
The Cube Attack on Courtois Toy Cipher

Piotr Mroczkowski and Janusz Szmidt

Military Communication Institute
05-130 Zegrze, Poland

Military University of Technology,
Faculty of Cybernetics,

Institute of Mathematics and Cryptology
ul. Kaliskiego 2, 00-908 Warsaw, Poland

Abstract. The cube attack has been introduced by Itai Dinur and Adi
Shamir [8] as a known plaintext attack on symmetric primitives. The
attack has been applied to reduced variants of the stream ciphers Trivium
[3, 8] and Grain-128 [2], reduced to three rounds variant of the block
cipher Serpent [9] and reduced version of the hash function MD6 [3].
In the special case the attack has appeared in the M. Vielhaber ePrint
articles [13, 14], where it has been named AIDA (Algebraic Initial Value
Differential Attack) and applied to the modified versions of Trivium.
In this paper, we present the experimental results of application the cube
attack to four rounds of the Courtois Toy Cipher (CTC) with the full
recovery of 120-bit key. After that we extend the attack to five rounds
by applying the meet-in-the-middle principle.

Key words: Cube attack, symmetric primitives, Boolean polynomials,
CTC, the meet-in-the-middle method.

1 Introduction

In recent years there have been developed the methods of algebraic cryptanalysis
of symmetric primitives, i.e. block and stream ciphers, hash and MAC functions.
The idea is to represent the investigated algorithm as a system of multivariate
polynomials involving as their variables the plaintext and ciphertext bits, the
initial value bits or/and the key bits. Then to break the cryptosystem (to find
the secret key) one must solve such a complicated system of algebraic equations.
For real used ciphers such systems are to large to be solved by computational
methods. There are considered the reduced and simplified versions of symmetric
algorithms to investigate the applicability of algebraic cryptanalysis.

In this paper, we present recently introduced by Dinur and Shamir [8] the
cube attack, as an example of algebraic technique in cryptanalysis. In fact, it is
not pure algebraic method since it involves also some probabilistic tools. There
were linear tests applied to approximate the complicated Boolean functions of
several variables. When this approximation is possible with probability near one,
then the cube attack is applicable.



2 Piotr Mroczkowski and Janusz Szmidt

The cube attack has been applied to the reduced variants of the stream
ciphers Trivium [3, 8] and Grain-128 [2], to the reduced to three rounds variant
of the block cipher Serpent [9] and to the reduced version of the hash function
MD6 [3]. In the special case, the attack has appeared in the M. Vielhaber ePrint
articles [13, 14], where it was named AIDA (Algebraic Initial Value Differential
Attack) and applied to the modified versions of Trivium. In the second article
[14], Vielhaber proposed also to use the Gaussian elimination and the Wavefront
Model to extract the linear terms.

The CTC has been designed by Nicolais Courtois [5] to apply and test the
methods of algebraic cryptanalysis. The security of this cipher and its modifica-
tion [6] has been analysed by N. Courtois [5, 6], M. Albrecht [1], O. Dunkelman
and N. Keller [10, 11]. The applications of the methods of algebraic, differen-
tial and linear cryptanalysis provided the attacks with complexity below that of
the exhaustive key search; some of these attacks are theoretical ones. Although
CTC and CTC2 are not practically used ciphers, cryptanalysts have payed the
attention to them.

Our contribution is an application of the cube attack to the version of Cour-
tois Toy Cipher with four rounds and 120-bit key and the extension of the original
cube attack by combining it with the meet-in-the-middle method, where we add
one round more to analyse. In this extended attack we assume that during the
preprocessing phase an attacker can encrypt the chosen plaintexts and investi-
gate the sums of the ciphertexts bits as a function of the key bits. The main
task of this phase is to find linear (or affine) functions using the linear tests [4].
During the preprocessing phase the attacker collects many linear expressions in
key bits and chooses linaerly independent ones; we have used here the MAGMA
[15] package to do the needed calculations.

The on-line phase is a chosen plaintext attack, where one round is added to
the cipher. The key is secret now and an attacker encrypts the plaintexts (ob-
tained from the cubes found in the previous phase) and collects the ciphertexts
after the added round. Now the attacker has no access to partial ciphertexts after
the previous round. The meet-in-the-middle phase compares the right hand sides
of the linear expressions obtained during the preprocessing phase (but without
explicit calculation of them, as it was done in the original Dinur and Shamir
cube attack) with the sums of bits obtained after inverting the last round of the
cipher. The task is realized using the explicit formulae for output bits of the
inversion of the last round.

The meet-in-the-middle attack has been practically realized for the five round
CTC with 120-bit block and key size. In the experiments, randomly chosen
keys have been retrieved during the on-line phase of the attack. It is worthy to
mention that using the BooleanPolynomial class from the SAGE [17] package
and the code written in Python [16] it is possible to do the fast calculations with
quadratic Boolean functions depending on 240 binary variables. The similar
calculations one can do for Boolean functions depending on more variables and
having higher algebraic degree. It opens further possibilities to apply these tools
in other context of algebraic cryptanalysis.



The Cube Attack on Courtois Toy Cipher 3

2 The Cube Attack

We shall not distinguish at the moment between secret and public variables. Let p
be a polynomial of n variables x1, . . . , xn over the field GF (2). For a fixed subset
of indices I = {i1, . . . , ik} ⊆ {1, . . . , n} let us take a monomial tI = xi1 . . . xik

.
Then we have a decomposition

p(x1, . . . , xn) = tI · pS(I) + q(x1, . . . , xn),

where the polynomial pS(I) does not depend on the variables xi1 , . . . , xik
.

Definition 1. The maxterm of the polynomial p we call the monomial tI ,
such that deg(pS(I)) = 1, it means that the polynomial pS(I) corresponding to
the subset of indices I is a linear one, which is not a constant.

The set of indices I defines the k-dimensional Boolean cube CI , where on
the place of each of the indices we put 0 or 1. A given vector v ∈ CI defines
the derived polynomoal pv depending on n − k variables, where in the basic
polynomoal p we put the values corresponding to the vector v. Summing over
all vectors in the cube CI we obtain the polynomial

pI =
∑

v∈CI

pv.

Theorem 1. Let p be a polynomial over the field GF (2) and I ⊂ {1, . . . , n} the
subset of indices. Then we have:

pI = pS(I),

where the polynomials are equal modulo 2.
Let us consider a cryptosystem described by the polynomial

p(v1, . . . , vm, x1, . . . , xn)

depending on m public variables v1, . . . , vm (the initial value or plaintext) and on
n secret variables x1, . . . , xn (the key). The value of the polynomial represents
the ciphertext bit. In general, the polynomial p is not explicitelly known; it
can be a black box. We will consider the known plaintext attack, where at the
preprocessing phase the attacker has also an access to secret variables.

The attack has two phases. In the preprocessing one the attacker can change
the values of public and secret variables. The task is to obtain a system of linear
equations on secret variables. In the second on-line phase of the attack the key
is secret and the attacker can change the values of public variables. He adds
the output bits, where the inputs run over some multi-dimennsional cube. The
task is to obtain the right hand sides of linear equations. The system of linear
equations can be solved giving some bits of the key.

The first task is to fix the dimension of the cube and the public variables over
which we will sum; they are called the tweakable variables, and the other public
variables are equal to zero. If we know the degree d of the basic polynomial,



4 Piotr Mroczkowski and Janusz Szmidt

we fix the cube dimension to d − 1. We do the summation over a fixed cube
for several values of secret variables and collect the obtained values. We do the
linear tests for the obtained function of secret variables and store it when it is
linear. The linear test for a function f(x) depending on a collection x of binary
variables consists of checking the condition:

f(x⊕ x′) = f(x)⊕ f(x′)⊕ f(0)

for some randomly chosen arguments x, x′. If the function f passes the linear
test for a few hundreds of pairs x, x′ and it is not a constant function (equal
to zero or to one), then we can put the hypothesis that it is a linear (or affine)
function. The theoretical explanation for these tests has been elaborated in the
paper [4].

The next task is to calculate the explicit values of coefficients of the obtained
linear function of secret variables. The free term of the linear function we obtain
putting its all arguments equal zero. The coefficient of the variable xi is equal
1 if and only if the change of this variable implies the change of value of the
function. The coefficient of the variable xi is equal 0 if and only if the change
of this variable does not imply the change of value of the function. The task
of the preprocessing phase of attack is to collect possible many independent
linear terms - they constitute the system of linear equations on secret variables.
This system of linear equations will be used in the on-line phase of attack. The
preprocessing procedure is done only once in cryptanalysis of the algorithm.

In the on-line phase an attacker has access only to public variables (the plain-
texts for block ciphers, the initial values for stream ciphers), which he can change
and calculates the corresponding bits of the ciphertext under the unknown value
of secret variables. The task of this phase of attack is to find some bits of se-
cret key with complexity, which is lower than that of the exhuastive search in
the brute force attack. The attacker uses the derived system of linear equations
for secret variables (the unknown bits of the key), where the right hand sides
of these equations are the values of sums of bits of ciphertexts obtained after
summation over the same cubes as in the preprocessing phase, but now the key
is not known.

The cube attack is applicable to symmetric ciphers for which the polynomials
describing the system have relatively low degree. Then one can eventually find
some bits of unknown key; the remaining bits of the key may be found by brute
force search. After successful preprocessing, the on-line phase of the attack can
be done many times for different unknown keys. In general, the cube attack is
applicable to cryptosystems without knowing their inner structure. The attacker
must have the possibility to realize the preprocessing phase and in the on-line one
has an access to the implementation of the algorithm (to perform the summation
over cubes under unknown key).



The Cube Attack on Courtois Toy Cipher 5

3 The Courtois Toy Cipher

3.1 The Specification

The CTC has been designed by Nicolais Courtois [5, 6] to apply and test methods
of algebraic cryptanalysis. It is a SPN network with scalable number of rounds,
the block and key size. Each round performs the same operations on the input
data, except that a different round key is added each time. The number of rounds
is denoted by Nr. The output of round i− 1 is the input to round i. Each round
consists of parallel application of B S-boxes (S), the application of the linear
diffusion layer (D), and a final key addition of the round key (Ki). The round
key K0 is added to the plaintext block before the first round.

The plaintext bits p0 . . . pBs−1 are identified with Z0,0 . . . Z0,Bs−1 and the
ciphertext bits c0 . . . cBs−1 are identified with XNr+1,0 . . . XNr+1,Bs−1 to have
an uniform notation (s = 3 is the size of the S-box). The S-box was chosen as
the permutation

[7, 6, 0, 4, 2, 5, 1, 3].

It has 23 = 8 inputs and 8 outputs. The output bits are quadratic Boolean
functions of the input bits which can be expressed as

y0 = x0x1 + x0 + x1 + x2 + 1,

y1 = x0x2 + x1 + 1,

y2 = x0x1 + x0x2 + x1x2 + x1 + x2 + 1,

and for the inverse S-box:
x0 = y0y1 + y2,

x1 = y0y1 + y0y2 + y1 + 1.

x2 = y0y1 + y1y2 + y0 + y1.

The explicit form of these functions will be used when we apply the meet-in-the-
middle method.

The diffusion layer (D) is defined as

Zi,257modBs = Yi,0,

for i = 1, . . . , Nr, and

Zi,(1987j+257)modBs = Yi,j + Yi,(j+137)modBs

for j 6= 0 and all i, where Yi,j represent input bits and Zi,j represent output bits.
The key schedule is a simple permutation of bits:

Ki,j = K0,(i+j)modBs

for all i and j, where K0 is the main key. Key addition is performed bit-wise:

Xi+1,j = Zi,j + Ki,j

for all i = 1, . . . , Nr and j = 0, 1, . . . , Bs − 1, where Zi,j represent output bits
of the previous diffusion layer, Xi+1,j the input bits of the next round, and Ki,j

the bits of the current round key.



6 Piotr Mroczkowski and Janusz Szmidt

Figure 1: CTC overwiev for B = 10.

3.2 The Cube Attack on CTC

We have applied the cube attack to the version of Courtois Block Cipher with
four rounds and 120-bit block and key size. There have been found the maxterms
corresponding to four dimensional cubes and we have collected 120 related to
them linearly independent linear polynomials which are given in Table 1 in Ap-
pendix. The table contains the indices of the cubes, the corresponding linear
expressions and the ouput bits after four rounds of the CTC for which there
were found these expressions after summation over the cubes. There were per-
formed 1000 linear tests for each expression to state its linearity. In fact these
120 linearly independent functions were chosen among 610 linear ones generated
during the preprocessing phase. It is difficult to estimate explicitelly the com-
plexity of this phase. The first task was to find for which dimension of cubes
there appear the maxterms with corresponding linear polynomials. This phe-
nomenon has appeared for four dimensional cubes after four rounds of 120-bit
CTC. Each round of CTC can be described by quadratic Boolean functions,
hence the output bits of four round CTC are described by Boolean polynomials
of degree 24 = 16 regarded as a function of the plaintext bits and the key bits.
According to general principles there should exist linear expressions correspond-
ing to 15-dimensional cubes, but we have not found any up to now; probably
the probability to detect any such is very low. The existence of linear terms for
four dimensional cubes in this case may be related to some diffussion effects.

The complexity of the on-line phase is equal to 120 × 24 ≈ 211 encryptions
of the four round CTC. In this phase the attacker has the derived system of
linear equations and calculates (by summing over the cubes the ciphertext bits)
the right hand sides of these equations. The solution of these system gives the
key. We have performed the experiment for several randomly chosen keys and
obtained their exact values. The all calculations involving linear algebra, e.g.



The Cube Attack on Courtois Toy Cipher 7

solving the systems of linear equations over binary field, has been done with
Magma [15] computational system.

We present below the results obtained for the variant of CTC with six rounds
and 15-bit block and key size. The maxterms with corresponding linear poly-
nomials have appeared after summation over 14-dimensional cubes. Here is the
system of 15 linearly independend equations with the right hand sides represent-
ing the sums of ciphertext bits after six rounds of this variant of CTC. The eight
linear equations obtained for the cube {0,1,2,3,4,5,6,7,8,9,10,11,12,13}:

x0 + x1 + x2 + x3 + x4 = c0
x2 + x3 + x9 = c1

x2 + x3 + x10 + x11 + x12 + x13 = c2
1 + x2 + x3 + x6 + x7 + x8 + x9 + x11 + x13 = c3

x0 + x1 + x2 + x4 + x7 + x8 + x10 + x11 + x12 = c4
x0 + x3 + x6 + x9 + x11 = c6

x5 + x11 = c7
1 + x0 + x3 + x6 + x7 + x8 + x10 + x12 + x13 = c10

The seven linear equations obtained for the cube {0,1,2,3,4,5,6,7,8,9,10,11,12,14}:

1 + x3 + x4 + x7 + x8 + x9 + x11 + x13 = c0
x1 + x3 + x5 + x10 + x11 + x12 + x13 + x14 = c1
1 + x0 + x2 + x3 + x5 + x6 + x8 + x9 + x14 = c2

x1 + x2 + x3 + x5 + x6 + x8 + x9 + x10 + x11 + x12 + x13 + x14 = c3
1 + x0 + x1 + x2 + x3 + x4 + x6 + x9 + x10 + x13 + x14 = c4

x0 + x2 + x3 + x7 + x10 + x13 + x14 = c6
1 + x0 + x1 + x2 + x4 + x5 + x6 + x7 + x9 + x14 = c7

This example will be continued in the next point, where we will add one
round more to extend the attack.

4 The Cube Attack and the Meet-in-the-Middle Method

We assume now that in the preprocessing phase the attacker has an access to
keys and encryption data after four rounds of CTC (the variant with 120-bit
block and key size) and then he collects the linear expressions in key bits which
are given in Table 1 of Appendix. Now in the on-line phase we assume that
the attacker can encrypt the plaintexts corresponding to the selected previously
cubes and can collect the ciphertexts only after five rounds of the CTC. The
task of this phase is to obtain the linear equations for unknown bits of the key.

We invert the last round of the cipher and obtain the exact formulae express-
ing the output bits as quadratic Boolean functions of the ciphertext bits (after
five rounds) and the bits of the key. Summing these output bits over ciphertexts



8 Piotr Mroczkowski and Janusz Szmidt

belonging to the given cube we obtain linear expression in unknown bits of the
key: there is an even number of ciphertexts corresponding to the cube and the
quadratic terms in key bits are canceled. Now we equal them to linear expres-
sions given in Table 1 (obtained in preprocessing phase after four rounds) having
this way the system of linear equations for the bits of the key. In fact, we com-
pare the sums of the bits after four rounds with the sums of the bits obtained
after decryption of the fifth round, but we do not collect the exact values of bits
in the meeting point (these bits are equal and hence their sums are equal too).
The exact formulae for the inverted last round are not presented here since they
are to complicated. The main reason is that the inversion of the diffusion layer
has not a simple form. We have generated them using the suitable program and
they are included in the execution files (see below for the simplest case). The
Figure 2 depicts the meet-in-the-middle attack.

Figure 2: The meet-in-the middle after four rounds.

As an example, the formulae for the inversion of diffusion layer in the case of
CTC with five S-boxes (i.e., 15-bit plaintext and key size) are given below. Here
z0, . . . , z14 are the inputs bits and y0, . . . , y14 the output bits of the diffusion
layer.



The Cube Attack on Courtois Toy Cipher 9

y0 = z2
y1 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9
y2 = z0 + z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12

+z13 + z14
y3 = z2 + z3 + z4 + z5 + z6 + z7 + z8
y4 = z0 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13

+z14
y5 = z2 + z3 + z4 + z5 + z6 + z7
y6 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13 + z14
y7 = z2 + z3 + z4 + z5 + z6
y8 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13
y9 = z2 + z3 + z4 + z5

y10 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12
y11 = z2 + z3 + z4
y12 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11
y13 = z2 + z3
y14 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10

We have performed the described above meet-in-the-middle phase of the at-
tack with the inverted seventh round of the 15-bit CTC and here there are the
obtained linear equations.

x0 + x1 + x2 + x3 + x4 + x9 = 0
x2 + x3 + x9 = 1

x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 = 0
x0 + x2 + x3 + x6 + x7 + x8 + x10 + x12 + x14 = 0

x1 + x2 + x4 + x7 + x8 + x9 + x13 + x14 = 1
x1 + x2 + x4 + x5 + x9 + x11 + x14 = 0

x5 + x6 + x9 + x10 + x12 + x13 = 1
x1 + x2 + x4 + x6 + x7 + x8 + x10 + x14 = 0

x0 + x1 + x3 + x4 + x7 + x8 + x9 + x10 + x12 + x14 = 0
x1 + x2 + x4 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 = 0

x0 + x4 + x7 + x14 = 1
x4 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + 1 = 0

x0 + x5 + x7 + x11 + x12 = 0
x0 + x2 + x3 + x7 + x10 + x13 + x14 = 0

x0 + x1 + x2 + x4 + x5 + x6 + x7 + x9 + x14 = 0



10 Piotr Mroczkowski and Janusz Szmidt

The solution of these equations is the key:

(x0, x1, . . . , x14) = (1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1),

randomly chosen at the beginning of the experiment.
We have performed the same experiment for the five round CTC with 120-bit

block and key size. We have exploited the linear expressions (Appendix, Table 1)
obtained after four rounds during the preprocessing phase. In fact, each of them
corresponds here to different 4-dimensional cube. In the on-line phase which is
now the meet-in-the-middle we have collected the ciphertexts after five rounds
of 120-bit CTC obtained after encryptions with the key (which is assumed to be
unknown in the experiment) corresponding to the same cubes. The system of 120
linear equations is to large to write it down here (see the extended version [12]
of the article). All manipulations with the Boolean polynomials depending on
120 + 120 = 240 binary variables have been done in SAGE package [17] and the
related program has been written using the Python language. It appears that the
rank of this system of linear equations is equal to 119, hence one bit of the key
must be guessed. The performed experiments have confirmed the correctness of
the method for several randomly chosen 120-bit keys. The complexity of the on-
line phase here is the 211 encryptions of five round CTC and storage of the 211

120-bit ciphertexts. The complexity of the linear part of caculations is negligible.
In general, this meet-in-the-middle extenion of the cube attack would work

in the situation when we are able to realize successfully the preprocessing phase
of the cube attack for n rounds of block cipher and the invertion of n + 1-st
round leads to a system of equations which could be solved.

References

1. M. Albrecht. Algebraic Attacks on the Courtois Toy Cipher. Master Thesis. De-
partment of Computer Science. University of Bremen. 2006.

2. J-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir. Efficient FPGA
Implementations of High-Dimensional Cube Teters on the Stream Cipher Grain-
128. IACR Cryptology ePrint Archive, 2009/218.

3. J-P. Aumasson, I. Dinur, W. Meier, and A. Shamir. Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In: Fast Software Encryption 2009.
O. Dunkelman, editor. LNCS. Springer, to appear.

4. M. Blum, M. Luby, and R. Rubinfeld. Self-Testing]Correcting with Applications to
Numerical Problems. Journal of Computer and System Sciences. Vol 47(1993), pp.
549-595.

5. N. Courtois. How Fast can be Algebraic Attacks on Block Ciphers ?. IACR Cryp-
tology ePrint Archive, 2006/168.

6. N. Courtois. CTC2 and Fast Algebraic Attacks on Block Ciphers Revisited. IACR
Cryptology ePrint Archive, 2007/152.

7. C. De Canniere and B. Preneel. Trivium. Ecrypt Stream Cipher Project. Website:
http://www.ecrypt.eu.org/stream/

8. I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. In:
EUROCRYPT 2009. A. Joux, editor. LNCS, vol 5479, pp. 278-299. Springer.



The Cube Attack on Courtois Toy Cipher 11

9. I. Dinur and A. Shamir. Side Channel Cube Attacks on Block Ciphers. IACR Cryp-
tology ePrint Archive, 2009/127.

10. O. Dunkelman and N. Keller. Linear Cryptanalysis of CTC. IACR Cryptology
ePrint Archive, 2006/250.

11. O. Dunkelman and N. Keller. Cryptanalysis of CTC2. In: CT-RSA 2009. M. Fis-
chlin, editor. LNCS, vol 5473, pp. 226-239. Springer.

12. P. Mroczkowski and J. Szmidt. The Cube Attack on Courtois Toy Cipher. IACR
Cryptology ePrint Archive, 2009/.

13. M. Vielhaber, Breaking One.Fivium by AIDA an Algebraic IV Differential Attack,
IACR Cryptology ePrint Archive, 2007/413.

14. M. Vielhaber. AIDA Braeks BIVIUM (A and B) in 1 Minute Dual Core CPU
Time. IACR Cryptology ePrint Archive, 2009]402.

15. Magma V2.14-17. Computational Algebra Group. School of Mathematics and
Statistics. University of Sydney. Website: http://magma.maths.usyd.edu.au

16. Python Programming Language. Website: http://www.python.org
17. SAGE Mathematical Software. Version 2.6. Website: http://www.sagemath.org

Appendix

Table 1: The linear expressions for CTC with 4 rounds and 120-bit key.

cube indices expression out. bit cube indices expression out. bit
{78,84,86,113} x80 c69 {26,28,63,118} x64+x65 c69
{71,85,107,116} 1+x69+x70 c21 {5,46,86,103} 1+x84+x85 c37
{32,63,64,77} 1+x30+x31 c17 {22,84,110,113} x86 c76
{10,11,12,50} x13+x14 c17 {49,62,68,113} 1+x48+x50 c87

{25,74,100,101} 1+x24 c102 {32,65,73,89} 1+x87+x88 c93
{49,76,85,86} 1+x75 c102 {4,20,32,84} x85+x86 c39

{36,37,110,115} x108 c99 {18,20,62,73} 1+x60+x61 c63
{20,23,112,114} x116 c106 {1,8,64,77} 1+x63+x65 c53
{0,13,61,92} x2 c117 {37,38,91,115} 1+x90+x92 c99

{41,56,78,110} x79+x80 c51 {37,67,97,109} 1+x66 c93
{14,20,46,51} x53 c96 {18,20,47,114} x115+x116 c3
{38,53,79,80} x36 c81 {40,45,98,119} 1+x46 c31
{7,11,47,52} 1+x6+x8 c43 {13,59,92,101} x99 c113

{25,46,83,104} 1+x45+x47 c16 {3,12,14,97} 1+x4 c30
{0,2,94,98} 1+x93+x95 c93 {10,58,70,101} 1+x99+x100 c54
{11,23,79,92} 1+x78 c70 {5,26,59,97} x57 c48
{11,35,43,118} 1+x33+x34 c1 {34,75,87,89} x76+x77 c17
{0,52,98,112} x1+x2 c32 {5,56,58,104} 1+x57+x59 c35
{12,14,56,89} 1+x54+x55 c117 {7,35,53,70} 1+x51+x52 c1
{61,62,89,102} x104 c48 {41,82,83,94} x39 c84
{24,28,53,107} x26 c19 {21,41,49,77} x22+x23 c114
{17,49,81,101} x82+x83 c54 {28,74,88,98} 1+x96+x97 c8
{3,97,98,101} x4+x5 c35 {38,69,100,101} x71 c114

{62,97,113,117} 1+x118 c94 {22,27,82,107} x29 c19
{8,75,83,115} 1+x76 c39 {18,26,58,71} 1+x19 c102



12 Piotr Mroczkowski and Janusz Szmidt

cube indices expression out. bit cube indices expression out. bit
{26,80,95,102} x103+x104 c117 {67,88,95,106} 1+x87+x89 c5
{30,72,73,85} x32 c75 {29,34,35,112} 1+x27+x28 c36
{4,23,50,92} 1+x3+x5+x21 c9 {17,67,68,103} 1+x102+x104 c108
{39,43,68,71} x41 c34 {17,59,100,113} 1+x15+x16 c30

{76,105,118,119} x106+x107 c0 {48,77,106,107} x50 c18
{76,77,104,108} 1+x109 c35 {17,46,86,105} x107 c42
{33,49,71,80} x34+x35 c46 {12,20,89,101} x14 c20
{11,40,41,42} x44 c72 {13,20,41,70} 1+x69 c4
{13,29,73,107} x27 c48 {46,79,82,104} 1+x45 c79
{16,50,76,90} x92 c111 {8,56,91,107} 1+x6+x7 c27
{11,43,80,107} 1+x105+x106 c102 {1,26,85,93} 1+x0+x2+x94 c119
{34,59,91,111} 1+x112 c25 {16,73,104,109} 1+x108+x110 c9
{51,65,97,104} 1+x52 c104 {77,92,116,118} 1+x114+x115 c33
{21,38,79,92} 1+x22 c33 {70,73,90,101} 1+x91 c67
{14,36,40,119} x37+x38 c9 {7,54,55,74} x72 c117

{77,113,117,119} x111 c102 {35,41,66,73} x68 c117
{17,19,61,86} 1+x18 c52 {7,23,35,44} x21 c19

{11,38,114,116} 1+x36+x37 c39 {10,11,83,88} x81 c72
{15,16,43,89} 1+x42+x44 c30 {11,14,36,38} 1+x9+x10 c9
{11,62,77,117} x119 c72 {7,28,94,115} 1+x93+x114 c18
{6,13,72,74} x8 c117 {20,51,53,82} 1+x81+x83 c96
{8,26,48,50} 1+x24+x25 c33 {57,65,91,97} 1+x58 c21
{5,9,74,80} 1+x10 c36 {1,32,64,98} 1+x0+x2 c39

{17,83,95,115} x15 c36 {11,31,73,80} 1+x30 c64
{4,8,65,77} x63 c18 {24,26,39,85} 1+x40 c69

{35,37,116,119} 1+x117+x118 c57 {49,58,86,111} x112+x113 c49
{47,50,73,116} 1+x72+x74 c82 {24,25,96,103} x98 c87
{40,41,66,110} 1+x67 c27 {50,70,71,87} x89 c17
{10,22,28,101} 1+x9+x11 c18 {26,52,53,96} 1+x97 c54
{34,56,76,88} 1+x33 c12 {42,47,88,113} 1+x43 c79
{23,56,58,80} x54 c55 {37,38,71,72} 1+x73 c99
{17,19,49,97} 1+x18+x20 c93 {32,50,55,56} 1+x48+x49 c57
{50,60,82,103} 1+x61 c3 {20,61,68,99} x101 c52
{15,41,76,82} x17 c12 {8,13,59,97} 1+x12+x14 c33
{25,35,61,86} 1+x60+x62 c59 {31,32,54,59} x55+x56 c18



The Cube Attack on Courtois Toy Cipher 13

As an example, there are the first ten linear equations (of the 120 ones) for
the key bits obtained after applying the meet-in-the-middle method.

x22 + x24 + x26 + x28 + x30 + x32 + x80 + x83 + x85 + x87 + x89 + x91 = 0
x64 + x65 = 0

x22 + x24 + x26 + x28 + x30 + x32 + x34 + x36 + x38 + x40 + x42 + x44 + x46 +
x48 + x50 + x52 + x54 + x56 + x69 + x70 + x83 + x85 + x87 + x89 + x91 + x93 +

x95 + x97 + x99 + x101 + x103 + x105 + x107 + x109 + x111 + x113 + x115 = 0
x84 + x85 = 1

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x11 + x13 + x15 + x16 + x17 + x18 +
x19 + x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x32 + x33 +
x34 + x35 + x36 + x37 + x38 + x39 + x40 + x41 + x42 + x43 + x44 + x45 + x46 +
x47 + x48 + x49 + x50 + x51 + x52 + x53 + x54 + x55 + x56 + x57 + x58 + x59 +
x60 + x61 + x62 + x63 + x64 + x65 + x66 + x67 + x68 + x70 + x72 + x74 + x75 +
x76 + x77 + x78 + x79 + x80 + x81 + x82 + x83 + x84 + x85 + x86 + x87 + x88 +

x89 + x90 + x91 + x92 + x93 + x94 + x95 + x96 + x97 + x98 + x99 + x100 + x101 +
x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 + x110 + x111 + x112 +

x113 + x114 + x115 + x116 + x117 + x118 + x119 = 1
x86 = 0

x13 + x14 = 0
x22 + x24 + x26 + x28 + x30 + x48 + x50 + x83 + x85 + x87 + x89 + x91 = 1

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 +
x14 + x15 + x16 + x17 + x19 + x21 + x23 + x25 + x26 + x27 + x28 + x29 +
x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 + x39 + x40 + x41 +
x42 + x43 + x44 + x45 + x46 + x47 + x48 + x49 + x50 + x51 + x52 + x53 +
x54 + x55 + x56 + x57 + x58 + x59 + x60 + x61 + x62 + x63 + x64 + x65 +
x66 + x67 + x68 + x69 + x70 + x71 + x72 + x73 + x74 + x75 + x76 + x78 +
x80 + x82 + x84 + x85 + x86 + x87 + x88 + x89 + x90 + x91 + x92 + x93 +
x94 + x95 + x96 + x97 + x98 + x99 + x100 + x101 + x102 + x103 + x104 +
x105 + x106 + x107 + x108 + x109 + x110 + x111 + x112 + x113 + x114 +

x115 + x116 + x117 + x118 + x119 = 0
x87 + x88 = 1

The rank of the whole system is equal 119. After applying the Gaussian
elimination we obtain the system of 119 equations:

x0 = 1, x1 + x118 = 1, x2 = 1, x3 = 0,

x4 = 1, x5 = 0, x6 = 0, x7 = 1,

x8 + x118 = 1, x9 = 0, x10 = 1, x11 = 0,



14 Piotr Mroczkowski and Janusz Szmidt

x12 = 1, x13 = 0, x14 = 0, x15 = 1,

x16 = 1, x17 = 0, x18 = 1, x19 = 1,

x20 + x118 = 0, x21 = 1, x22 = 1, x23 + x118 = 1,

x24 + x118 = 0, x25 + x118 = 0, x26 = 0, x27 = 1,

x28 + x118 = 0, x29 = 1, x30 = 1, x31 + x118 = 1,

x32 + x118 = 1, x33 + x118 = 0, x34 + x118 = 0, x35 + x118 = 0,

x36 = 0, x37 = 1, x38 + x118 = 0, x39 + x118 = 1,

x40 + x118 = 0, x41 = 1, x42 = 1, x43 = 1,

x44 = 0, x45 = 1, x46 = 0, x47 + x118 = 0,

x48 = 1, x49 + x118 = 1, x50 = 1, x51 + x118 = 1,

x52 + x118 = 0, x53 = 0, x54 = 1, x55 = 1,

x56 = 0, x57 = 1, x58 + x118 = 0, x59 + x118 = 1,

x60 = 1, x61 = 0, x62 + x118 = 0, x63 = 0,

x64 = 1, x65 = 1, x66 + x118 = 1, x67 = 0,

x68 + x118 = 0, x69 + x118 = 1, x70 = 1, x71 = 1,

x72 + x118 = 1, x73 = 1, x74 + x118 = 1, x75 + x118 = 0,

x76 + x118 = 1, x77 = 1, x78 = 0, x79 = 1,

x80 + x118 = 0, x81 = 0, x82 + x118 = 0, x83 + x118 = 1,

x84 + x118 = 0, x85 + x118 = 1, x86 = 0, x87 = 1,

x88 = 0, x89 = 0, x90 = 1, x91 = 0,

x92 = 1, x93 + x118 = 1, x94 = 0, x95 + x118 = 0,

x96 + x118 = 0, x97 = 0, x98 = 1, x99 = 0,

x100 = 1, x101 = 0, x102 + x118 = 1, x103 = 1,

x104 + x118 = 1, x105 + x118 = 1, x106 + x118 = 0, x107 + x118 = 0,

x108 = 0, x109 = 1, x110 = 1, x111 + x118 = 0,

x112 = 1, x113 = 1, x114 + x118 = 1, x115 + x118 = 1,

x116 + x118 = 0, x117 = 0, x119 = 0.

Taking x118 = 1 we obtain the key: [x0, x1, . . . , x118, x119] =
[1,0,1,0,1,0,0,1,0,0,1,0,1,0,0,1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,0,0,1,1,1,0,1,1,0,
1,1,1,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,1,
1,0,1,0,1,0,0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0,0,1,1,0,1,1,1,1,1,0,0,1,0,1,0].


