped with Samarium [J]. Physica B, 2006, 384: 97 - 99.

- [7] Costa A C F M, Diniz A P A, Melo A G B, et al. Ni–Zn–Sm Nanopowder Ferrites: Morphological Aspects and Magnetic Properties [J]. J. Magn. Magn. Mater., 2008, 320: 742–749.
- [8] Ahmed M A, Ateia E, Salah L M, et al. Structural and Electrical Studies on La³⁺ Substituted Ni–Zn Ferrites [J]. Mater. Chem. Phys., 2005, 92: 310–321.
- [9] Sun J J, Li J B, Sun G L. Effects of La₂O₃ and Gd₂O₃ on Some Properties of Ni–Zn Ferrite [J]. J. Magn. Magn. Mater., 2002, 250: 20–24.
- [10] Jacobo S E, Duhalde S, Bertorello H R. Rare Earth Influence on the Structural and Magnetic Properties of NiZn Ferrites [J]. J. Magn. Magn. Mater., 2004, 272: 2253–2254.
- [11] Shen G Z, Xu Z, Li Y. Absorbing Properties and Structural Design of Microwave Absorbers Based on W-type La-doped Ferrite and Carbon Fiber Composites [J]. J. Magn. Magn. Mater., 2006, 301: 325–330.
- [12] 焦明春,李国栋. 纳米镍铜铁氧体粒子的制备与微波吸收特性研究[J]. 功能材料, 2005, 36(2): 295–297

Preparation and Microwave Absorption Properties of Ni_{0.5}Zn_{0.5}Fe₂O₄ Doped with Lanthanum

WU Xiao-juan, ZHAO Hai-tao, ZHANG Gang, MA Rui-ting

(School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, Liaoning 110168, China)

Abstract: Ni_{0.5}Zn_{0.5}La_xFe_{2-x}O₄ (*x*=0, 0.05, 0.1) ferrite was prepared using polyacrylamide gel method. Its structural characteristics, morphology, electromagnetic and microwave absorption properties were analyzed by XRD, TEM, and HP8510 network analyzer. The results indicated that a pure spinel structure of Ni_{0.5}Zn_{0.5}La_{0.05}Fe_{1.95}O₄ formed at 600 °C. La³⁺ had limited solid solubility in the spinel lattice of La-doped Ni–Zn ferrites. The tan δ_m values of La-doped Ni–Zn ferrites were lower than that of the sample without La, but the tan δ_{ε} values of La-doped Ni–Zn ferrites were higher than that without La doping in the X band. The microwave absorbing property was worse for the specimen at *x*=0.1 than that without doping, but better for the specimen at *x*=0.05 than that without doping. Its minimum reflection loss was –15.6 dB with a –10 dB bandwidth over the extended frequency range of 2.7 GHz. Key words: lanthanum; doped; Ni–Zn ferrite; microwave absorbing property