New Constructions of Convertible Undeniable Signature Schemes
without Random Oracles

Qiong Huang* Duncan S. Wong*

Abstract

In Undeniable Signature, a signature’s validity can only be confirmed or disavowed with the
help of an alleged signer via a confirmation or disavowal protocol. A Convertible undeniable
signature further allows the signer to release some additional information which can make an
undeniable signature become publicly verifiable. In this work we introduce a new kind of attacks,
called claimability attacks, in which a dishonest/malicious signer both disavows a signature via the
disavowal protocol and confirms it via selective conversion. Conventional security requirement does
not capture the claimability attacks. We show that some convertible undeniable signature schemes
are vulnerable to this kind of attacks.

We then propose a new efficient construction of fully functional convertible undeniable signature,
which supports both selective conversion and universal conversion, and is immune to the claimability
attacks. To the best of our knowledge, it is the most efficient convertible undeniable signature
scheme with provable security in the standard model. A signature is comprised of three elements of
a bilinear group. Both the selective converter of a signature and the universal converter consist of
one group element only. Besides, the confirmation and disavowal protocols are also very simple and
efficient. Furthermore, the scheme can be extended to support additional features which include
the delegation of conversion and confirmation/disavowal, threshold conversion and etc.

We also propose an alternative generic construction of convertible undeniable signature schemes.
Unlike the conventional sign-then-encrypt paradigm, the signer encrypts its (standard) signature
with an identity-based encryption instead of a public key encryption. It enjoys the advantage of
short selective converter, which is simply an identity-based user private key, and security against
claimability attacks.

Keywords: convertible undeniable signature, standard model, signature scheme, strong Diffie-Hellman
assumption, identity-based encryption
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1 Introduction

Digital signature is publicly verifiable but also easy to copy. Anyone can forward a signer’s signature
to someone else and convince the one about the ownership of the signature. In some scenarios, such
as software purchase [I1, 6] and e-payment [7], this may not be desirable. In 1989, Chaum and
van Antwerpen [I3] introduced the notion of Undeniable Signature (US). Unlike conventional digital
signature, an undeniable signature is not self-authenticating. If an alleged signer confirms (resp.
disavows) the ownership of an undeniable signature, the signer should convince a verifier about the
fact via a confirmation (resp. disavowal) protocol. The signer neither can disavow a valid signature
nor confirm an invalid one. A US scheme should also be unforgeable and invisible, that is, no one but
the signer can produce valid signatures, and without the help of the signer, no one can tell if a given
signature is valid or not, respectively.

Convertible Undeniable Signature (CUS), first proposed by Boyar et al. [6] in 1990, has an addi-
tional property introduced to US. After generating an undeniable signature o, the signer can release
an additional piece of information, called converter, which makes o publicly verifiable. There are two
types of conversion: selective conversion transforms an individual undeniable signature o to a publicly
verifiable one; and universal conversion converts all signatures that have been or will be generated by
the signer to publicly verifiable ones.

A typical approach of constructing a CUS scheme is based on standard signature and public key
encryption (PKE). By this approach, the signer generates a signature, then encrypts it using the
PKE, and the ciphertext is treated as the US signature. To confirm/disavow, the signer convinces
a verifier that the ciphertext contains a valid/invalid signature. The selective converter of a US
signature contains either the non-interactive version of the confirmation protocol, or the signer’s
standard signature associated with the ciphertext; and the universal converter is the secret key of the
PKE. This is known as the ‘sign-then-encrypt’ paradigm.

Our Contributions. In this work we introduce a new kind of attacks into the context of CUS, which
we call ‘claimability attacks’. The conventional security definition for CUS requires that the signer
cannot disavow a valid signature (via the disavowal protocol), nor confirm an invalid signature (via
the confirmation protocol). Whereas, this definition does not exclude an issue that a malicious signer
deliberately generates an undeniable signature ¢ which enables the signer to disavow the ownership
of o, while the signer can at the same time produce a selective converter which shows the validity of
o. At the first glance, this attack seems to contradict the conventional security requirements of CUS,
however, this is not the case, because the signer does not confirm ¢ via the confirmation protocol, but
via the selective conversion.

To see the practicability of the claimability attacks, we consider the following application. Suppose
that a bidding system makes use of undeniable signatures for the sake of privacy, as the bidders do
not want others to learn their identities from the signatures. In the bidding phase, each bidder sends
their undeniable signature on their bid to the auctioneer. After that, the highest bidder confirms
the signature by either executing the confirmation protocol with the auctioneer or sends the selective
converter to it. Now Charlie wants to bid some antique online. He prepares a ‘special’ signature on
his bid so that if he succeeds in the bidding but later regrets, he could deny the bid; while in case
he still feels that the antique is worth the bid, he could confirm the signature/bid by releasing the
selective converter. Clearly, this is unfair to others.

Some CUS schemes suffer from the claimability attacks. For example, consider Damgard and
Pedersen’s second CUS scheme [15]. A signature on message M is an ElGamal signature (r,s), and
the US signature is (r, ') where F is an ElGamal encryption of s. To selectively convert, the signer
simply releases s. Due to the lack of proof showing that E is indeed an encryption of s, a malicious
signer can produce an ElGamal signature (r,s) and set the US signature to be (r, E’) where E’ is
an encryption of a random s’. Obviously, the signer can disavow (r, E’), and in the meanwhile, the
selective converter s validates the US signature, as (r, s) is indeed a valid ElGamal signature on M.



For the schemes in [41], the selective converter of a US signature is the non-interactive version of
the confirmation protocol obtained using Groth-Sahai technique [23]. Since the non-interactive zero-
knowledge proof works in the common reference string (CRS) model, if we put the CRS into the system
parameter, the resulting scheme requires a trusted setup, which is not desired in practice. On the other
hand, generally, if we put the CRS into the signer’s public key, since the proof is zero-knowledge, there
is a simulator which is able to produce a simulated CRS that is indistinguishable from real ones and
its corresponding trapdoor, and use the trapdoor to produce indistinguishable proofs even for invalid
statements. Therefore, the resulting CUS scheme is not secure under claimability attacks either.

There are two types of CUS schemes in the literature that seem to be invulnerable to claimability
attacks. The first type consists of schemes in which the selective converter is the non-interactive
version of the confirmation protocol obtained via the Fiat-Shamir heuristic, for example, [35 21].
The conventional requirement on US schemes says that a US signature which could be disavowed
by the signer, could not be confirmed via the confirmation protocol. This also holds even when the
confirmation protocol is compressed using Fiat-Shamir transform. The second type consists of schemes
in which the signature is (partially) encrypted by a deterministic encryption, for example, [31} [42] and
the first scheme in [I5] which uses Rabin encryption [43]. Given a US signature and its converter
which is the signer’s standard signature, anyone checks the validity of the converter by repeating the
encryption. If the converter validates the US signature, the signer cannot disavow it again.

On the construction of CUS, we propose a new fully functional (i.e. support both selective and
universal conversion) CUS scheme that is secure against claimability attacks. Based on the review given
in Sec. [2| below and to the best of our knowledge, this scheme is the most efficient CUS scheme that is
proven secure in the standard model. The generation of a signature requires only three exponentiations,
and the signature contains merely three elements of a bilinear group G. The scheme also has simple
zero-knowledge confirmation/disavowal protocol. Besides, it supports both selective conversion and
universal conversion, and both of the conversions involve just the release of one single group element.
The unforgeability of the scheme is based on the Hidden Strong Diffie-Hellman (HSDH) assumption
which was introduced by Boyen and Waters in [§], and the invisibility is based on a decisional variant
of the HSDH assumption, the intractability of which is analyzed in the generic group model [46], 3].

Our scheme also has the advantage that given a selective converter, anyone can check if the
converter is correctly generated from the US signature in a quite efficient way, i.e. evaluation of only
two bilinear pairings. We emphasize that the simple validity checking is important for two reasons.
First, the validity checking of a selective converter provides a way to resist the claimability attacks.
Second, for practical issue, the checking should be as efficient as possible.

Like Gennaro-Halevi-Rabin RSA-based US scheme [2I], our CUS scheme can be extended to
achieve several interesting features as well, thanks to the simple structure of the signature. It supports
the delegation of the capability of conversion and that of confirmation/disavowal. It also supports
threshold conversion. The capability of conversion can be delegated to multiple delegatees so that at
least certain number of them together can convert signatures. Similarly, the ability to confirm/disavow
signatures can also be distributed to multiple provers. Furthermore, the scheme can be adapted to
support designated verifier proofs [25] and designated confirmer signatures [I12]. Readers can refer to
Sec. [l for the details.

As another contribution, we propose an alternative generic construction of CUS, which is similar
to but different from the traditional ‘sign-then-encrypt’ paradigm. The traditional paradigm uses a
PKE scheme to hide the signer’s standard signature. Usually, the selective converter of a US signature
is either a non-interactive proof showing that the ciphertext contains the signer’s signature (thus the
converter might be long), or simply the signer’s standard signature. As discussed above, the resulting
scheme might suffer from the claimability attacks, or is only secure in the random oracle model.

In our generic construction we replace the PKE scheme with an identity-based encryption (IBE)
scheme [45] [5]. After generating a standard signature on the message, the signer then selects an



identity at random and encrypts the signature for the identity under the IBE scheme. To selectively
convert a US signature, the signer generates the corresponding secret key of the identity contained in
the US signature. The universal converter is simply the master secret key of the IBE scheme. Note
that, given a selective converter, anyone can check the validity of the US signature by first decrypting
the ciphertext to obtain the signer’s standard signature, and then verifying it. Besides, anyone can also
check the well-formedness/correctness of the converter by randomly choosing a message, encrypting
it under the identity given in the US signature, and then decrypting the ciphertext to see if the
obtained message is equal to the chosen messageE] Therefore, our approach enjoys the advantage of
high efficiency in selective conversion, short converters and non-claimability. Moreover, we do not
require the signer to store any information used in the signature generation.

Outline. We review some related work in the next section, and describe the formal definition of
CUS and its security model in Sec. In Sec. 4] we give the number-theoretic assumptions used in
the concrete construction of CUS, which is proposed in Sec. The security of the scheme is also
analyzed there. We discuss about several extensions of our scheme in Sec. [f] The alternative generic
construction of CUS is proposed in Sec. [7l Finally, the paper is concluded in Sec.

2 Related Work

Since the introduction of US, it has attracted the attention of many researchers, and there has been a
lot of work on this notion, such as [11}, 12} 16 37, 19, 18|, 33| 27, 26}, B2} 30} 29, 36]. Most of the schemes
are only secure in the random oracle model. For example, Chaum proposed a US scheme [I1] in 1990
and its unforgeability proof has remained open since then until Okamoto and Pointcheval [37] in 2001
considered the security of the full domain hash (FDH) variant of Chaum’s scheme in the random oracle
model, and Ogata, Kurosawa and Heng [36] in 2006 showed that the security of the FDH variant of
Chaum’s scheme with non-interactive zero-knowledge confirmation/disavowal protocols is equivalent
to the Computational Diffie-Hellman (CDH) problem. The first US scheme in the standard model is
due to Laguillaumie and Vergnaud [32], which is based on Boneh-Boyen short signature [3] with the
bilinear groups being replaced by an ordinary group.

In the line of CUS, Boyar et al. [6] theoretically constructed a CUS scheme from the one-way
function. They also proposed the first practical CUS scheme using the ElGamal signature scheme
[17]. The scheme was later broken by Michels, Petersen and Horster [34]. Michels et al. also proposed
an improved scheme, but without giving a security proof. In [35], Michels and Stadler proposed a CUS
scheme based on Schnorr’s signature scheme [44], and proved its security in the random oracle model.
Damgard and Pedersen [15] proposed another two CUS schemes based on ElGamal signature. In one
scheme the ElGamal signature is encrypted under Rabin encryption [43]; the other one is encrypted
under ElGamal encryption [I7]. However, it is unknown if these schemes are provably invisible.

Gennaro, Krawczyk and Rabin [21] proposed the first RSA-based convertible undeniable signature
scheme, the unforgeability of which is based on the hardness of forging a regular RSA signature. The
universal conversion of their scheme is done by releasing the public key of the regular RSA signature
scheme and thus is efficient. The selective conversion is a signature of proof of knowledge obtained
from a 3-move confirmation protocol by applying the Fiat-Shamir heuristic. Therefore, the security
is only retained in the random oracle model. They also proposed several extensions of their scheme,
i.e. delegation of confirmation and disavowal, distributed provers and signers, designated verifier and
designated confirmer.

Kurosawa and Takagi [31] also presented two efficient RSA-based CUS schemes, KTy and KTy,
where KTy is secure in the random oracle model, and KTj is secure in the standard model. Though
both of the schemes have direct selective conversion and short converter, they do not support universal
conversion.

!This is similar to the transform from IBE scheme to signature scheme observed by Naor [5].



KT, was recently shown to be visible by Phong, Kurosawa and Ogata [42]. Phong et al. also
proposed three other RSA-based CUS schemes: SCUSy, SCUS; and SCUS,, where SCUS is
secure in the random oracle model, while the other two are secure in the standard model. Both of
SCUS; and SCUS, are instantiaitons of the ‘sign-then-encrypt’ paradigm. SCUS; uses Generic
RSA signature [24] and Paillier encryption [38], while SCUS3 uses Gennaro-Halevi-Rabin signature
[20] and Paillier encryption. The signature sizes are four times as big as the one generated by our
concrete scheme and the converters are six times that of ours for reaching the same level of security
(see Sec. for details).

Very recently, Phong, Kurosawa and Ogata [41] proposed another two discrete logarithm based
constructions of CUS, SCUS; and SCUS,, which instantiate the ‘sign-then-encrypt’ paradigm in the
standard model with the Generic Bilinear Mapping (GBM) signature [24] /Boneh-Boyen fully secure
signature [3] and the linear encryption [4]. The selective converter of a US signature in their schemes
is the non-interactive version of the confirmation protocol obtained using Groth-Sahai technique [23],
thus the converter is relatively large in size. The signature sizes of their schemes are 13% and 33%
larger than that of our scheme respectively. The universal converters and the selective converters are
two times and thirteen times that of ours respectively. Moreover, as discussed before, their schemes
are vulnerable to the claimability attacks.

3 Convertible Undeniable Signature

Here we give the formal definition of convertible undeniable signature scheme, which consists of five
(probabilistic) polynomial-time algorithms and two interactive protocols.

Definition 3.1 (Convertible Undeniable Signature). A convertible undeniable signature (CUS) scheme
US = (Kg, Sign, SConv, UConv, Ver, Confirm, Disavow) consists of the following algorithms and protocols.

o Kg: takes as input 1* where k is the security parameter, and outputs a public/secret key pair for
a signer, i.e. (pk,sk) «— Kg(1¥).

e Sign: takes as input the signer’s secret key sk and a message M, and outputs a signature o, i.e.
o «— Sign(sk, M).

e UConv: takes as input the signer’s secret key sk, and outputs a universal converter ucvt, i.e.
ucvt «— UConv(sk).

e SConv: takes as input a signer’s secret key sk, a message M and an alleged signature o,
and outputs a converter cvt if o is a valid signature on M, or L otherwise, i.e. cvt/Ll «
SConv(sk, M, o).

o Ver: takes as input the signer’s public key pk, a message M, an alleged signature o and a
converter cvt, and outputs a bit b, which is 1 for acceptance and 0 for rejection, i.e. b «—
Ver(pk, M, o, cvt). We say that o is a valid signature on M under pk if there exists a converter
cvt such that the Ver algorithm outputs 1.

— Confirm: is an interactive protocol run between the signer and a wverifier on common input
(pk, M, o). The signer with private input sk proves to the verifier that o is a valid signature on
M under pk, and the verifier outputs a bit b which is one for acceptance and zero for rejection.
We denote it by b « Confirmg gy v (pk, M, o).

— Disavow: is an interactive protocol run between the signer and a wverifier on common input
(pk, M,0). The signer with private input sk proves to the verifier that o is an invalid sig-
nature on M under pk, and the verifier outputs a bit b which is one for acceptance and zero for
rejection. We denote it by b < Disavowg gy v (Pk, M, 7).

REMARK 1 : The definition of SConv above imposes a check on the validity of the input message-
signature pair, and returns L if it is invalid. We stress that this requirement is not compulsory,



and we do not explicitly do the validity check when describing the SConv algorithms of the proposed
schemes. Previous schemes in the literature only focus on the selective conversion of valid signatures,
i.e. [6l 1, [42], by compressing the confirmation protocol into a non-interactive one. Though some
of them also support selective conversion of invalid signatures, however, their selective conversion
of invalid signature is usually achieved by compressing the disavowal protocol, thus two different
verification algorithms are needed. Our scheme supports selective conversion of both valid and invalid
signatures in the same way, thus resulting in a unified verification of converted signatures. The signer
releases a piece of information so that if the signature is valid (resp. invalid), the information confirms
its validity (resp. invalidity).

REMARK 2 : The definition of CUS above covers the CUS schemes in which the selective conversion
does not require the signer to store any information used in the generation of signatures, as a selective
converter can be derived directly from the signer’s secret key and an undeniable signature. We
note that this definition does not reflect how the universal converter is used for verifying signatures.
Alternatively, we can re-define the SConv algorithm so that the selective converter is derived from the
universal converter and the signature, i.e. cvt/ L < SConv(ucvt, M, o), though the universal converter
is usually a part of the signer’s secret key. Our proposed schemes in Sec. [5] and [7] follow this new
definition. However, the disadvantage of this new definition is that it cannot cover as many existing
CUS schemes as possible, for instance, Gennaro-Krawczyk-Rabin scheme [21I] in which the generation
of a selective converter requires the knowledge of the entire secret key of the signer. Hence, we choose
to use the definition above for the sake of compatibility.

The correctness of CUS is defined in a natural way.For (pk,sk) « Kg(1¥), let M be a message
randomly chosen from the space M, ¢’ be an invalid signature on M that is randomly chosen from
the signature space S, for any o < Sign(sk, M), cvt < SConv(sk, M, o), it holds that

Pr[l « Ver(pk, M,0,cvt)] = 1
Pr[l « Confirmgsy) v (pk, M,0)] = 1
Pr[l « Disavowg(sx) v (pk, M, o) =1

A secure CUS scheme should also satisfy unforgeability and invisibility, and non-claimability, which
are defined below.

Unforgeability. The unforgeability of CUS requires that even after obtaining many signatures on
messages of its own choices and interacting with the signer for proofs of the validity/invalidity of
signatures, the adversary still could not produce a signature on any new message. Formally, we
consider the following game, which is played between a challenger C and an adversary A.

1. C initiates the game by preparing a public key pk and the corresponding universal converter
ucvt, and invokes A on input (pk, ucvt);

2. A starts to issue queries for polynomially many times to the following oracles.

® Osign: Given a message M from A, the oracle returns a signature o.

e Oconfirm: Given a message M and an alleged signature o, the oracle starts an execution of
the Confirm protocol with A if ¢ is a valid signature on M under pk, and does nothing
otherwise.

e Opisavow: Given a message M and an alleged signature o, the oracle starts an execution of
the Disavow protocol with A if ¢ is an invalid signature on M under pk, and does nothing
otherwise.

3. Finally, A outputs a pair (M*,c*), and wins the game if (M*,0*) is a valid message-signature
pair under pk, and A did not query Osjg, on input M*. The advantage of A in the game is
defined to be its success probability.



Definition 3.2 (Unforgeability). A CUS scheme is said to be (t,qs, qc, qq4, €)-unforgeable if there is no
adversary A which runs in time at most t, makes at most qs signing queries, q. confirmation queries
and qq disavowal queries, and wins the unforgeability game above with advantage at least €.

REMARK 3 : Strong Unforgeability can be defined similarly by changing A’s winning condition to
that (M*,0*) should be different from all the message-signature pairs it ever obtained. The adversary
could query Os;gn on M* provided that o* is different from the answer of Os;gy,.

Invisibility. This property requires that given a message-signature pair, without any help from the
signer, a verifier is not able to tell if it is a valid pair. Below is the formal definition where we consider
a game played between a challenger C and an adversary D.

1. C initiates the game, prepares a public key pk, and gives it to D.

2. D begins to issue queries to the oracles as in the unforgeability game, except that an additional
oracle called Osceny is given. For this oracle, given a message M and an alleged signature o, it
returns a converter cvt if o is valid on M under pk, or L otherwise.

3. D submits a challenge message M*. The challenger C flips a coin b. If b = 0, C prepares a
signature ¢* on M* valid under pk; otherwise, it randomly chooses o* from the signature space.
In either case, C returns o* to D.

4. D continues to issue queries as in Step 2, with the restriction that it cannot submit (M*,c*) to
either of oracles Osconyv, Oconfirm and Opisavow -

5. Finally, D outputs a bit ', and wins the game if &’ = b. Its advantage in the game is defined to
be [Pr[t/ =b] — 3|.

Definition 3.3 (Invisibility). A CUS scheme is said to be (t,qs,sc, e, qa, €)-invisible if there is no
adversary D which runs in time at most t, makes at most qs signing queries, gs. Selective conversion
queries, q. confirmation queries and qq disavowal queries, and wins the unforgeability game above with
advantage at least €.

REMARK 4 : In the rest of the paper we sometimes omit the numbers of queries the adversary makes
in the games, and simply say that a CUS scheme is (¢, €)-(strongly) unforgeable or (t, €)-invisible.

Non-Claimability. This property requires that a malicious signer is unable to produce a signature
o such that the signer can both disavow ¢ and generate a selective converter to confirm its validity.
Formally we consider the game below, in which A is the malicious signer, and C is the challenger.

1. A takes as input 1* and outputs (pk, M, o, cvt).

2. A and C start an execution of the Disavow protocol on common input (pk, M, o), in which A
acts as the signer/prover and C as the verifier. Let C’s output at the end of the protocol be b.
A wins the game if b = 1 and Ver(pk, M, o,cvt) = 1. The advantage of A is defined to be its
success probability.

Definition 3.4 (Non-Claimability). A CUS scheme is said to be (t,€)-non-claimable if there is no
adversary A which runs in time at most t, and wins the non-claimability game above with advantage
at least €.

4 Assumptions
In this section we review and define some number theoretic assumptions which will be used in our
concrete construction of CUS. For simplicity, we define them in symmetric bilinear groups.

Strong Diffie-Hellman Assumption [3]. Let G be a multiplicative group of prime order p, and g
a generator of G. The Strong Diffie-Hellman (SDH) assumption is defined as follows.



Definition 4.1 (¢-SDH Assumption). The ¢-SDH assumption (t, €)-holds in G if there is no algorithm
A which runs in time at most t, and satisfies the following condition:

Pr [A (g,g””7g“327~-~ ,g"”q) = (gwis,s)} >e

where s € Zy, and the probability is taken over the random choices of v € Z, and the random coins
used by A.

Hidden Strong Diffie-Hellman Assumption [§]. Let G be a multiplicative group of prime order
p, and g be its generator. The Hidden Strong Diffie-Hellman (HSDH) assumption is defined as below:

Definition 4.2 (¢-HSDH Assumption). The ¢-HSDH assumption (t,€)-holds in G if there is no
algorithm A which runs in time at most t, and satisfies the following condition:

1 q
Pr [A (g,g””vg[’,{gmug“,gﬁ“},ﬂ) = (g#s,gigﬂs)} > e
where s € Zy, and s € {s1,-- -, Sq}, the probability is taken over the random choices of x, 3,81, ,5q4 €
Zy and the random coins used by A.

We also use a decisional version of the HSDH assumption. Note that for each tuple (A, B,C) =
(gl/ (@ts) g5 ,u®) in the HSDH problem where u = g7, its well-formedness can be verified in bilinear
groups without knowing the secret key x or the value of s, i.e. e(A4,¢g"B) = e(g,9) and e(B,u) =
e(g,C). However, if we remove B from the tuple, the well-formedness of A and C' cannot be checked
if one does not know z or s. Below is the formal definition of the decisional HSDH assumption.

Decisional Hidden Strong Diffie-Hellman (DHSDH) Assumption. Let G be a multiplicative
group of prime order p, and g a generator of G. The DHSDH assumption is defined as follows.

Definition 4.3 (¢-DHSDH Assumption). The ¢-DHSDH assumption (t,€)-holds in G if there is no
algorithm A which runs in time at most t, and satisfies the following condition:

1 q 1
Pr (A (9,97 9% {g77 g7 0™ g%g7 ) = 1] -
q

_1
Pr [«4 (g,gx,gﬂ, {g”%‘ ,gs",gﬁs’}, ,gﬂS,Z) - 1” > €

where the probability is taken over the random choices of x, 3,51, -+ ,84,8 € Zp and Z € G, and the
random coins used by A.

In Appendix [E] we analyze the intractability of the DHSDH assumption in the generic bilinear
group model, where we show that an adversary that solves the ¢-DHSDH problem with a constant
advantage € > 0 in generic groups of order p such that ¢ < o(¥/p), requires Q(\/ep/q) generic group
operations.

5 Owur Proposed Scheme

5.1 The Scheme

Our concrete scheme is based on the Generic Bilinear Map (GBM) signature scheme [24]. Let G and G
be two multiplicative groups of large prime order p, and g be a generator of G. Let e : G X G — G
be an admissible pairing. Let n = n(k) and n = n(k) be two arbitrary positive polynomials. Let
M := {0,1}" be the message space (otherwise we can use a collision-resistant hash function to map
arbitrarily long messages to m-bit strings), and H = (PHF.Gen, PHF.Eval) be a programmable hash
function from M to G [24]. In the following we write H,(M) = PHF.Eval(k, M). A signature in the



Kg(1%): Sign(sk, M):

K «g PHF.Gen(1%) parse sk as (z,y)

T,y g Lp, u—3G 5 g Ly

X — g% Y — gy § — He (MY (@)~ VS — 0

return (pk, sk) := ((g, X, Y, u, k), (z,v)) return o := (6,7,6)

UConv(sk): SConv(sk, M, 0): Ver(pk, M, o, cvt):
parse sk as (z,y) parse sk as (z,y) parse pk as (g, X, Y, u, k)
return ucvt :=y v— Y parse o as (0,7,6), cvt as v
return cvt := v b — e(6,X -v) = e(Ho (M), g)

by «— e(v,u) L e(g,0)
return by A by

Figure 1: A Concrete Construction of CUS, USgpar

GBM scheme is of the form o = (H,(M)Y(@+5) s) where z € Zy is the secret key and s is a random
element of {0, 1}". The validity of o = (01, 02) can be verified by checking if e(H, (M), g) = e(o1, 9% 972).
Based on GBM scheme, we propose a CUS scheme USgpy (Fig. , where we assume that all the
users in the system share the same system parameter, i.e. (G,Gr,e,p,g).

Note that given the universal converter ucvt = y, anyone can check its validity by ¢ = Y'Y, and can
generate the corresponding converter for any signature, because the selective conversion only requires
the knowledge of y. An undeniable signature in USg gy is of the form (8,7, 0) = (He (M) (@+9) Y5 o)
and a converted signature is of the form (8,7,6,v) = ((H. (M) @+9) Y 45 ¢°). In fact, one can view
(6,1, 0) as the signer’s self-authenticating signature due to its public verifiability. On the other hand,
given a signature o = (d,7,6) and a converter v, one can verify the validity of v by checking if
(Y,g,7,v) is a DH-tuple, i.e. e(Y,v) = e(7,g), which serves as an NIZK proof of knowledge of the
secret ¢, and thus shows the correctness of the selective conversion. Suppose v is a valid converter of
o. If o is a valid undeniable signature, v confirms its validity; if it is invalid, v confirms its invalidity.
Therefore, our scheme supports an efficient and unified conversion of both valid and inwvalid signatures.

Signature Space. The signature space S of USgpas with respect to the public key (g, X, Y, u, k) is
defined as
§:={(0.7.0) € G : e(¥.0) = e(z.u)}

and the converted signature space S’ is defined as
S ={(6,7,0,v) €G* : (6,7,0) e Sne(Y,v) =e(v,9)}

Confirmation/Disavowal Protocol. Given a message M and a corresponding undeniable signature
o = (6,7, 0), both the signer S and the verifier V check if o € S. If not, they do nothing; otherwise, the
signer computes the converter for the signature, i.e. cvt := v < «¥. Note that from v, the signature
can be verified by checking if

e(H (M), g) = e(6, X - 1) (1)

If equation holds, S and V start an execution of the Confirm protocol; otherwise, they start an
execution of the Disavow protocol.

Confirm. Note that equation (/1)) is equivalent to
e(6,7)” = e(Hq(M),g) - (6, X) ™" (2)
where only y is unknown to the verifier. Now from the signer’s public key, we have that

g=Y" (3)



Therefore, to confirm a signature, it is sufficient for the signer to make a proof of equal discrete
logarithm, i.e.

logy (9) = 1085 (e(He(M), g) - e(5, X)) (4)
Disavow. If ¢ is invalid, equation does not hold. However, equation holds no matter if ¢ is valid
or not. Therefore, to disavow a signature, it is sufficient for the signer to make the following proof.

logy (9) # 10ge(s) (e(Ha(M), g) - €(8, X)) ()

REMARK 5 : The left side of equations and works in group G, while the right side works in
group Gr. It is easy to resolve this ‘incompatibility’, say, by changing the left side to loge, vy e(g,9)-

REMARK 6 : There are standard (3-move) special honest-verifier zero-knowledge protocols for the
tasks above, e.g. [9 [I0], and there are also known ways to transform them into 4-move perfect
zero-knowledge proofs of knowledge in general with negligible soundness error, e.g. [14], so that
there exists a probabilistic polynomial-time simulator that produces indistinguishable views of any
verifier. In addition, it is easy to see that our scheme has the advantage that the signer does not
need to remember any signature it ever produced in order to selectively convert, confirm or disavow
a signature. This is an important feature for practical use.

5.2 Security Analysis

Theorem 5.1. Let H be a (m, 1, ¢, p)-programmable hash function. Let F be a (t, qs, qc, 44, €)-forger in
the unforgeability game of USgpnr. Then there exists an adversary A; that (t1,€1)-breaks the qs-SDH

assumption with
m+1
t1~t and € > d (e—qsm —¢>,
qs p

or there exists an adversary As that (t2, €2)-breaks the qs-HSDH assumption and an adversary As that
(t3,€3)-breaks the Discrete Logarithm assumption in G with

to,t3~t and e+e3>e— ¢

The proof basically follows that of Theorem 4.2 in [24], except that the component s in a signature
is replaced with Y* and u®, and that now .4 has to handle the confirmation/disavowal requests. Note
that all the oracles other than Os;g, can be perfectly simulated by A using its knowledge of y, and
that since the confirmation and disavowal protocol of USgps only involve the knowledge of y, which
acts as the universal converter, the confirmation oracle and disavowal oracle become useless to the
adversary. We defer the proof to Appendix [A]

REMARK 7 : Theorem [5.1] establishes the existential unforgeability of USgpas under chosen message
attacks. Furthermore, we can use the same proof to show that USgpas is strongly unforgeable. Note
that in the proof of the theorem, we only consider if s collides with any s; and do not care if M is the
same as any M;. The only place where we need to take care of is in Game 6 of Type 1 in the case
that M is equal to M; for some 1 <[ < ¢,. Since M = M, by the requirement of winning the game,
it must be that s # s;. Therefore, in Game 6 of Type 1, the adversary’s choice of I must not fall into
the set of indices j with v; = 7; and 6; = 6; (thus s; = s;); otherwise, we have that s # s; = 5; = s,
which is a contradiction. Hence, the probability that we raise the event aborty,q 5 remains unchanged.

Theorem 5.2. Let H be a (m,1,,p)-programmable hash function. Let D be a (t,qs, qses des qds €) -
distinguisher in the invisibility game of USgpar. Assume that USgpar is (t1, s, Gses des 4d, €1)-Strongly
unforgeable, the confirmation (resp. disavowal) protocol is eg-zero—knowledgeﬂ (resp. es-zero-knowledge).

2We say that a proof system is e-zero-knowledge, if there exists a probabilistic polynomial-time simulator that given
oracle access to any (malicious) verifier V*, outputs a view of V* such that there is no probabilistic polynomial-time
distinguisher which tells the simulated view apart from the view of V* interacting with a real prover with probability at
least 1/2 + e. We say that the proof system is perfect zero-knowledge if € = 0.



Then there exists an adversary A which (t',€')-breaks the (qs+1)-DHSDH assumption and an adversary
A’ which (", €")-breaks the Discrete Logarithm assumption with

ti, ', " ~t and €+ >e—p—€ —q.-€2—qq-€3
The proof is deferred to Appendix [B]

Theorem 5.3. Suppose that Disavow Protocol is (t, e)—soundrﬂ. Then USgpas is (', €)-non-claimable,
where
t~t and € <e.

Proof. Let A be an adversary against the non-claimability, and let (pk, M, o,cvt) be its output in
the game, where pk = (¢, X,Y,u, k), 0 = (J,7,0) and cvt = v. Suppose that Ver(pk, M, o, cvt) = 1.
We then have e(y,u) = e(Y,0), e(v,Y) = e(g,7v) and e(§, X - v) = e(Hy(M), g), which indicates that
v=Y? 0 =wu’and v = g° for some s € Z,, and § = Hy (M) @+9) for 2 = log, X. Therefore, o is valid
on M under pk. By the soundness of the Disavow protocol, we have that with probability at most €

the signer can prove to an honest verifier that o is an invalid signature via Disavow protocol. O

5.3 Efficiency and Comparison

Below we compare our scheme with some existing CUS schemes, in terms of 80-bit security. For
schemes based on bilinear pairings, we choose the security parameter k = 170, and for those scheme
based on RSA, we choose k = 1024. For the scheme in [35] we take the values suggested by the
authors, i.e. |p| = 1024 and |¢| = 256. All the sizes in Fig. are in bits. By [Sig|, |SConv]|

’ \ |Sig| \ [SConv]| \ |[UConv]| \ Non-Clm \ Assumptions \ Model ‘
21] | 1024 | 2048 1024 Vi RSA + EDL rom
[35] [ 1280 | 768 256 Y CDH + EDL rom
18] | 2389 | 2208 1024 N Factoring + CDDH rom
KTo [31] | 1024 | 1024 no V CNR + DNR rom
KT, [31] | 3232 1024 no N broken[42] std
SCUS, [42] | 1024 | 1024 1024 V RSA + dtm-RSA rom
SCUS, [42] | 2128 | 1024 1024 Vi SRSA + DNR std
SCUS, [42] | 2048 | 1024 1024 IV SRSA + DIV + DNR | std
SCUS; [41] | 580 2210 340 X SDH + DLN std
SCUS, [A1] | 680 | 2210 310 X SDH + DLN std
USgenm | 510 170 170 Vv HSDH + DHSDH std

Figure 2: Comparison with other CUS schemes

and |UConv| we denote the size of a signature, size of a selective converter and size of a universal
converter, respectively. ‘Non-Clm’ means non-claimability. A ‘no’ in the column of |UConv| indicates
that the scheme does not support universal conversion. For the assumptions, by EDL, CDDH, CNR,
DNR, dtm-RSA, SRSA, DIV, DLN we denote equal discrete logarithm assumption, composite decision
Diffie-Hellman assumption, computational N-th residuosity assumption, decisional N-th residuosity
assumption, decisional two moduli RSA assumption, strong RSA assumption, division intractability
assumption and decisional linear assumption, respectively.

From Fig. [2| we can see that our proposed scheme has the smallest signature size, shortest selective
converter and shortest universal converter.

3Roughly, a proof system is (¢, ¢)-sound if there is no prover P* running in time at most ¢, such that for any statement
x outside of the language L, the probability that the verifier outputs 1 after interacting with P* is at least e.
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6 Extensions

In this section we give several extensions of our CUS scheme proposed in the previous section.

Conversion Delegation. In USg gy, the signer’s secret key can divided into two parts, i.e. x as the
signing key, and y as the conversion key. Since the selective conversion of USgpas only uses y, the
signer can delegate its conversion ability to someone that he trusts by sending y to him. Then the
delegatee can convert any signature into a publicly verifiable one using y as the universal converter.
Besides, the delegatee can confirm/disavow signatures on behalf of the signer without any further help
from it, because the confirmation/disavowal protocol requires the knowledge of y only.

Designated Confirmer Signature. Introduced by Chaum [12], designated confirmer signatures
(DCS) aim to alleviate the burden on the signer in undeniable signatures [I3]. A designated party,
named the confirmer, confirms/disavows signatures on behalf the signer without help from the signer.
The discussion in the first extension demonstrates that USgpgas can also be slightly modified to be a
DCS scheme. Namely, we remove (Y = g'/v, y) from the signer’s key pair and set it as the confirmer’s
key pair. The signing algorithm, conversion algorithm, and confirmation/disavowal protocol simply
follow those of USgpas- In this way, we obtain a highly efficient DCS scheme that is provably secure
without random oracles. On the other hand, we observe that a DCS scheme can be slightly modified
to be a CUS scheme supporting conversion delegation, i.e. by putting the public key of the confirmer
into that of the signer, and giving the confirmer’s secret key to the delegatee.

Confirmation/Disavowal Delegation. In some applications it may be desired that a party who
holds the selective converter of a valid/invalid US signature confirms/disavows the signature on behalf
of the signer without releasing the converter to the verifier. Let H be a holder of the selective converter
v of a signature o = (9,7, 6) on message M. Note that the universal converter is unknown to H. To
comfirm/disavow o, H first commits to v by randomly picking z € Z, and computing T' < v - §* where
g is a random generator of G. Note that T is perfectly hiding. By the validity of v, we know that

e(r,Y)=e(r,9) = e Y) =eT,Y) e(y,9)" (6)
Confirm. Now assume that o is a valid US signature on M. We have
e(d, X - T) = e(Hu(M),9)-e(0,9)° = e(0,9)° =e(6, X T) e(Hu(M),g)"" (7)

Therefore, by equations @ and , it is sufficient for H to make a proof of equal discrete logarithm
using z as the witness, showing that

10ge(g.v) (e(T, Y)- e(%g)‘l) = 108e(5.5) (e((s,x T e(HH(M)’g)—l) @)

Disavow. In the other case, i.e. o is an invalid US signature on M, equation does not hold.
However, equation @ still holds. Hence, it is sufficient for H to make a zero-knowledge proof of
non-equal discrete logarithm using z as the witness, showing that equation does not hold.

We stress that the conversion delegation and the confirmation/disavowal delegation are related to
but different from DCS [12]. The common ground is that verifiers are sure that someone (the confirmer)
can confirm/disavow signatures on behalf of the signers. However, in the conversion delegation and
confirmation/disavowal delegation, anyone can act as the confirmer and is not required to have a
public/secret key pair; while in DCS, the confirmer is fixed and needs to be equipped with a key pair.

Designated Verifier. The signer S can prove the validity/invalidity of a signature to a verifier via
the confirmation/disavowal protocol, however, it cannot choose whom can be convinced of the fact.
A verifier V' could act as the intermediary between the signer and a set of verifiers. Jakobsson et al.
[25] proposed the notion of designated verifier proofs to solve this problem, which readily applies to
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our scenario as well. Now V is equipped with a key pair, and S proves that either the signature is
valid/invalid or it knows the secret key of V', so that V' is also able to produce indistinguishable proofs.

Distributed Conversion. This is to share the ability of converting signatures to multiple parties.
The signer secretly shares the conversion key y among n delegatees so that at least ¢ 4+ 1 out of them
together can selectively convert a US signature using their shares. This can be easily achieved by
applying the t-out-of-n verifiable secret sharing scheme in [39, 40] to USgpas.

Distributed Provers. Introduced by Pedersen [39], a distributed provers protocol shares the key
among n provers, and only ¢ + 1 or more provers together can prove to a verifier that the given
statement is true. Like Gennaro et al.’s RSA-based US scheme [2I], Pedersen’s technique [39] also
easily extends to our CUS scheme to support distributed provers.

REMARK 8 : To the best of our knowledge, only Gennaro et al. mentioned the similar extensions
in their work [21I]. However, they did not show how to extend their scheme to allow a holder of the
selective converter of a signature to conform/disavow the signature. There, the converter of a signature
is the non-interactive version of a three-move conformation protocol obtained using the Fiat-Shamir
heuristic, thus it is unlikely for their scheme to support this feature. On the other hand, Gennaro et
al.’s scheme supports distributed signers, i.e. only certain number of parties who holds a share of the
signer’s secret key together can sign messages on behalf of the signer, due to the simple structure of
RSA signature; while it does not seem like that our scheme enjoys this feature.

As show in Sec. the signature size of Gennaro et al.’s scheme is about two times that of ours,
and the selective converter and universal converter are twelve and six times that of ours. Besides,
the security of their CUS scheme is in the random oracle model, while ours is in the standard model.
However, the security of our scheme relies on assumptions that are not studied as well as those of
their scheme. We leave the construction of CUS schemes with comparable efficiency (i.e. comparable
signature size and converter size) in the standard model based on better studied assumptions and
supporting all the aforementioned extensions (including distributed signers), as our future work.

7 An Alternative Generic Construction

In this section we present an alternative generic construction of CUS, which is similar to the traditional
‘sign-then-encrypt’ paradigm. In our construction the signer encrypts its standard signature on the
message with an identity-based encryption (IBE) scheme instead of a public key encryption scheme.
Specifically, we use a separable IBE scheme, in the sense that the generation of a ciphertext can be
divided into two parts, i.e. (C,D), where C is independent of the plaintext, and D is dependent
on it. Therefore, C' can be generated even before the plaintext is given. Formally, an IBE scheme
IBE = (Kg, Extract, Enc, Dec) is separable if

1. The Enc algorithm is comprised of two sub-algorithms, EncRand which is probabilistic, and
EncPltx which is deterministic. EncRand takes as input the master public key and an identity,
and outputs C and some state information w. EncPltx takes as input w and the plaintext, and
outputs D.

2. C and the message to be encrypted uniquely determine D. That is, given C' and the message,
there is only one possible D.

To the best of our knowledge, almost all the IBE schemes in the literature are separable, such as
5, 2, 47, 22).

Let S = (Kg, Sign, Ver) be a standard signature scheme, IBE = (Kg, Extract, Enc, Dec) be a sep-
arable identity-based encryption scheme with (super-polynomially large) identity space Z and H =
(Kg, Eval, Trap) be a secure trapdoor hash function [28] with randomness space R. Our generic con-
struction of CUS, named USge,, is depicted in Fig.
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Kg(1F): Sign(sk, M):
(pkg, sks) « S.Kg(1¥) parse sk as (sks,msk)
(mpk, msk) « IBE.Kg(1*%) I —4 7, (C,w) < IBE.EncRand(mpk, I)
(pky, sky) «— H.Kg(1%) R «g R, C « H.Eval(pky, C, R)
return (pk, sk) := ((pkg, pky, mpk), (sks, msk)) § < S.Sign(sks, M||I]|C)
D — IBE.EncPltx(w, 9)
return o := (C,D, I, R)

UConv(sk): SConv(sk, M, 0): Ver(pk, M, o, cvt):
parse sk as (sks,msk) parse sk as (sks,msk) parse pk as (pkg, pky, mpk)
return ucvt := msk parse 0 — (C, D, I, R) parse o as (C, D, I, R), cvt as sk;
sky < IBE.Extract(msk, /) d « IBE.Dec(sky,mpk, (C, D))
return cvt := sky C «+ H.Eval(pky, C, R)
return S.Ver(pke, M||I||C, 6)

Figure 3: Alternative Generic Construction of Undeniable Signature, USgen

REMARK 9 : One may notice that the trapdoor property of function H is never used in the scheme
USGen- The trapdoor property is only used in the security proof, i.e. the proof of invisibility, as we
shall see later.

Signature Space. Denote by Sigg be the ciphertext space. Then The signature space S of USgen
is defined to be the set of all tuples of the form (C, D, I, R) where (C,D) € Sigg, I € Z and R € R;
while the converted signature space S’ is defined to be the set of all tuples of the form (o, sk;) where
o € § and sky is in the space of user private keys in IBE.

Confirmation/Disavowal Protocol. Given a signature o = (C, D, I, R), the signer first computes
sky as specified in the scheme using msk, and uses it to recover § from (C, D). It checks the validity

of § under pkg. If it is valid, the signer confirms the validity of o by starting an execution of a general
zero-knowledge proof system showing that (J, sky, msk) is in the following NP language:

Ly := {((5, sky;,msk) : sk; = IBE.Extract(msk, I) A § = IBE.Dec(sk;,mpk, (C, D)) A S.Ver(pkg, M,5) = 1}

where M := M||I||H.Eval(pky, C, R). Otherwise, it disavows o by starting an execution of another
general zero-knowledge proof system showing that (J, sky, msk) is in the following NP language:

Ly := {(6, sky,msk) : sk; = IBE.Extract(msk, I) A § = IBE.Dec(sk;,mpk, (C, D)) A S.Ver(pkg, M,0) = 0}

Theorem 7.1. Let A be an adversary that (t,qs, qc, g4, €)-breaks the strong unforgeability of USgen.-
Then there exists another adversary B that (t',qs,€)-breaks the strong unforgeability of S and an
algorithm B’ that (t",€")-breaks the collision resistance of H with

't~t and €+ >¢

Theorem 7.2. Let D be a distinguisher that (t,qs, qsc, G, qd, €)-breaks the invisibility of USgen. Sup-
pose that the confirmation protocol and the disavowal protocol are e.-zero-knowledge and eq-zero-
knowledge respectively. Then there exists an algorithm Cy that (t1,€1)-breaks the IND-sID-CPA secu-
rity of IBE, an algorithm Cy that (t2, qs, s, 4e, 4d, €2)-breaks the strong unforgeability of USgen, and an
algorithm Cs that (ts, €3)-breaks the collision-resistance of the hash function H with

t1,to,t3~t and €1+ €+ €3> €— qe€c — Qq€qd

The proofs of the two theorems above are deferred to Appendix [C| and [D] respectively.
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Theorem 7.3. Suppose that the Disavow protocol is (t,€)-sound. Then USgey, is (', €')-non-claimable,
where
t'~t and € <e.

Proof. Let A be an adversary against the non-claimability of USg.,, and let its output be (pk, M, o, cvt)
where pk = (pkg, pky,mpk), 0 = (C,D,I, R) and cvt = sk;. The validity of sk; shows that it is
indeed the corresponding secret key of identity I. Now suppose that Ver(pk, M, o,cvt) = 1. That is,
S.Ver(pks, M||I||C,5) = 1, where C' = H.Eval(pky, C, R) and § = IBE.Dec(sk;,mpk, (C, D)). By the
consistency of IBE, it indicates that the plaintext encapsulated in (C, D, I, R) is indeed the signer’s
signature on the message. Then by the soundness of Disavow protocol, we have that with probability
at most € the signer is able to fool the verifier. O

Discussion. We stress that the alternative generic construction of undeniable signature scheme is
on the theoretic level. Though the algorithms are efficient, the two protocols involve general zero-
knowledge proofs, which are usually complex and inefficient. Unfortunately, it still remains unknown
if an instantiation with comparable efficiency to our concrete construction can be built. The main
difficulty is in the incompatibility between the signature space of the signature scheme and the plaintext
space of the IBE scheme.

8 Conclusion

We introduced the claimability attack into the context of convertible undeniable signature, and showed
that some schemes are vulnerable to this attack. We then proposed a new concrete and highly efficient
construction of fully functional convertible undeniable signature scheme immune to the new attack,
and is provably secure without random oracles. It has short selective converter and universal converter,
and admits efficient and simple confirmation and disavowal protocols. Our scheme supports delegation
of conversion and confirmation/disavowal, threshold conversion and some other extensions. We also
proposed an alternative generic construction of non-claimable convertible undeniable signature scheme,
which is immune to claimability attacks as well. It also has short selective converter. The only
disadvantage is the inefficient confirmation/disavowal protocol.
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A Proof of Theorem [5.1]

Proof. In the unforgeability game, we let M; be the i-th signing query, (d;,7;,6;) be the answer, and
s; be the exponent such that v; = Y (and 0; = u®). We also let (M, o) be the adversary’s forgery,
where o = (9,7,0) = (0,Y*,u®). Below we distinguish two cases:

Type-1: 31 <i < ¢, v =; (and 0 = 6;), which implies that s = s;.
Type-2: V1 < j < ¢, v#7; (and 6 # 6;), which implies that s & {s1,--- , s, }.

We denote by F; (resp. Fa) the forger who runs F but then only outputs the forgery if it is Type-1
(resp. Type-2). We show in the following two lemmas that Type-1 forger can be reduced to the
gs-SDH problem, and Type-2 forger can be reduced to the gs-HSDH problem (and discrete logarithm
problem). Then the theorem follows. O
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Lemma A.1. Suppose that Fi is a Type-1 forger that (t1,4s, 4sc, e, 4d, €1)-breaks the existential un-
forgeability of USgpar. Then there exists an adversary A that (t',€')-breaks the qs-SDH assumption

with "
m
t'~t; and 6/290(61_% —QS)
qs

Proof. To prove the lemma, we proceed in a series of games. In the following we denote by X; the
event that F; wins in the ¢-th game.

Game 0. This is the original unforgeability game. By definition, we have that

PI‘[X()] = €1 (9)

Game 1. Now we modify the game so that the key for the hash function is generated by PHF.TrapGen.
That is, the key for H is now chosen via (x’,7) g PHF.TrapGen(1*, g, h) for uniformly selected
generators g, h € G. By the definition of H, we obtain that

PrXy] > Pr[Xo] — ¢ (10)

Game 2. In this game we choose the s; used for answering signing queries not upon each signing
query, but at the onset of the game. Since the s;’s were selected independently, this change is only
conceptual. Let S = U?;l{sj} be the set of all s;’s, and let S/ = S\ {s;}. We also change the selection
of the elements g, h used during (x’,7) < PHF.TrapGen(1%, g, h) as follows. First, we choose at random
i€{l,---,qs} and a generator § € G. Define

p'(n) =[]+t and p(n) =]](n+1)

test tes

Note that deg(p’) = g5 — 1 and deg(p) = ¢s. We then set
g = gpi(:r)’ h = §p(m) and X := gm = gmpl(x)

all of which can be computed from §, §%,--- ,§*". Here x is uniformly chosen from Zy and is (part
of ) the secret key of the scheme. Note that we can compute (z + s;)-th roots for j # ¢ from g and for
all j from h, and that ¢ is independent of the adversary’s view. This change is also conceptual. So we
have that

PI‘[XQ] = PI‘[Xl] (11)

Game 3. We then change the way that the signature requests from the adversary are answered.
Observe that the way we modified the generation of g and h in Game 2 implies that for any j with
v; # vi and 05 # 0; (thus s; # s;), we have that

1

1
0 = Ho(M;)™55 = (g"™an"s )™

(g‘le Htesi (x+t)§ij Htes(x"'t)) ﬁ — gan Htesi,j (a;+t)+b1\4]. Htgsj (z+t) (12)
for (ans,bn;) < PHF.TrapEval(r, M;). Therefore, for any j # i, we can generate the signatures
(05,75,65) = (65, Y%, u%) without explicitly knowing the secret key z, but instead using the right-
hand side of for computing d;. Note that in this game the game challenger still selects at random
y € Zy by itself and computes Y as YV := g'/¥, and that the oracles of selective /universal conversion,
confirmation/disavowal are all simulated by the game challenger using its knowledge of y. Obviously,
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this change in the game does not bring any difference to the adversary’s advantage, and so we have
that
Pr[Xg] == PT[XQ] (13)

Game 4. We now change the game so that if an s; occurs more than m times, i.e. if there are pairwise

distinct indices ji,- -, jm41 With v, = -+ = ;,.,, and 5, = --- =6, ., (thus s;;, =--- =5, .,),

we then abort and raise an event aborte,. There are at most (mqul) such tuples (ji,- -, jm+1). For
each tuple, the probability for s;, =--- =s;, ., is 1/p™. A union bound shows that an (m 4+ 1)-wise

collision occurs with probability at most

< 1 m—+1
Prlaborte] < < q > <9

m+1 pT" - pm
Hence, we get that

qm+1
S

Pr[X,4] > Pr[X3] — Pr[aborte] > Pr[X3] — e

(14)

Game 5. In this game we abort and raise an event abortp,qs if the adversary returns an s € S, i.e.
the adversary returns a forgery (0,7, ) with v = v; and 6 = 6; for some j but v # ; and 0 # 6; (thus
s # ;). Since i is uniformly chosen from {1,--- ,¢s}, and independent from the adversary’s view, we
have that Pr[abortp,qs] < 1 —1/¢s for any choice of v; and ¢;. Hence, we obtain that

1
Pr[X5] = Pr[X4 A —abortpygs] > —Pr[Xy] (15)
gs

Game 6. If there is an index j with v; = v; and 0; = 0; (thus s; = s;) but ap;; # 0 or if ayy = 0
for the adversary’s forgery message, we then abort and raise an event abortp,q,. That is, we raise
abortpaq.s if and only if we do not have an; =0 for all j with v; = ~;, 6; = 0; and apr # 0. Since we
have limited the number of such j to m in Game 4, by the programmability of H, we then have that
Prlabortpag.a] < 1 — ¢ for any choice of the M; and s;. So we get that

Pr[Xg] = Pr[X5 A mabortyad.a] > ¢ - Pr[Xs] (16)

Note that in this game, the game challenger never really uses the secret key = to generate signatures:
to generate 0; for s; # s;, we use which does not require x. If abortp,q., does not occur, then
ap; = 0 whenever s; = s;, so we can also use to sign without the knowledge of . On the other
hand, if abortp,q.a does occur, we must abort anyway, so actually no signature is required. Besides,
Y in the public key is set according to the scheme, i.e. Y := ¢!/ for some random y € Zyp, and the
challenger answers the adversary’s universal conversion query and confirmation/disavowal queries by
using its knowledge of y only. All together means that Game 6 does not use knowledge about the
secret key x.

On the other hand, the adversary in Game 6 produces a forgery (M, (J,,0)) whenever Xg occurs,
which implies —abortp,q.s and —abortp,g.a, we have that v =Y* =YY% =~;, § = u®* = u® = 6;, and

1

L appi(a) app(x)
§ = Hy (M) = (gaMHtesi<x+t>gbﬂfﬂtes<m+t>> =gt '@ = TR g

From ¢ and its knowledge about g and the s;’s, the game challenger can derive

1

an i(a:

5 = <l§5> M :gr;“)
g M

Since ged(n + s,p'(n)) = 1 (where we interpret 1 + s and p‘(n) as polynomials in 7)), we can write
p'(n)/(n+s) = p'(n) +qo/(n+s) for some polynomial p’(n) of degree at most s —2 and some constant
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go # 0. Note that the game challenger knows all s;’s including s, since these were selected by it and
s = s;. Again, we can compute ¢’ := §° *). We finally obtain that

1 ) 1
oo (1) < ()
g

which, together with s, is a solution to the given ¢,-SDH problem. This means that from Game 6, we
can construct an adversary A that (¢, €')-breaks the ¢;-SDH assumption, where the running time ¢’ is
approximately t1, and A’s advantage is € > Pr[Xg].

Putting all together, we obtain that

m+1
E/Zw(ﬂ—qs —¢>
pm

O

Lemma A.2. Suppose that Fy is a Type-2 forger that (t2,qs, 4sc, e, 4d, €2)-breaks the existential un-
forgeability of USgpar. Then there exists an adversary A that (t',€")-breaks the qs-HSDH assumption
and an adversary A* that (t",¢")-breaks the Discrete Logarithm assumption in G such that

V.t ~ty and €+ € >e—¢

Proof. Again, we proceed in a series of games and denote by X; the event that F> wins the the i-th
game.

Game 0. This is the original game. By definition, we have that

PI‘[XQ] = €2 (17)

Game 1. Now we modify the game so that the key for H is generated by PHF.TrapGen. That is,
we now choose the key for H via (x/,7) < PHF.TrapGen(1*, g, h) for uniformly selected generators
g, h € G. By the programmability of H, we obtain that

PrX1] > Pr[Xo] - ¢ (18)

Game 2. In this game we change the way that g and h are chosen. Now we set g := g, h := g%, X := g*
and u := §°, where c¢ is uniformly selected from Ly, and g, g", §? are from an instance of the HSDH
problem. Obviously, g, h, u are uniformly distributed in G, and this change is purely conceptual. Then
for each signature query M, we set

feby
s (575 )T W and 6 e
= g¥t .y = (%) an =1

for (ans,,bu;) < PHF.TrapEval(7, M;). Obviously,

an;tebg

it B § L 1
0 =3 T = ("B )T SR (M) T,y = ()Y =YY and 0 = u

So (05,7;,0;) is a valid (and uniformly distributed) signature on M;. Therefore, these changes do not
bring any difference to the adversary’s advantage, and we have that

PI’[XQ] = PI'[Xl] (19)
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Note that in this game, the game challenger need not know the values of the s;’s. On the other hand,
the challenger still knows y and sets Y according to the scheme. The selective/universal conversion
and confirmation/disavowal protocols are simulated by it using the knowledge of y.

Game 3. We now abort and raise an event abortyog if aps + ¢ - by = 0 mod p for the message in the
adversary’s forgery or aps; + ¢+ by, = 0 mod p for any signature query M;. Since we chose ¢ in Game
2 as a uniform exponent and only pass g and h = ¢° (but no further information about ¢) to the
adversary and PHF.TrapGen, these algorithms break a discrete logarithm problem. We get that

Pr[X3] > Pr[Xs] — Prlabortjog] > Pr[Xs] — €’ (20)

for a suitable (¢”, ¢”)-attacker A* against the discrete logarithm problem in G with ¢’ ~ ts.

Now in this game, we can construct an adversary A against the gs-HSDH assumption. A takes
inputs §, @, g%, g/ @ts0) gor g1 ... gl/(@tsas) Gses gses and simulates Game 3 with adversary Fo. A
uses its inputs as if it was selected by the experiment. Note that in Game 3, the secret key z is
never used. Now, whenever F, outputs a forgery (M, (6,7v,0)) with v & {(g°*)¥,---,(g%+)Y} and
0 ¢ {u, - us}, and

1 1
6= (gaMhb]w> whs (ga]LIJrC'bAI) ots
Since ap 4 ¢ - by Z 0 mod p, we can compute a nontrivial (z + s)-th root of g. Therefore, we have

_r 1
8 = demtetn = gats
which, together with §° = ¢° = (Y*)Y = ¥ and @° = u® = 6, forms a solution to the given ¢,-HSDH
problem.

Putting everything together, we obtain that ¢ + ¢’ > e — ¢. O

B Proof of Theorem 5.2

Proof. Again, to prove the theorem, we proceed in a series of games. We denote by X; the event
that D wins the i-th game. In these games, we let M; be the j-th signature query, (6;,7;,6;) be the
corresponding answer, and s; be the exponent such that v; = Y and 0; = u®. We also let M be the
challenge message chosen by the adversary and o = (4,, ) be the corresponding challenge signature.

Game 0. This is the original invisibility game. By definition, we have that

Pr[Xp] =€ (21)

Game 1. We modify the game so that now the key for the hash function H is generated using
PHF.TrapGen. Namely, we use the trapdoor key generation (x’,7) < PHF.TrapGen(1¥, g, ) for uni-
formly selected generators g, h € G. By the programmability of H, we have that

Pr[Xy] > Pr[Xo] — ¢ (22)

Game 2. For any message/signature pair (M, 0;) submitted by the adversary to the selective con-
version oracle or the confirmation oracle, if the adversary never queried the signing oracle on M, or
it requested a signature on M; but the answer returned by the oracle is different from o;, we abort
and raise an event aborts,s. Besides, for a disavowal query (M, 0;), if the adversary ever queried the
signing oracle on M; and obtained o; from it, the disavowal oracle simply returns L. Obviously, by
the strong unforgeability of USgpas, we have that

Pr[Xs] > Pr[X;]| — Pr[abortgys] > Pr[X;] — ¢ (23)
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Game 3. We change confirmation oracle so that given a message/signature pair (M, o), the oracle
runs the simulator of the confirmation protocol to produce an indistinguishable proof. By the zero
knowledge property of the confirmation protocol and the union bound, we have that

Pr[X3] > Pr[Xs] — q. - €2 (24)

Game 4. Similarly, we now change disavowal oracle so that given a message/signature pair (M;, oy),
the oracle runs the simulator of the disavowal protocol to produce an indistinguishable proof. By the
zero knowledge property of the disavowal protocol and the union bound, we have that

Pr[Xy] > Pr[X3] — qq - €3 (25)

Game 5. Now we change the selection of g, hand Y. Wenow set g := §, h := §¢, v := §%, X := ¢* = §*
and YV := (gﬁ )d, where §,%, §° are from a random instance of the DHSDH problem, and ¢, d are
uniformly chosen from Z,. Note that the secret key y is implicitly defined to be y = (d - log; @)L
Obviously, this change is purely conceptual. Then for each signature query Mj, the game challenger

computes

1 an;+ebu;
) , oy =Y = (%)% and 6 = u® =@

1 1
(Sj = HH,(Mj)ﬁs]' _ (gan hij) TS (gz+5j
for (apr;, bar;) < PHF. TrapEval(7, M;). To selectively convert (d;,7;), the oracle returns

d-log; 4 -
V] = "}/‘;/ = ((’as])d)( g ) = ~sj

Note that all of the signature queries and selective conversion queries can be answered using the tuples
(gl/ (@ts;) g°,u%) given in the DHSDH problem instance. Clearly, this change does not bring any
difference to the adversary’s advantage. Therefore, we have that

PI'[X5] = PI'[X4] (26)
Note that in Game 5, only the generation of the challenge signature requires the knowledge of the
secret key x.

Game 6. In this game if for the challenge message M we have that ay + ¢- byy = 0 mod p for
(anr,bar) <+ PHF.TrapEval(r, M), we then abort and raise an event abortj,g. Since we chose c as a
uniform exponent and only pass g and h = ¢g¢ (but no further information about ¢) to the adversary
and PHF.TrapGen, these algorithms break a discrete logarithm. Hence we have that

Pr[Xs] = Pr[X5] — Prlabortiog] > Pr[X5] — €’ (27)

for a suitable (¢”, ¢”)-attacker A’ on the discrete logarithm problem in G with ¢’ ~ ¢.

Game 7. In this game we change the generation of the challenge signature. Given the challenge
message M from the adversary, the challenger computes

§=zpmtety oy —ys = (@°)? and =4

where Z, and @® are from the given instance of the DHSDH problem. If the bit in the DHSDH
assumption is b = 0, we have that

apr+cbyy __1\amteby ap+cb TL L
5 — ZO — g:H—S — g M M = HK’(M) z+s
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So (d,7,0) is a valid signature on M. On the other hand, if the bit is b = 1, we have that Z; is a
random element of G, and so is 6. So (d,7,6) is a random element from the signature space. The
challenger returns o := (d,7,6) to the adversary. It is readily seen that the challenge signature is
identically distributed as a real one. So we have that

Pr[X7] = Pr[Xg] (28)

Note that in Game 7, no knowledge of the secret key z is required. We then can build another
algorithm for breaking the ¢,-DHSDH assumption using the adversary in this game, whose running
time is approximately the same as t. Therefore, we have that

e > PT[X7] (29)

Putting everything together, we obtain that € > e — ¢ —€1 —q.- €2 —qq - €3 — €”. O

C Proof of Theorem [7.1]

Proof. We proceed in a series of games.

Game 0. This is the original unforgeability game. By definition, we have that

Pr[Xo] =€

Game 1. Consider the signatures returned by the signature oracle and those submitted by the ad-
versary to the selective conversion, confirmation and disavowal oracles, if there exist two signatures
say (Cy, D;, I;, R;) and (Cj, Dj, 1, Rj) with H.Eval(pky, C;, R;) = H.Eval(pky, Cj, Rj) but (C;, R;) #
(Cj,Rj), we abort and raise an event aborte,. If this event happens, these algorithms break the
collision resistance of the hash function. We get that

Pr[X1] > Pr[Xo] — ¢’

for a suitable (t”,€”)-attacker B’ against the collision resistance of H with ¢ ~ t. Next we show that
Pr[X;] is upper bounded by ¢ by constructing an algorithm B against the strong unforgeability of S.

Algorithm B runs A as a subroutine. Given a public key pkg of signature scheme S, B runs
IBE.Kg(1*) and H.Kg(1¥) to generate key pairs for IBE and H respectively, say (mpk,msk) and (pky, sky),
and invokes A on input ((pk = (pkg, pky,mpk),msk). It then answers queries issued by A as below.

Signature Query. Given a message M, B first randomly selects an identity I € 7 and a random
number R € R, and calls IBE.EncRand on input (mpk, I) to generate (C,w). It then computes the hash
value C' of C' and R, and asks its own signature oracle to produce a signature § on M|/I|C. After
that, B runs IBE.EncPltx on input (w,d) to generate D. It returns (C, D, I, R) back to A.

Confirmation/Disavowal Query. Given a message-signature pair, i.e. (M,oc = (C,D,I,R)), B
first checks the validity of o as in handling selective conversion queries. If valid, it starts an execution
of the confirmation protocol with A; otherwise, it starts an execution of the disavowal protocol with
A. In either case, B uses (J,sks,msk) as the witness, where ¢, sk; are derived from msk and o as
specified in the scheme.

At the end of the game, A outputs its forgery (M* o* = (C*,D*, I*, R*)). Suppose that A4
succeeds, and thus ¢* is a valid signature on M* under pk. Let skj« be the secret key of I* in
IBE and let 6* be the plaintext recovered from (C*, D*) using sky+, both of which can be computed
by B. We have that S.Ver(pks, M*||I*||C",6*) = 1, where C* = H.Eval(pky, C*, R*). So B outputs
(M*||I*||C”, 6%) as its forgery for the signature scheme S.
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Now we assume that (M*||I*|C", 6*) is the same as (M||I||C,§) that B ever obtained from its
signature oracle. Since I* = I and C" = C, according to the game specification, i.e. event abortc
did not happen, we have that C* = C and R* = R. By the separability of IBE, it turns out that
D* = D as well. Therefore, we obtain that (M*,0*) = (M, o), which contradicts the success of A.
Consequently, (M*||1 *||€*,5*) is a valid forgery for S, and B breaks the strong unforgeability of S
with probability at least the same as that of A in breaking the strong unforgeability of USgen,.

Putting everything together, we then obtain that € + ¢’ > e. O

D Proof of Theorem [7.2]

Proof. We proceed in a series of invisibility games.

Game 0. This is the original game. By the definition, we have that

PI‘[X()] =€

Game 1. Consider the signatures returned by the signature oracle and those submitted by the ad-
versary to the selective conversion, confirmation and disavowal oracles, if there exist two signatures
say (CZ, Di, L;, Rz) and (Cj, Dj, Ij, Rj) with H.Eval(pkH, Ci, Rz) = H.Eval(pkH, Cj, Rj) but (Cz, Rz) 75
(Cj, Rj), we abort and raise an event aborte,. If this event happens, these algorithms break the
collision resistance of the hash function. We get that

Pr[Xl] Z PI“[X()] — €3

for a suitable (t3, e3)-attacker C3 against the collision resistance of H with ¢3 ~ t.

Game 2. Now consider the query (M, o) that D submits to the selective conversion oracle, confir-
mation oracle or disavowal oracle. If ¢ is a valid signature on M but (M, o) was not a pair that
the adversary obtained from its signature oracle, we abort and raise an event abortg,s. If this event
happens, these algorithms break the strong unforgeability of USge,. We have that

PT[XQ] 2 Pl"[Xl] — €9

for a suitable (t2, €2)-attacker Co against the strong unforgeability of USge, with to = t.

Game 3. In this game all confirmation queries are handled by calling the simulator of the confirmation
protocol instead of using msk, which may rewind the adversary. Since the protocol is zero-knowledge,
this change brings a difference of at most g.€. to the adversary’s success probability. So we have that

PI‘[Xg] Z PI‘[XQ] — (c€e

where ¢, is the number of confirmation queries.

Game 4. Similar to Game 3, now we answer all the disavowal queries using the simulator of the
disavowal protocol. We obtain that

Pr[Xy] > Pr[X3] — qq€q

where g4 is the number of disavowal queries.

Game 5. We change the game so that the identity I* in the challenge signature ¢* is now chosen at
the very onset of the game, even before the generation of the public key of USge,. This change is
purely conceptual. So we have

PI"[X5] = PI”{X4]
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Next we show that Pr[Xj5] is upper bounded by €; by constructing an algorithm C; for breaking the
IND-sID-CPA security of IBE, which runs the adversary D as a subroutine.

Algorithm C; selects at random an identity I* € Z, submits it to its challenger in the IND-sID-CPA
game, and is returned a master public key mpk. It then generates a key pair (pkg, sks) for the signature
scheme S and a key pair (pky, skg) for the hash function H, and invokes D on input (pkg, pky, mpk). Ci
then answers D’s queries as below.

Signature Query. Given a message M, C; selects an identity I € Z\{I*} at random, and computes
a signature o using skg by following the Sign algorithm of USge,.

Selective Conversion Query. Given (M,oc = (C,D,I,R)), C; submits I to its extraction oracle
and obtains sk;. It returns sk; to D.

Confirmation/Disavowal Query. These queries are handled by C; using the corresponding simu-
lator, as specified by the game.

At some time, D submits a message M*. C; first runs IBE.EncRand(mpk, I*) and obtains C’. Tt
selects at random R’ € R, and computes C' = H.Eval(pky, C', R'). Then it signs M*|I*||C" using
sks. C; and obtains dg. C; also selects at random another signature oy from the signature space of
S. It then submits (dp,d1) to its challenger of the IND-sID-CPA game, which chooses one of them
at random and encrypts. After receiving the ciphertext (C*, D*) from the challenger, C; uses sky to
trapdoor invert C* and finds R* such that C" = H.Eval(pky, C*, R*), and returns o* = (C*, D*, I*, R*)
back to D. Note that if (C*, D*) is a ciphertext of dp, o™ is also a well distributed and valid signature.
If (C*, D*) is a ciphertext of d; which is randomly chosen from the signature space of S, o* is also a
random signature uniformly distributed in the signature space of USgep,.

C; continues to answer D’s queries as above. Finally, D outputs a bit ¥'. C; then outputs ¢’ and
halts. Clearly, all the queries submitted by D were perfectly answered, and the challenge signature
was also perfectly generated. If D succeeds in outputting the correct bit, so does C;. Thus, we have
that

€1 Z PI"[X5]

Putting everything together, we then obtain that €; + €2 + €3 > € — q.€c — qu€q. O

E Security of DHSDH Assumption in Generic Bilinear Groups

To give more confidence in the DHSDH assumption, we prove a lower bound of computational com-
plexity of ¢-DHSDH problem in the generic group model [46l [3]. In this model, the adversary can only
perform group operations in G and G and the bilinear pairing e : G x G — G, by interacting with an
oracle O so that it only sees group elements encoded as unique random strings. This is modeled using
two encoding functions, & and &’ for G and G respectively. A group element g' € G is represented
as the string £(¢). Elements of Gp are represented similarly using £’. For convenience, we re-state the
DHSDH assumption briefly below.

The ¢-DHSDH assumption states that for any adversary D, for x,3,s1,---,84,5 g Zp and
Z «—g G, the following is negligible.

q q

Pr [D (g,g””ygﬁ,{gﬁ,gsigﬁsi} ,g"s,g#ﬁ = 1] —Pr [D (g,gz,gﬁy{gﬁ,gs%gﬁsi} ,g"s,Z) = 1”
1

Theorem E.1. Let D be an algorithm that solves the g-DHSDH problem in the generic group model,
making at most £ queries to the oracles computing the group action in G, G, and the oracle computing
the bilinear pairing e. Suppose that x,[3,s1, -+ ,Sq,S,7 «g Lp, b g {0,1}, and &, & are chosen at
random. Set wy, = 1/(x 4+ s) and wi_p = r. Then D’s advantage

€:= ‘PI[D(ﬁ(l)yf(x)uf(mv {f(xisz

=1 i=
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s bounded by

2Al+3g+6)%+q+1 _ <(£+q)2q>
N p p
Proof. We construct a simulator S that simulates the generic group oracles without committing to
values for z, 3,51, , 54, 8,7. S keeps track of the group elements by their discrete logarithms to the
generator ¢ € G and e(g,g9) € Gr. Since the variables z, 3, s1, - , 84, s,r are undetermined, these
discrete logarithms are polynomials in [z, 8,51, - , Sq, s, 7], which we denote by p; for expressions
in G and p} for expressions in Gr. S then maps the corresponding group elements to random strings
it gives to D, i.e. in group G it associates p; to & = &(p;), and in Gy it associates p} to & = &' (p;).
At the beginning of the game, S creates the following strings to the adversary, which corresponds
to an instance of the DHSDH problem.

e three strings, &g, &1, &2, which binds to pg = 1, p1 = « and p2 = 3 respectively;

o 3q strings, (£3i,&3i+1,&3i4+2) for i = 1,--- ¢, which binds to p3; = ﬁsi, P3i+1 = Si, and p3jyo =
0Bs; respectively;
1

e and

e three strings, {3443, &3¢+4, £3¢+5, which binds to 3s, wo and w; respectively, where wy, =
Wi—p =T.

For simplicity and to avoid dealing with ratios, we reduce all the expressions to the common denomi-
nator A = (z + s) [[7;(z + s;), and for all ¢, we define m; = p; A and 7}, = p/A. Note that all these
7; are polynomials in Fplx, 3, s1,- - , ¢, s, 7] of degree at most ¢ + 3.

S maintains two lists, L which contains all the 3¢ + 6 polynomial-string pairs created above i.e.
(7, &), and L' which is initially empty, and initiates two counters 7 = 3¢ + 6 and 7" = 0. It gives all
the strings created above to D, and then simulates the oracles for D as below, where without loss of
generality, we assume that D only queries S on legitimate strings that were previously revealed.

Group Actions. To compute the product/division of two operands in the group G represented as &;
and &;, where 0 <4,j < 7, S computes 7, < m; & 7; depending on whether a multiplication or a
division is requested. If w, = m; for some [ with 0 <[ < 7, S sets &, = £; otherwise, it sets &; to
a random string in {0, 1}* distinct from the strings in L. S then appends the new pair (7., &;)
to L, gives &; to D, and increases T by one. Group action queries in G are treated similarly.

Pairings. Given two operands ¢ and & with 0 < 4,5 < 7, S computes the product 7/, «— m; - 7;. If
n, = m, for some | with 0 <1 < 7/, S sets £, = &; otherwise, it sets £, to a random string in
0,1}* distinct from those in the list L’. S then appends the new pair (7,,£¢.,) to L', gives £/,
T T T

to D, and increases 7’ by one.

Note that at any time in the game, all the polynomials used by S to represent an element in G have
degree at most ¢ + 3, and the polynomials to represent elements in Gr have degree at most 2q + 6.

When D terminates after making at most £ queries, it outputs a bit o’ for the guess of b. S chooses
a random assignment, i.e. x =z, 8 = (%, s1 = 57, -+, §¢ = sy, s = s, and r = r*. The simulation
provided by S is perfect and reveals nothing to D unless the chosen random values for the variables
results in a non-trivial equality relation between the simulated group elements that was not revealed

to D. This happens if either of the following holds:

mi (2%, B, 81,00 sg, 8T, 1) —mi(at, B, 81,0, sy, 8%, 77) = 0 but m; # m; for some 0 < i # j < 7
m(a*, 8%, 81, 8y, 8%, 7) =T (2, B, 8T, -y 85, 87, 77) = 0 but 7; # 7} for some 0 < i # j < 7';

any relation similar to the above in which 1/(x + s) and r have been exchanged;

A(x*a/@*a ST7 e 7827 S*7T*) =0.

Ll
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Because the group operations in G and Gp are implemented by the addition/subtraction between
polynomials in L and L’ respectively, and the pairing operations are implemented by the multiplication
of polynomials in L, it is unable for the adversary to trivially obtain the polynomial (z+ s)A via these
operations.

Since m; — 7; for fixed 7 and j is of degree at most g + 3, it equals zero for a random assignment
of the variables in Z, with probability at most (¢ + 3)/p. Similarly, for fixed ¢ and j, 7, — 7r§ becomes
zero with probability (2¢ + 6)/p. The same probabilities can be found in the third case. Regarding
the fourth case, we have that the probability that it occurs is at most (¢ + 1)/p.

Conditioned on that the events above do not happen, the distribution of the bit b in D’s view is
independent and D’s probability of making a correct guess is exactly 1/2. Therefore, we have that D
makes a correct guess with advantage bounded by

3 " 2g + 6 1
<2 ((5)50(0)"0)
2) p 2 D 4

Since 7 + 7 < £+ 3q + 6, we then obtain that

- 20+ 3¢+ 6)%q+q+1
B p

This completes the proof. O
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