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Abstract: We present a model of the distribution of labour in science. Such models tend to 

rely on the mechanism of the invisible hand (e.g. Hull 1988, Goldman & Shaked 1991 and 

Kitcher 1990). Our analysis starts from the necessity of standards in distributed processes and 

the possibility of multiple standards in science. Invisible hand models turn out to have only 

limited scope because they are restricted to describing the atypical single-standard case. Our 

model is a generalisation of these models to J standards; single-standard models such as 

Kitcher (1990) are a limiting case. We introduce and formalise this model, demonstrate its 

dynamics and conclude that the conclusions commonly derived from invisible hand models 

about the distribution of labour in science are not robust against changes in the number of 

standards.  
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1. Introduction 

This paper presents a model of the dynamics of scientific activity. An understanding of the 

division of labour in science might contribute to more effective research policy and better 

institutional design. Moreover it can clarify a number of more general questions concerning 

scientific knowledge, the product cognitive labour. Why does knowledge tend to cluster? Is 

dissent irrational, and if so, why is disagreement a persistent feature of science? Why do 

scientists sometimes refuse to update their beliefs after being confronted with conflicting 

evidence?  

More specifically, scientific activity exhibits a number of puzzling features which the model 

will need to explain. On the one hand, dissent and discussion seems to be omnipresent in 

science. But it has been argued that there is an ever growing body of scientific results on 

which a consensus is formed; and for some it seems only a matter of time until all dissent will 

have disappeared. “The positive argument for [convergent] realism is that it is the only 

philosophy that doesn't make the success of science a miracle” (Putnam 1975, 73). But then 

again, Larry Laudan (1981) put forward the pessimistic meta-induction argument: he 

compiled a long list of once successful theories which are now ridiculed by the scientific 

community. In sum, a powerful model of the dynamics of scientific activity has to provide an 

account of three aspects of science that seem difficult to reconcile: the existence of dissent, 

the emergence of consensus and the dissolution of that consensus. This is a tough challenge, 

as Larry Laudan himself noted: “[S]tudents of the development of science, whether 

sociologists or philosophers, have alternately been preoccupied with explaining consensus in 

science or with highlighting disagreement and divergence. […] neither approach has shown 

itself to have the explanatory resources to deal with both.” (Laudan 1984, 2) 

This paper discusses a number of models that have taken up this challenge and presents a new 

model. More specifically, in section 2 invisible hand models of the distribution of labour are 

discussed and shown to provide a satisfactory explanation of a community characterised by 1 

standard. Section 3 lays out a model which generalizes this approach to J standards. Invisible 

hand models are a limiting case of this more general model. Section 4 formalises this model 

and presents several simulations to illustrate its dynamics. Finally, section 5 argues that the 

conclusions commonly derived from invisible hand models about the distribution of labour in 

science are not robust against changes in the number of standards considered.  
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2. Invisible hand models and the distribution of labour in science 

Since cooperation is a necessary condition for distribution of labour, no model of the division 

of labour in science can ignore the benefits of cooperation in science, lest it leave the division 

of labour itself unexplained. The benefits of cooperation imply that there are increasing 

returns to adoption: scientists prefer rather than eschew more adopters to their views because 

more adopters means more opportunities for cooperation. This would lead a community to 

full specialisation, which is an outcome commonly considered to be epistemically undesirable 

and moreover conflicting with the actual state of science. The benefits of cooperation present 

a basic problem for those who attempt to understand the distribution of labour in science: why 

does the presence of these benefits not lead to fully specialised scientific communities, as one 

would expect? Invisible hand models of the distribution of labour in science offer a solution 

for this problem. 

Petri Ylikoski (1995) offers a general characterization of the essential characteristics of the 

invisible hand mechanism which is at work in e.g. Kitcher (1990), Goldman & Shaked (1991) 

and Hull (1988):  

1) It is a decentralised process: “There are no explicit agreements or centralised decisions 

by the participating agents (Brennan & Pettit 1993: 195-196).” (Ylikoski 1995, p.33) 

2) The process is non-intentional: “The agents do not intend to produce the result. They are 

promoting their own objectives and the result to be explained is a by-product of this 

promoting. The idea is that the process should work even if the participating agents have 

no knowledge of the process. This is why the mechanism is called invisible (Ulmann-

Margalit 1978: 271).” (Ylikoski 1995, p.33) 

3) Although the process is non-intentional, it “ needs not be unknown to the agents 

participating in its production.” (Ylikoski 1995, p.33) 

4) “The result should be a pattern or a structure that seems to be made or designed 

intentionally; it should be somebody's handiwork (Ulmann-Margalit 1978: 268-270). This 

means that the product in question should be somewhat complex and it should not seem to 

be accidental. To be non-accidental, the result should be somewhat stable and recurring 

(Brennan & Pettit 1993: 191-192).” (Ylikoski 1995, p.33) 

5) In invisible hand explanations, the result of the mechanism is valued positively. This 

contrasts with what has been called the ‘invisible backhand’: “The only difference is that 
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the product of the invisible hand is valued positive and the product of the invisible 

backhand negative (Brennan & Pettit 1993: 192, 204-205).” (Ylikoski 1995, p.33) 

The crux of the invisible hand solution to the basic problem is to offset the scientist’s benefit 

from more adopters by introducing a second factor, competition for credit1. Competition 

brings in decreasing returns to adoption. As more scientists adopt, there is more competition 

for newness, originality, to be the first to come up with the solution to an important problem,... 

More generally, decreasing returns are introduced to offset the increasing returns that cause 

the basic problem. The interplay of cooperation and competition will push and pull a 

community to a distribution of labour somewhere between full specialisation and full 

diversity. Ideally, a laissez-faire policy produces an optimal distribution.  

One such formulation of the basic problem and the subsequent use of the invisible hand 

solution is found in Philip Kitcher’s “The division of cognitive labour” (1990). Its starting 

point is the basic problem sketched above, which he calls the “CO-IR-discrepancy”: the 

mismatch between a scientist’s individual rationality (IR) and the ideal balance between 

specialisation and diversity, viz. the community optimum (CO). If scientists were all to pursue 

the same path, namely that which is best supported by the available evidence, then there is no 

diversity and the community optimum is unlikely to be reached, provided that, as Kitcher 

assumes, full specialisation is undesirable. Kitcher solves the discrepancy by de-idealizing the 

scientist: they are motivated by personal factors such as social and other factors, such as greed, 

stubbornness and honour rather than high-minded virtues that reflect the community optimum. 

Scientists freely compete with each other for the reward of being the first to find the solution. 

As a consequence, they do not just follow the path which is best supported by the available 

evidence, but discount it with the number of people already pursuing that path. As a result, as 

by an invisible hand scholarly attention is scattered and yields the community desideratum, 

viz. more diversity. The introduction of competition offsets the increasing returns that come 

with cooperation: individual returns decrease as the number of scientists following a certain 

path rises.  

 

 

 

                                                 
1 The idea of a cycle of credibility stems from Latour and Woolgar (1986), but variants of this are found in 
Kitcher (1990), Goldman & Shaked (1991) and Hull (1988).  
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3. A general model of the distribution of labour in science for multiple standards 

3.1 What are standards? 

Whereas Kitcher’s single-standard treatment of the problem of the distribution of labour could 

afford to leave the characterization of standards implicit, a generalization of his model to J 

standards requires a clear understanding of what standards are and what they do. An 

interesting way to gain some leverage on this is to characterize the concept of ‘standard’ in 

analogy to its use in the economics of network industries. It will be argued that the presence 

of multiple standards in science produces the same dynamics as that of multiple technological 

standards in a market.   

Standards feature prominently in the literature on network industries. A network is a 

distributed system constituted of nodes and their interconnections. Its boundaries are defined 

by a standard. These standards are necessary conditions for inclusion in the network. For 

example, to run Macintosh software you need an Apple computer. However, you might also 

run it on a PC, but then you’ll need a ‘gateway’ between networks (an adaptor). In other 

words, people adopting to one network will incur transaction costs when changing networks. 

So for agents in a distributed system, standards constitute a barrier to entry. Sometimes these 

barriers are relatively minor and easily overcome, sometimes they are high and lead to 

significant extra costs. In some systems, barriers to entry are constructed artificially, for 

example through patents or industrial secrets (e.g. the recipe of the Coca Cola syrup). In other 

cases barriers to entry arise naturally. One especially significant case of naturally arising 

barriers to entry is not a feature of the product itself: its rate of adoption. For example, say a 

company designs an innovative new operating platform. The barrier to entry it is confronted 

with is that existing operating platforms (most notably Windows) have already been widely 

adopted to. This not only means that most consumers will already have devices specifically 

designed to run the pre-existing operating platform, but also, and most importantly, that new 

software will be written specifically for that platform and not for the newly developed one. 

Even when exhibiting a very high intrinsic quality, the new operating platform will have great 

difficulty in conquering market share (it is, however, not impossible). Barriers to entry entail 

that producers cannot freely compete in a market because of significant costs associated with 

entering a new market and significant differences among these markets (e.g. different 

programming languages, different adapters, different consumption patterns,...). The same goes 

for scientists and the market of ideas: insights, methods, solutions, discussions, conferences, 

etc. adopt to a certain standard. Adopting to this standard requires a non-trivial investment: 
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barriers to entry include mastering standard-specific expertise, learning standard-specific 

techniques, getting to know a specific community and identifying the standard-specific 

puzzles and trends.  

Because standards divide a market into different parts separated by transaction costs, free 

competition is no longer possible. In addition to barriers to entry, free competition is further 

constrained by the fact that network industries tend to exhibit large economies of scale. These 

are especially prominent in information-intensive industries such as newspapers, consulting, 

publishing,... The reason for this is that information is characterized by decreasing marginal 

costs: once a unit of information is produced (an idea, a book, a score,...) it can be distributed 

at virtually no cost, unlike for example the car industry or the service sector, where an 

additional unit of the product keeps on costing significant capital and labour. As such, as more 

people use it, total cost of production stay constant but marginal costs fall towards zero. The 

amount of output produced is only limited by the extent of the market. In other words, 

network industries have a natural tendency toward monopoly. A similar argument can be set 

up for science: scientists are producers and consumers of information and as it happens, 

information-intensive industries are typically characterized by falling marginal costs. Just as 

with barriers to entry, falling marginal costs entail increasing returns to adoption.  

So in network industries there are barriers to entry and large economies of scale and these two 

characteristics also apply to science. Both factors give rise to strong increasing returns to 

adoption and create enough market disruption to prevent decreasing returns of competition 

from offsetting these increasing returns. Indeed, the disruptive nature of these kinds of 

industries is widely known among policymakers and has prompted governments to implement 

antitrust regulation.  

‘The long-standing public policy concerns over network industries are not accidental, because those 

industries often embody two major and widely recognized forms of potential market failure: significant 

economies of scale -with the potential for monopoly- and externalities.’ (White 1999, p. 1)  

Of course the analogy between science and network industries is not complete. For example, 

science is often not commercialized and its output not monetized. But analogies are never 

perfect and this doesn’t stop them from being fruitful. One way of arguing for the analogy is 

to point out that, when turning to economics for a model of distribution of labour in science, it 

does make more sense to use ideas used to explain the dynamics of information intensive 

industries such as Microsoft, rather than to make an analogy with more traditional sectors 

usually characterized by decreasing returns to adoption such as car manufacturers.  
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But perhaps the most important reason to resist this analogy is to reach back to factors such as 

credit, newness, originality,... viz. the usual factors which invisible hand models brought in 

precisely to avoid those increasing returns characterizing network industries. Surely these 

have a role to play in science. Section 3.3 discusses their position within our framework.  

 

3.2 The importance of standards 

Apart from cooperation and competition, there is a third factor which is essential to any 

analysis of the distribution of labour, namely standards. Kitcher’s solution is a limiting case of 

this point of view, namely the description of the distribution of labour with 1 standard. The 

model presented in this paper generalizes Kitcher’s solution to J standards. Any act of 

cooperation and any distributed activity requires a standard to ensure the compatibility of 

individual contributions and the coordination of individual efforts. A minimal consensus is 

required from the individual contributors concerning the goals of the distributed activity and 

the acceptable procedures to attain these goals. A standard is necessary for the aggregation of 

individual contributions at a certain time and the cumulation of the aggregated results over 

time. A model without them would simply fail to explain the distribution of labour in science 

itself, let alone account for its dynamics.  

Standards are essential for a model of the distribution of labour in science and as a good 

model, Kitcher does indeed incorporate it, although implicitly. The idea of scientists 

competing for a prize and ending up in a nicely distributed scientific community only makes 

sense if it is assumed that all these scientists adopt to the same standard. It is after all this 

standard which determines what the problems are, which problems are important, how they 

should be solved, what solution is sufficient to claim the prize and how big this prize is. In 

Kitcher, however, the case of multiple standards is not considered. This is in line with his 

view of science as embedded in ‘consensus practice’ but it is a limitation of his model of the 

distribution of labour in science, because it unnecessarily commits its followers to a single-

standard view. To overcome this limitation, a generalization of Kitcher’s model is proposed to 

the case of J standards, with Kitcher’s own model as a limiting case where there is only 1 

standard. This generalization is important for two reasons. Firstly, it allows the model to be 

used by scholars who are uncomfortable with this single-standard view, such as the large 

branch of philosophy building on Kuhn (1962) for whom the dynamics of science involves 
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existence of multiple ‘paradigms’.2 Secondly, this generalization will show that Kitcher’s 

conclusions about the distribution of labour in science are not robust against changes in his 

single-standard view. 

 

3.3. Newness in a multi-standard view 

An important consequence of introducing standards in considering the distribution of labour 

in science is that scientific contributions will tend to cluster. The presence of these clusters 

within a field makes it necessary to make the distinction between the dynamics of science 

within a cluster and between clusters. This entails that the problem of the distribution of 

labour can be described at two levels of analysis. Models for the dynamics of science under 1 

standard, such as Kitcher’s, can additionally be used as a model of what happens within a 

cluster in models that describe the dynamics between clusters. This distinction between a 

model of scientific activity within a cluster and between clusters allows us to further clarify 

our claim about increasing returns to adoption. The basic claim of our model is that there are 

increasing returns to adoption between clusters. This does not preclude decreasing returns to 

adoption within a cluster; with scientists competing e.g. to win the ‘prize’ for being the first to 

find the solution for a certain problem. In the case of 1 standard, no more is needed. However, 

from a multi-standard point of view, the importance of the problem depends on how many 

agents find this problem important; a problem from the point of view of one cluster might be 

irrelevant for someone in another cluster; or what counts as a satisfactory solution for one 

cluster might not be satisfactory for the other. So whereas these agents within the same cluster 

are competitors for the ‘prize’ associated with solving a certain problem, they have a common 

interest in the number of adopters to the cluster because the importance of the problem (the 

size of the price; e.g. in terms of recognition, funding, position, etc.) varies with the number 

of adopters. The characterization of the problem and the amount of ‘prize money’ are things 

that Kitcher takes as given but which vary in the case of multiple clusters: the characterization 

of the problem is relative to the cluster and the number of adopters determines the size of the 

prize.  

Since our model is concerned with the overall dynamics of science, we focus on the 

distribution of labour across clusters rather than on what happens inside a specific cluster. 

Standards create barriers that divide a discipline into different parts. The fundamental 

                                                 
2 A recent illustration of discomfort with Kitcher’s single-standard view is the 2002 discussion between Philip 
Kitcher and Helen Longino in Philosophy of Science; Kitcher (2002a, b) and Longino (2002a, b) 
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divisions between scientist’s contributions will be the same as the divisions between the 

standards on which each of these contributions is based. Standards add additional structure to 

the field. Since all individual contribution must adopt a standard, the change of the crucial 

boundaries in the field can be modelled by representing the changes in the rate of adoption to 

the different standards in the field. In other words, the distribution between core research 

programmes in the field is representative for the distribution of all scientific activity in that 

field.  

At this level of analysis, ‘newness’ loses its importance for the distribution of labour in 

science (which is now seen as the distribution of scientific labour across clusters instead of the 

distribution of scientific labour across scientists). Because of the different levels of analysis 

that are now distinguished, newness can mean two different things: newness within a cluster 

and newness as the creation of a new cluster. Both actions are allowed for in our model, but 

they fail to offset the overall dynamics of increasing returns which governs the competition 

between multiple clusters competing for adoption. In the first case, newness takes place 

within the shared consensus of a particular standard; as such it is simply modelled as a 

contribution to a cluster. The second case, where a new standard is created, does register as 

real newness at our level of analysis. However, the success rate of new clusters in network 

industries is very low (however, it is not impossible). In short, ‘newness’ does not alter the 

fundamental dynamics of our model because we are at the level of analysis across clusters.  

 

4. Formalization of the model 

Our model addresses the relations across clusters since we believe that this is the most 

relevant aspect to get a grip on the problem of the distribution of labour in science. Hence we 

will model the dynamics of clusters competing for adoption. Interestingly, the analytical tools 

for modeling systems exhibiting increasing returns to adoption have only recently been 

developed in a series of papers by Arthur (1989) and Arthur et. al. (1983, 1984, 1987). His 

models were initially designed for problems of technology adoption in network industries, e.g. 

to model the competition between VHS and Betamax to become the standard video format. 

The model will thus focus on standards and their adoption by agents. We model these 

standards as clusters of contributions. Each turn, all agents in the game (scientists) make a 

contribution to one of the clusters in the game. Making a contribution means adopting to the 

cluster. Adopting to a cluster requires compliance to a basic set of concepts and assumptions; 
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this basic set coordinates individual contributions. They form the core of the research 

programme implicit in all the contributions made to the cluster. So no matter how diverse the 

different contributions to the cluster, the cluster itself is a homogenous entity. Its size depends 

on the number of contributions.  

As is customary in these models, the model as a whole is agnostic about the value of these 

clusters. The choice for one cluster rather than another is left for the agents in the model to 

decide. For a model about standards in science, this means that the model needs to be 

‘agnostic’ in its conception of scientific value. By committing to a specific conception of 

scientific value, this part of the problem of the division of labour would be put beyond the 

model’s explanatory scope and a generalization to J standards would be impossible. This 

contrasts with the invisible hand models described above, where the aims of science could be 

specified because there is only one standard. Our only claim about these clusters is that it is 

possible that there are multiple competing conceptions. The ‘value’ for the agent is then 

whatever it is that the cluster aims to produce. To indicate that this product can take different 

forms in different clusters, we leave the specific product of a cluster unspecified and refer to it 

using the generic term ‘output’ in the agent’s decision function.  

 

4.1 A formal model of formation and dissolution of consensus 

Let us consider a population of N epistemic agents. There are J competing clusters. Denote 

agent n’s preferences over clusters by the vector pn = (p1n,p2n,...,pJn)'   and assume that there 

is a vector E = (E1,E2,...,EJ )', its j-th element being the available output for cluster j. The 

simplest way to think about output is to think of it as the number of contributions made to a 

cluster (e.g. the total number of papers, textbooks etc.). We normalize E and denote the vector 

of relative output by ̂  E = ( ˆ E 1, ˆ E 2,..., ˆ E J )'. 

The most important parameter in our model is c, which we call the strength of increasing 

returns. We assume that c ≥ 0. With standards becoming more important c will be higher. In 

general, c is the weight agents assign to the size of the cluster as measured by relative output. 

Let the likelihoods of pursuit for each agent n be given by equation (1). The likelihoods of 

pursuit depends on an individual component (preferences) and a social component (the size of 

the cluster as measured by output weighted by the strength of increasing returns). 

π n(t) = pn + c ˆ E (t)          (1) 
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We define the following decision rule: Make a contribution to the cluster with the highest 

likelihood of pursuit, i.e. the largest element of the vector 

π n(t) = (π1n (t),π 2n(t),...,π Jn(t))' . 

The model evolves by all agents making a contribution each period. At the end of each 

periods output is updated. By making contributions to a cluster output increases. The process 

is self-reinforcing. Contributions to a cluster increase output which in turn makes it more 

likely that agents will contribute to the same cluster next period.3 

In making his decision to which cluster to contribute a scientist looks at the available output. 

We assume that all contributions are contributions to just one single cluster. The quality of 

contributions is assumed to be homogeneous. Using these assumptions we avoid the task of 

having to judge the quality of contributions. We can measure output as the weighted sum of 

past contributions, where output produced within a period equals the number of contributions 

within this particular period.4 Output for cluster j at time t is given by eqn. (2) where Kj(t) 

denotes the number of contributions to cluster j in period t and d ∈ 0,1[ ) . 
E j (t) = K j (t −1) + dE j (t −1)          (2) 

Since eqn. (2) holds for all periods t ≥1 we can use substitution and see that output is the 

weighted sum of past contributions. We assume that initial contributions K j (0) are given. 

E j (t) = K j (t −1)+ dK j (t − 2)+ ...+ dt−1K j (0) = ds−1K j (t − s)
s=1

t

∑     (2’) 

The number of contributions to cluster j in period t are given by K j (t) = a jn

n=1

N

∑  where ajn=1 if 

j ∈ argmax
k∈ 1,2,...,J{ }

π kn(t)  and 0 else. 

The basic model is a nonlinear Polya process with the probability that a new contribution is 

made to a specific cluster being a function of the contributions already made to that cluster. 

As previous choices matter and increase the probability that a contribution will be made to a 

cluster, this process is path-dependent and exhibits positive feedback. We are interested in the 

structure that emerges during this process, where by structure we understand the proportion of 

agents working within each cluster. As has been shown by Arthur, Ermoliev, and Kaniovski 

(1983, 1984, 1987), the structure, which in our model is a vector of proportions, tends to a 
                                                 
3 Note that the likelihood of pursuit for any cluster is independent from the size of all other clusters. This implies 
that the standards that define clusters are completely incompatible. The model could be modified to allow for 
gateways. Then, the likelihood of pursuit would depend on the size of all clusters, with less weight given to the 
clusters for which there are gateways. 
4 By using the sum of contributions as a proxy for output it would also be possible to relate the model to 
scientometric data. 
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limit random vector. Our model reaches a stable pattern if E(t+1)=E(t). Since our agents face 

the same output each period, they make the same choice each period and the distribution of 

agents across clusters stays constant. 

Knowing that a stable pattern emerges our next question is concerned with the size of the 

clusters. Do all clusters have roughly the same size or does one cluster become dominant? 

Assuming that preferences are drawn from a [0,1] uniform distribution, it is clear that for 

c=0.0 all clusters are roughly equal in size. In this situation agents only care about their 

preferences, there is no premium on compatibility and hence there is no positive feedback. 

However, as soon as c>0 increasing returns kick in. Clusters with high output attract more 

contributions and grow up to a certain point. This is visualized in row 1 in figure 1, showing 

three runs of a simulation with N=1000 agents and J=5 clusters. On the vertical axis we see 

the size of each cluster, measured as the share of agents contributing to the cluster (formally: 

K j (t)

N
). The horizontal axes measures time. 

 

[FIGURE 1 ABOUT HERE] 

 

In the first simulation (column A, row 1) agents’ choices solely depend on preferences. Each 

period they choose the cluster that is most preferred. Since preferences stay constant and 

agents are immortal the sizes of the clusters do not change.5  In the second and third 

simulations (A2,A3) we observe sensitivity to initial conditions. At t=0 the largest cluster is 

determined by the distribution of preferences.  Due to the increasing returns the largest cluster 

grows faster than all other clusters. After some periods a stable structure emerges at which the 

size of the dominant cluster (and all other clusters) stays constant. A large cluster can be 

understood as the existence of high consensus and low disagreement, or much specialisation 

and low diversity. The maximum size of the dominant cluster increases with c, where if c ≥1 

the dominant cluster gets 100%, i.e. there is absolutely no disagreement (no diversity) within 

the particular school of thought, as can be seen in column A, row 4. 

 

This model of scientists’ choices between clusters exhibits several features of Arthur's 

increasing returns model (Arthur 1989). We cannot predict in advance which cluster will get 

dominant, but we know that one single cluster will get dominant. In Arthur's terms the process 

                                                 
5 We will relax both assumptions later and see what happens when agents are not immortal and preferences are 
allowed to change. 
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is non-predictable. The process is nonergodic, meaning that small differences at the 

beginning (the distribution of preferences and initial evidence) are not averaged out over time. 

Stochastic fluctuations are responsible for selecting the dominant cluster. Having reached a 

stable state the size of all clusters stays constant. The process is inflexible; there is no change 

from within the system. 

 

4.2 Model refinements 

In order to make  the model more interesting and realistic we add some refinements. First, our 

agents do not live forever. Each period their age increases by one unit. Once they have 

reached a certain age, randomly drawn from a uniform [50,100] distribution they die and get 

replaced by a new agent with age drawn from a uniform [20,50] distribution. The new agent 

makes her first contribution to a randomly chosen cluster. The probability that any cluster is 

chosen is proportional to the size of the cluster. This could be interpreted as the agent makes 

her first contribution in the same cluster as her teachers worked in. Row B in figure 1 shows  

typical simulation runs for varying parameters of institutional strength. The only difference to 

the simulations in row A is that agents die and get replaced. For c=0.0 the size of the clusters 

do not affect agents’ decision and cluster sizes follow a random walk. As c increases we see 

emergence and dissolution of consensus. This is clearly visible for c=0.75 (B3) where 

consensus reaches its peak around period 100 and more than 40 % of all agents contribute to 

the dominant cluster. Eventually the dominant cluster ceases to be dominant and we observe 

the dissolution of consensus. With increasing c the size of the dominant cluster gets bigger 

and dominant clusters are dominant for a longer period of time. This means that with 

standards being more important consensus exists longer among a bigger share of agents in our 

epistemic community. 

Since agents die and get replaced the process is no longer inflexible for c <1, i.e. there is no 

stable state at which the size of each clusters stays constant. For c ≥1, however, the process is 

inflexible. Once a cluster has reached 100 % it stays there forever because agents’ preferences 

do not matter for their decisions.6 

 

                                                 
6 A simple example might illustrate this inflexibility for c=1. Assume two competing clusters, A and B. Cluster 

A has reached 100 % which means that ˆ E A =1. Likelihoods of pursuit are given by π A = pA +1 and 

π B = pB  respectively. Since preferences are drawn from the uniform distribution U[0,1] , we must have 

π A ≥ π B , so agents will always contribute to cluster A. 
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As a second modification we introduce endogenous preferences. The idea is that when agents 

make their contributions they invest in learning the methods of the cluster. The resulting skills 

are specific to the cluster and cannot be transferred to another cluster. The result of the agent’s 

investments are skills which are specific to a cluster, hence the benefits can only be reaped if 

the agent contributes to the same cluster. It is not possible to appropriate the benefits from that 

investment if they switch to another cluster. Another reason for endogenous preferences are 

that the longer an agent has worked within a cluster, the less likely she is to change since her 

standing, reputation and accomplishments all depend on the correctness of the cluster.7 

The change in preferences is modeled as follows. Let there be a vector of intrinsic preferences 

p n = (p 1n,p 2n,...,p Jn)'  for each agent and denote the number of each agent’s contribution to 

cluster j up to time t by k jn (t). Assume that at time t the agent makes a contribution to cluster 

j. Then, her preferences the next period are given by a convex combination of her old 

preferences and some parameter η ≥1 (eqn. 3). 

p jn (t +1) =
k jn (t)

k jn (t) +1
p jn (t) + 1

k jn (t) +1
η       (3) 

For all other clusters j '≠ j  to which the agent did not contribute in period t preferences do not 

change, i.e. p j 'n(t +1) = p j 'n(t). For clusters to which the agent has never made a contribution 

her preferences are given by p jn (t) = p jn  for all t. The parameter η determines the speed of 

the preference change and acts as an upper bound on preferences. By increasing η more 

weight is put on agents’ preferences. 

The likelihoods of pursuit are now given by π n(t) = pn(t) + c ˆ E (t). As can be seen in rows C 

and D in figure 1, allowing for endogenous preferences results in slower change and, if c <1, 

lower variance in cluster sizes. As agents put more weight on their evidence as a result of past 

choices they are less likely to switch to another clusters, even if the other cluster is large. For 

c ≥1 the process is inflexible. At some point all agents contribute to the same cluster. 

However, with higher η it takes longer until one cluster reaches 100 %. 

 

4.3 Main results and possible extensions 

                                                 
7 In the literature this is known as „hardening of positions“ where as time passes agents put more weight on their 

own opinion and less weight on the opinion of others (e.g. Hegselmann & Krause 2002, 4). It can also be 

understood as a process of dissonance reduction (Festinger 1957) where agents adjust their preferences in order 

to reduce the discrepancy between their preferences and choices. 
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The main results of the model can be summarized as follows. 

(1) The resulting division of labour depends on the strength of increasing returns. With 

stronger increasing returns (meaning more important standards) the size of the largest cluster 

increases and the community tends to more specialisation. For c ≥1 the dynamics result in a 

lock-in. All agents contribute to one cluster and the community is completely specialised. The 

opposite, complete diversification, is achieved for low values of increasing returns. 

This can be seen in figure 2 plotting the variance of cluster sizes for different values of c. The 

variance is computed as Var = 1

J
(x j − x )2

j =1

J

∑  where x j (t) =
K j (t)

N
 is cluster size, measured as 

the number of agents contributing to cluster j at time t, divided by the total number of agents. 

Since we assume J=5 clusters we know that the mean is x = 0.2. The variance is a natural 

way to measure diversification and specialisation. If the community is completely diversified 

all clusters have equal size and variance is zero. At the other extreme, complete specialisation, 

variance is given by 
J −1

J

1

J

 
 
 
 
 
 

2

+ 1

J

J −1

J

 
 
 

 
 
 

2

 which equals 0.16 for J=5. Figure 2 shows with 

weak increasing returns the community is completely diversified. As c increases above 0.4 we 

observe increasing specialisation, and for c=1 there is complete specialisation after some 

periods. 

 

[FIGURE 2 ABOUT HERE] 

 

(2) By introducing endogenous preferences the change in the division of labour between 

clusters becomes slower because agents are more likely to stick to their choices. With strong 

increasing returns (c ≥1) the distribution of labour will still reach a lock-in where the 

community is fully specialised, although the time it takes to get to the lock-in will be longer. 

This can be seen from table 1, showing the time it takes to get to the lock-in for c=1.0 and 

varying η. 

 

η time to lock-in 

0 66.34 

1.0 391.64 

1.2 503.18 

1.4 517.04 
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1.6 495.54 

1.8 512.10 

2.0 516.30 

Table 1: Time to lock-in for varying strength of preference change. Times to lock-in are 

average values from 100 simulations with 500 agents, 5 clusters, and c=1.0. Each 

simulation run for 1000 periods. The case η=0 corresponds to no preference change. 

 

(3) For 0 ≤ c <1 the distribution of labour is flexible if agents are not immortal. Altough 

the dominant cluster can be quite large, the community never reaches full specialisation. As a 

consequence of agents dying and getting replaced the largest cluster eventually looses its 

dominant position and a new cluster gets dominant (paradigm change). For c ≥1 we have a 

lock-in, meaning that once a cluster reaches 100 % the community will stay at full 

specialisation. This could change by endogenizing the number of clusters and allowing agents 

to create a new clusters, or by introducing exogenous shocks (anomalies) that solve the lock-

in by lowering the weight agents put on the cluster’s size. These are, however, subjects for 

further research. 

 

5. Conclusion 

Invisible hand models rely on competition to save objectivist science in the face of non-

epistemic individual motivations such as professional success.8 This solution requires that 

there is full competition and that all agents are after the same, for example that they openly 

compete for credit. We have argued that the presence of standards in science entails that the 

scope of this solution is limited to the special case where there is only 1 standard because 

standards cause fragmentation of the market, undermining competition. We discussed how 

Kitcher relies on competition to ward off the CO-IR discrepancy and, although we have not 

discussed them separately in this paper, so do Goldman & Shaked (1991) and Hull (1988); 

Goldman & Shaked suppose that scientists “choose their actions in accordance with the rule 

of maximizing expected utility and their utility level is determined solely by professional 

                                                 
8 “It is commonly assumed (or hinted) that the presence of such a motivational pattern would constitute a 
refutation or debunking of an objectivist construal of science. We shall argue, to the contrary, that there is no 
necessary incompatibility between the goal of professional success and the promotion of truth-acquisition.” 
(Goldman & Shaked 1991, pp.31-32) 
“Most representatives of other disciplines in science studies have thought that they can do without the invisible 
hand. Philosophers seem to have one item on their agenda that others in science studies do not seem to have: the 
defence of the objectivity or rationality of science.” (Ylikoski 1995, p.35) 
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success” (Goldman & Shaked 1991, 31)  while David Hull describes science as an 

evolutionary system in which scientists are agents competing to increase conceptual inclusive 

fitness9 All three models describe the features of an atypical case of a system which is in most 

of its possible states very different from the single-standard case they describe. Arthur (1989) 

lists five features that make increasing returns models different from normal maximizing 

models: there are multiple possible equilibria, which equilibrium will be selected is 

unpredictable in advance, the equilibrium is not necessarily optimal, the system exhibits 

inflexibility (it can ‘lock in’) and path-dependence. These stand in sharp contrast to 

characteristics of invisible hand models, which typically have only one optimal and 

predictable equilibrium that is not path-dependent. Because of the atypical character of the 

single-standard case, the conclusions derived from invisible hand models are not robust 

against changes in the number of standards. The main conclusion from such models is that 

there need not be a conflict between individual rationality and the community optimum. 

Private vices become public virtues:  

“The very factors that are frequently thought of as interfering with the rational pursuit of science –the 

thirst for fame and fortune, for example- might actually play a constructive role in our community 

epistemic projects, enabling us, as a group, to do far better than we would have done had we behaved 

like independent epistemically rational individuals.” (Kitcher 1990, p. 16)  

As a result, individual responsibility of scientists is downplayed and the task of the 

institutions of science is to accommodate scientist’s cravings rather then direct them toward 

higher epistemic ends:  

“social institutions within science might take advantage of our personal foibles to channel our efforts 

toward community goals rather than toward the epistemic ends that we might set for ourselves as 

individuals.” (ibid.)  

“the really neat thing about the reward system in science is that it is so organized that, by and large, 

more self-serving motivations tend to have the same effect as more altruistic motivations.” (Hull 1997, p. 

123) 

From the perspective of our generalized model, these views about individuals, institutions and 

their interrelation are no longer tenable. Individual scientists cannot escape their responsibility 

because the dynamics of the model imply that small changes can have large consequences. A 

laissez-faire institutional design is bound to miss the community optimum because of the 

                                                 
9 “ Just as organisms in general behave in ways likely to increase their own genetic inclusive fitness, scientists 
tend to behave in ways calculated to increase their own conceptual inclusive fitness.” (Hull 1988b, 128) 



 18 

monopolistic tendencies the system exhibits.10 As a consequence, institutional design must 

play a more active role to attain the community optimum. The general direction that it should 

take is that of softening the market disruption produced by the presence of multiple standards. 

This could involve the implementation of an active pluralist policy which aims to reduce 

transaction costs between clusters. A big step in this direction would be a pluralist education 

or at least a historical overview of the development of the discipline a scientist will work in, 

such that the transaction costs of not adopting to the mainstream cluster are not already 

gigantic from the outset of the scientist’s career.  

A final consequence of generalizing to J standards is that whereas the single-standard case 

can be individualist and a-historical, the shift to multiple standards makes social and historical 

aspects relevant.11 In multi-standard versions of our model social aspects of science are 

important because of the occurrence of network externalities that exert causal influence on 

scientific activity but are irreducible to the individual level; the connection among the nodes 

is more important than the nodes themselves. Historical aspects become relevant in multi-

standard versions because the dynamics is path-dependent, viz. previous states of the system 

exert causal influence on future states of the system. 

We have presented this model as a generalization of Kitcher’s model. While we think our 

model nicely captures most cases (2 to J standards), Kitcher's model is still better suited for 

the 1 standard case while our model has nothing informative to say on this, only that everyone 

will always adopt. Because Kitcher only treats the single-standard case, he can afford to 

present a model at a lower level of analysis, a level which is better suited to highlight the 

salient features of the atypical single-standard case. We could also change our model’s level 

of analysis. The clusters would then become paths and increasing returns would be absent 

because we’re inside a cluster (c=0). The model then predicts an equal distribution across 

paths and by introducing epistemic and non-epistemic motives we arrive at Kitcher’s model. 

So our model is indeed a generalization, and (as is so often the case with general models; cf. 

Weisberg & Matthewson 2008) this generality goes at the cost of describing certain specific 

cases. The single-standard case is such a case for our model. 

 

 

                                                 
10 Hence we postulate an ‘invisible backhand’ rather than an ‘invisible hand’ (see section 2).  
11 This enables us to meet i.a. Philip Mirowski’s concern that “A relevant congenital tic of the American 
philosophy profession (although, it must be conceded, not its alone) is a demonstrated unwillingness to regard 
science as an historically changing entity, not just in the realm of epistemic ‘‘values’’ but also in terms of actual 
social structures.” (Mirowski 2004 , 285) 
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