
Fault Attacks Against emv Signatures

Jean-Sébastien Coron1, David Naccache2, and Mehdi Tibouchi2

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi
l-1359 Luxembourg, Luxembourg

{jean-sebastien.coron, avradip.mandal}@uni.lu
2 École normale supérieure

Département d’informatique, Groupe de Cryptographie
45, rue d’Ulm, f-75230 Paris Cedex 05, France
{david.naccache, mehdi.tibouchi}@ens.fr

Abstract. At ches 2009, Coron, Joux, Kizhvatov, Naccache and Paillier (cjknp) exhibited a fault
attack against rsa signatures with partially known messages. This attack allows factoring the public
modulus N . While the size of the unknown message part (ump) increases with the number of faulty
signatures available, the complexity of cjknp’s attack increases exponentially with the number of faulty
signatures.

This paper describes a simpler attack, whose complexity is polynomial in the number of faults; conse-
quently, the new attack can handle much larger umps. The new technique can factor N in a fraction of
a second using ten faulty emv signatures – a target beyond cjknp’s reach.

We show how to apply the attack even when N is unknown, a frequent situation in real-life attacks.

Keywords: Fault Attacks, Digital Signatures, rsa, iso/iec 9796-2, emv.

1 Introduction

rsa [21] is certainly the most widely used signature scheme. To sign a message m with rsa, the
signer first applies an encoding function µ to m, and then computes the signature σ = µ(m)d mod
N . To verify the signature, the receiver checks that

σe = µ(m) mod N.

The Chinese Remainder Theorem (crt) is often used to reduce the signer’s computational load.
This is done by computing:

σp = µ(m)d mod p and σq = µ(m)d mod q

and the signature σ is computed from σp and σq by Chinese Remaindering.
In [2], Boneh, DeMillo and Lipton showed that rsa implementations can be vulnerable to fault

attacks (see also [15]). Assuming that the attacker can induce a fault when σq is computed while
keeping the computation of σp correct, one gets

σp = µ(m)d mod p and σq 6= µ(m)d mod q

and the resulting (faulty) signature σ satisfies

σe = µ(m) mod p and σe 6= µ(m) mod q .

Whereby the attacker can then factor N by

gcd(σe − µ(m) mod N,N) = p . (1)

It is easy to see that Boneh et al.’s fault attack applies to any deterministic rsa encoding, e.g.
the Full Domain Hash (fdh) [1] encoding where

σ = H(m)d mod N

and H : {0, 1}∗ 7→ ZN is a hash function. The attack is also applicable to probabilistic signature
schemes where the randomizer used to generate the signature is sent along with the signature.

However, if the randomizer is only recovered when verifying the signature, or if some part of the
message is unknown, the attack is thwarted. For example, consider a signature σ = (m‖r)d mod N .
The random r is only be recovered when verifying a correct signature. Given a faulty signature,
the attacker cannot retrieve r nor infer (m‖r) which would be necessary to compute

gcd(σe − (m‖r) mod N,N) = p.

At ches 2009, Coron, Joux, Kizhvatov, Naccache and Paillier (cjknp) showed how to extend
Boneh et al.’s attack to rsa signatures with partially unknown messages (or unknown nonces) [4].
cjknp’s attack was illustrated with a probabilistic variant of the iso/iec 9796-2 standard [13], as
used in the emv specifications [10]. In iso/iec 9796-2 the encoded message has the form:

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m = m[1] ‖m[2] is split into two parts. cjknp show that if the unknown part of m[1] is not
too large (e.g. less than 160 bits for a 2048-bit rsa modulus), then a single faulty signature allows
to factor N as in Boneh et al.’s attack. cjknp’s attack is based on a technique due to Herrmann
and May [9] for finding small roots of linear equations modulo an unknown factor p of N ; [9] is itself
based on Coppersmith’s technique [3] for finding small roots of polynomial equations using the lll
algorithm [18]. In addition, [4] introduced a multi-fault attack using an extension of Coppersmith’s
attack. Multiple faults make it possible to attack larger unknown message parts (umps). However,
this comes at the cost of a complexity exponential in the number of faults.

This paper describes a simpler multiple fault attack. The new attack’s complexity is polynomial
in the number of faulty signatures. This allows us to tackle larger umps which were beyond [4]’s
reach. For example, in a typical use case of emv, ten faulty signatures are enough to factor N in a
fraction of a second with our new attack, whereas the attack in [4] was completely impractical in
such a situation.

Finally, we show that a similar technique can even recoverN from a collection of valid signatures,
so that the attack can be appplied to protocols in which public rsa parameters are not available
to outsiders, which do arise in practice (e.g. proprietary banking cards or e-passports).

2 Coron-Joux-Kizhvatov-Naccache-Paillier’s Attack

2.1 iso/iec 9796-2 Standard with Partially Unknown Message

[4] considers a randomized version of the iso/iec 9796-2 standard. iso/iec 9796-2 is an encoding
standard allowing partial or total message recovery [13, 14]. The encoding can be used with hash

functions H(m) of various digest sizes kh. When kh, the size of m and the size of N (denoted k)
are all multiples of 8, the iso/iec 9796-2 encoding of a message m = m[1] ‖m[2] is

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m[1] consists of the k− kh − 16 leftmost bits of m and m[2] represents the remaining bits of
m. In [14] it is required that kh ≥ 160. This is also the case in the emv specifications [10]. We note
that a practical forgery attack (without faults) against iso/iec 9796-2 was recently described in
[6], extending the attack in [5]. However the attack is only practical when m[1] can be fully chosen
by the adversary, which is not the case in emv and in the randomized version of the iso/iec 9796-2
standard considered in this paper.

More precisely, [4] considers a message m = m[1] ‖m[2] of the form

m[1] = α ‖ r ‖α′ , m[2] = data

where r is a message part unknown to the adversary (ump), α and α′ are strings known to the
adversary and data is some known or unknown string. The size of r is denoted by kr and the size
of m[1] is k − kh − 16 as required in iso/iec 9796-2. The encoded message is then

µ(m) = 6A16 ‖α ‖ r ‖α′ ‖H(α ‖ r ‖α′ ‖data) ‖ BC16 (2)

Therefore both r and H(α ‖ r ‖α′ ‖data) are unknown; the total number of unknown bits inside
µ(m) is then kr + kh.

2.2 Single Fault Attack

[4] describes a fault attack against the previous signature scheme. More precisely, one assumes that
after injecting a fault the opponent has a faulty signature σ such that:

σe = µ(m) mod p , σe 6= µ(m) mod q . (3)

From (2) one can write
µ(m) = t+ r · 2nr +H(m) · 28 (4)

where t is a known value. From (3) one gets:

σe = t+ r · 2nr +H(m) · 28 mod p .

This shows that (r,H(m)) must be a solution of the equation

a+ b · x+ c · y = 0 mod p (5)

where a := t − σe mod N , b := 2nr and c := 28 are known. This bivariate equation in x, y has a
small root (x0, y0) = (r,H(m)). To solve this equation, one can use a result by Herrmann and May
[9] based on Coppersmith’s technique for finding small roots of polynomial equations [3].

Coppersmith’s technique uses lll to obtain two polynomials h1(x, y) and h2(x, y) such that

h1(x0, y0) = h2(x0, y0) = 0

holds over the integers. Then one computes the resultant between h1 and h2 to recover the common
root (x0, y0). To that end, one must assume that h1 and h2 are algebraically independent. This ad

hoc assumption makes the method heuristic; nonetheless it turns out to work quite well in practice.
Then, given the root (x0, y0) one recovers the randomized encoded message µ(m) and factors N by
gcd.

Assuming that r < Nγ and H(m) ≤ N δ, for a balanced rsa modulus one gets the condition:

γ + δ ≤
√

2− 1
2

∼= 0.207 (6)

This means that for a 1024-bit modulus N , the total size of the unknowns x0 and y0 can be at
most 212 bits. For iso/iec 9796-2 signatures with kh = 160, the unknown r can thus be at most
52 bits long.

2.3 Extension to Several Faults Modulo the Same Factor

[4] shows how to extend the attack to multiple faults, in order to improve the bound on the ump’s
size. More precisely, given ` faults, one gets a system of equations:

ai + b · xi + c · yi = 0 mod p

for 1 ≤ i ≤ `, where ai, b and c are known and xi and yi are unknown and small. The goal being
still to recover p. Note that we can assume that b = 1 by multiplying the equations by b−1 mod N .

[4] considers a more general system where instead of known constants b and c, one considers
known bi and ci. More precisely, we are given ` different polynomials

fu(xu, yu) = au + xu + cuyu (7)

where each polynomial fu has a small root (ξu, νu) modulo p with |ξu| ≤ X and |νu| ≤ Y . Note
that, as in the basic case, we re-normalized each polynomial fu to equate the coefficient of xu in fu
to one.

[4] shows how to extend Coppersmith’s attack to these multiple polynomial equations, thereby
obtaining a better bound on the ump size. Theoretically, given a sufficiently large number of faults,
the extended attack could tackle cases where γ + δ is asymptotically close to 1

2 . However, the
attack’s complexity grows exponentially with the number of faults `, hence aiming at γ + δ values
significantly higher than the single fault maximum of 0.207 is totally impractical. We refer the
reader to Table 2 illustrating how intractable the problem gets as γ + δ approaches 1

2 .

3 A New Multiple Faults Attack

The previous attack is only applicable for a small number of faults because the lattice dimension
grows exponentially with the number of faults. This section describes a different attack that can
take advantage of a large number of faults and thus handle much longer umps. Indeed, in the new
attack, the lattice dimension remains equal to the number of faults, plus one.

As previously, we consider an encoding function given by equation (4)

µ(m) = t+ r · 2nr +H(m) · 28

Given a set of faulty signatures σi such that:

σei = µ(mi) = t+ ri · 2nr +H(mi) · 28 mod p

we get a set of equations of the form

Ai +B · xi +D · yi = 0 mod p

where Ai := t − σei mod N , B := 2nr and D := 28 are known. As in previous section, we can
assume that B = 1 by multiplying by the equations by B−1 mod N . This results in the following
equations

ai + xi + c · yi = 0 mod p (8)

for 1 ≤ i ≤ `, where ` is the number of faulty signatures. Note that as opposed to equations (7) in
the previous section, here we have a constant coefficient c, as in our fault attack.3

The new attack is similar to the one in [16]. Applying lll [18] to the lattice spanned by the
columns of the following matrix 

κa1 κa2 · · · κa` κN
1 0 · · · 0 0

1
. . .

...
...

. . . 0 0
1 0

 (9)

for a sufficiently large constant κ (as described in [17]), the attacker computes a short vector
(u1, . . . , u`) such that ∑̀

i=1

ui · ai = 0 mod N

This implies from (8) ∑̀
i=1

ui · xi + c ·

(∑̀
i=1

ui · yi

)
= 0 mod p

Letting

α0 :=
∑̀
i=1

ui · xi and β0 :=
∑̀
i=1

ui · yi (10)

this gives:
α0 + c · β0 = 0 mod p

Therefore the vector (α0, β0) belongs to the lattice

L(c, p) =
{

(α, β) ∈ Z2 | α+ c · β = 0 mod p
}

(11)

We see that if the ui’s are small, then (α0, β0) is a short vector in the lattice L(c, p). More
precisely, let v be a shortest non-zero vector of L(c, p). If the ui’s are sufficiently small such that
‖(α0, β0)‖ < ‖v‖, then by definition of v we must have α0 = β0 = 0. In this case we get:

∑̀
i=1

ui · xi =
∑̀
i=1

ui · yi = 0

3 The attack in this section would not work with different ci’s.

which means that the known vector (u1, . . . , u`) is orthogonal (in Z) to the two unknown vectors
(x1, . . . , x`) and (y1, . . . , y`).

Actually, the lll reduction of lattice (9) yields many other vectors (ui) which are orthogonal
in Z to both (xi) and (yi). Assuming that we can generate `− 2 such vectors, we can then obtain
a bi-dimensional lattice containing both vectors x = (xi) and y = (yi). Let x′ and y′ be a basis of
this lattice. Such basis can be obtained by applying lll a second time to the lattice spanned by
the columns of: 

κ′u1,1 · · · κ′u1,`
...

...
κ′u`−2,1 · · · κ′u`−2,`

1
. . .

1


for a sufficiently large constant κ′.

Consider now a vector v = (vi) that is orthogonal modulo N to both x′ and y′, that is:

∑̀
i=1

vi · x′i = 0 mod N,
∑̀
i=1

vi · y′i = 0 mod N

Then since x and y belong to the lattice spanned by x′ and y′, we must have
x = α · x′ + β · y′

y = α′ · x′ + β′ · y′

for some α, α′, β, β′ ∈ Z. This implies:

∑̀
i=1

vi · xi = 0 mod N,
∑̀
i=1

vi · yi = 0 mod N

Then from equation (8) this gives:

∑̀
i=1

vi · ai = 0 mod p (12)

Therefore gcd(
∑

i vi · ai, N) = p. Note that the previous computation can be simplified by
restricting ourselves to the three first components of x′ and y′; in that case, one obtains a unique
(up to a multiplicative constant) tri-dimensional vector v orthogonal modulo N to both the first
three components of x′ and the first three components of y′. Then equation (12) still holds and as
previously gcd(

∑
i vi · ai, N) = p.

It remains to justify why we can have ‖(α0, β0)‖ < ‖v‖, where v is a shortest non-zero vector
of L(c, p). We provide an argument similar to [20] (see also [8] for higher lattice dimensions). We
define a lattice L(c, p) to be B-good if any non-zero vector has a norm > B; we say that the lattice
is B-bad otherwise. Consider a fixed prime p. By definition of lattice L(c, p) in (11), the value of
c modulo p is determined by any non-zero vector in L(c, p). Since there are at most 4B2 vectors
in the disc of radius B, there are at most 4B2 lattices L(c, p) which are B-bad. Therefore for a

random c modulo p, the probability that a lattice is B-bad is at most 4B2/p. Taking B :=
√
p/3,

the probability that a lattice is B-bad is then at most 1
2 .

Conversely a lattice is B-good with probability at least 1
2 . This implies that if ‖(α0, β0)‖ ≤ √p/3,

then with probability at least 1
2 the vector (α0, β0) is shorter than the shortest non-zero vector in

L(c, p), which implies that α0 = β0 = 0 as required.
Here we have considered a fixed p and a random c modulo p; however in our attack c is a fixed

integer and p is random; therefore the previous analysis is heuristic only. More generally, if integers
α0 and β0 have different sizes, we obtain that α0 = β0 = 0 under the condition:

|α0| · |β0| <
p

3
(13)

Using lll we expect to obtain vectors (ui) of norm roughly N1/`, where ` is the number of
faulty signatures (see [16]). Let X and Y be upper bounds for the unknowns xi and yi. We thus
obtain from (10)

|α0| ≤ N1/` ·X, |β0| ≤ N1/` · Y

From (13) we obtain the following bound

N2/` ·X · Y <
p

3

With X = Nγ and Y = N δ this yields approximately

2
`

+ γ + δ <
1
2

(14)

Therefore, for a large number of faults ` we obtain the same asymptotic bound γ + δ < 1
2 as in

[4]; however the lattice dimension in (9) is only `+ 1 instead of being exponential in ` as in [4]. In
Section 5 we provide the result of practical simulations validating the attack. We then apply the
new technique to the emv specifications in Section 6.

4 Recovering Unknown Moduli

In many practical situations, the modulus N may not be available to the attacker. While contrary
to a basic cryptographic assumption, this is frequently the case in proprietary applications. The
technique described in the previous section can be adapted to recover unknown moduli N from
correct signatures when the public exponent e is small. Once N has been recovered, one can then
apply the fault attack described in the previous section.

As previously, we consider an encoding function given by equation (4)

µ(m) = t+ r · 2nr +H(m) · 28

Given a set of ` correct signatures σi such that

σei = µ(mi) = t+ ri · 2nr +H(mi) · 28 mod N

we obtain a set of ` equations of the form

Ai +B · xi +D · yi = 0 mod N (15)

where Ai := t − σei , B := 2nr and D := 28 are known, but xi, yi and N are unknown. Note that
as opposed to the previous section Ai is not reduced modulo N ; therefore the bit-size of Ai is
approximately e · log2N .

As in the previous section, using lll we can find a short vector (ui) such that

∑̀
i=1

ui ·Ai = 0

in Z. This implies from (15)

B ·

(∑̀
i=1

ui · xi

)
+D ·

(∑̀
i=1

ui · yi

)
= 0 mod N.

As previously, if the ui’s are sufficiently small, then we will have
∑

i ui · xi =
∑

i ui · yi = 0 over
Z. Then again, from `− 2 linearly independent vectors (ui) one can recover a 2-dimensional lattice
containing the two vectors (xi) and (yi).

We proceed by computing two vectors v1 and v2 which are both orthogonal in Z to any vector
in this bi-dimensional lattice. This implies that both vectors are orthogonal in Z to the two vectors
(xi) and (yi). Equation (15) implies that v1 and v2 are both orthogonal modulo N to the vector
(Ai); therefore to recover N we simply compute the gcd of their respective scalar products with
the vector (Ai).

Since the norm of the vector (Ai) is roughly N e, we can expect (see [16]) to find a vector (ui)
of norm ∼= N e/(`−1). Moreover, letting α0 =

∑
i ui ·xi and β0 =

∑
i ui · yi, as in the previous section

we must have |α0| · |β0| < N
3 so that α0 = β0 = 0 holds with good (heuristic) probability. This gives

the following approximate bound

N2e/(`−1) ·X · Y <
N

3
i.e. using the previous notations

2e
`− 1

+ γ + δ < 1 (16)

and the required number of signatures:

` >
2e

1− γ − δ
+ 1

In other words, the number of required signatures is proportional to the public exponent e; this
means the modulus recovery technique is practical only for small public exponents. We show in
Section 5.2 that it then works well in practice.

5 Simulation Results

5.1 Multiple Fault Attack

We have simulated the fault attack described in Section 3 as follows: We first generate a correct
σp = µ(m)d mod p and a random σq ∈ Zq and then compute the faulty signature σ using the crt.
This mimics the process described in [4] where concrete faults are injected into devices generating
randomized iso/iec 9796-2 signatures.

Number of faults ` 12 13 14

Success rate with γ = δ = 1
6

13% 100% 100%
Success rate with γ = 1

4
, δ = 1

12
0% 100% 100%

Average cpu time (seconds) 0.19 0.14 0.17

Table 1. Attack Simulation Results Using sage. Random 1024-bit moduli. Single 2.5 GHz Intel cpu core.

Simulation results are summarized in Table 1. We compute the attack’s success rate for γ+δ = 1
3

for 12, 13 and 14 faults. Theory predicts success with good probability when ` > 12. Table 1 confirms
this prediction for both balanced and unbalanced γ and δ configurations

Table 2 provides a comparison with [4]’s multi-fault attack. For large `, the new attack has the
asymptotic condition γ + δ < 1

2 , identical to the theoretical asymptotic bound of [4]’s multi-fault
variant. It is however considerably easier to deal with cases where γ + δ approaches 1

2 with the
new attack than it is in [4]. Namely, as illustrated in Table 2 when γ + δ approaches 1

2 [4]’s lattice
dimension makes the attack completely impractical. In particular, we show in Section 6 that the
new attack allows to attack emv signature formats that were beyond [4]’s reach.

However we note that for smaller γ + δ values, [4] can be more practical since it requires fewer
faulty signatures; for example for γ+δ = 0.214 only 2 faulty signatures are required instead of eight
in the new attack. In other words, the two techniques nicely complement each other and provide
the attacker with a toolbox allowing to adapt his technique to the target’s γ and δ configuration.

γ + δ `new ωnew cpu time (new) `old ωold cpu time (old)

0.204 7 8 0.03 s 3 84 49 s
0.214 8 9 0.04 s 2 126 22 min
0.230 8 9 0.04 s 2 462 —
0.280 10 11 0.07 s 6 6188 —
0.330 14 15 0.17 s 8 221 —
0.400 25 26 1.44 s — — —
0.450 70 71 36.94 s — — —

Table 2. Comparison of the new attack with [4] for a random 1024-bit modulus.

Explanatory notes regarding Table 2: Table 2 provides, for several values of γ+δ, the following
information: the number of faulty signatures `new used in our simulation, the corresponding lattice
dimension ωnew, and the running time of the new attack. For the attack described in [4], the table
lists the minimal lattice dimension ωold required to tackle the γ + δ values we consider and the
corresponding number of faulty signatures `old. We find ωold by exhaustive search over parameters
(`, t,m) with ` < 50, m < 80. For γ + δ = 0.214 and γ + δ = 0.23, one can actually get away with
slightly smaller lattice dimensions than indicated in the table (120 and 378 instead of 126 and 462)
at the price of more faults (7 and 13 respectively).

5.2 Recovering Unknown Moduli

We have also implemented the technique described in Section 4 to recover N from correct signatures
(when N is unknown to the attacker). As shown in Table 3 the attack is quite practical for small

public exponent (e) values. More precisely, we give the success rates for γ+δ = 1
3 with 10 to 13 valid

signatures for e = 3. In this case, the theoretical bound (16) predicts that the technique should
succeed with good probability when ` > 10; this is well verified for both balanced and unbalanced
γ and δ configurations.

Number of signatures ` 10 11 12 13

Success rate with γ = δ = 1
6

2% 59% 61% 61%
Success rate with γ = 1

4
, δ = 1

12
2% 62% 64% 64%

Average cpu time (seconds) 0.20 0.21 0.25 0.31

Table 3. Modulus recovery simulation in sage. Random 1024-bit moduli and e = 3. Single core 2.5 GHz Intel cpu.

6 Application to emv Signatures

6.1 The emv Specification

emv is a collection of industry specifications for the inter-operation of payment cards, pos terminals
and atms. The emv specification [10] uses iso/iec 9796-2 signatures to certify public-keys and to
authenticate data. For instance, to authenticate itself, the payment card must issue a signature on
data provided by the terminal. The signature algorithm is rsa with iso/iec 9796-2 using e = 3
or e = 216 + 1. The bit length of all moduli is always a multiple of 8. emv uses special message
formats; 7 different formats are used, depending on the message type.

In the following, for clarity’s sake, we analyze one of these formats only: the Offline Dynamic
Data Authentication, Dynamic Application Data format, described in Book 2, Section 6.5, Table
15, page 67 of the emv specifications [10]. The signing entity is the Card. The message m to be
signed has the format m = m[1]‖m[2] with :

m[1] = 050116 ‖ LDD ‖ ICCDD ‖ BB16 · · · BB16
m[2] = data

where LDD is a byte identifying the length (in bytes) of the icc Dynamic Data string ICCDD, and
data is some data provided by the terminal. In general, the icc Dynamic Data string has the
following form:

ICCDD = LICCDN ‖ ICCDN ‖ ADD

where LICCDN is one byte identifying the length (in bytes) of the time-variant icc Dynamic Number
ICCDN, and ADD consists of LDD − LICCDN − 1 bytes of Additional Dynamic Data to be signed. It
is specified that one must have 2 ≤ LICCDN ≤ 8.

As mentioned in the emv specifications, the icc Dynamic Number can be an unpredictable
number or a counter incremented for every new signature. In a typical use case (as described, for
example, as part of emv Test 2CC.086.1 Case 07 [11]), ICCDN is a random 8-byte string generated
by the card, and ADD is a variable 8-byte string, encoded according to [12]. In this case, we have:

m[1] = 050116 ‖ 1116 ‖ 0816 ‖ ICCDN ‖ ADD ‖ BB16 · · · BB16

which can be rewritten as:
m[1] = X ‖ r ‖ BB16 · · · BB16

where X is a known value and r is a variable byte string of bit-size kr = 128. This gives:

µ(m) = 6A16 ‖ X ‖ r ‖ BB16 · · · BB16 ‖ H(m) ‖ BC16 (17)

where H(m) is a 160-bit digest of the encoded message m. Note that the no-fault forgery attack
from [6] does not apply because here m[1] cannot be controlled by the adversary.

6.2 Fault Attack

The emv format for µ(m) given in (17) is the same as the one considered in [4] and recalled in
Section 2, and the same as the one considered in our new attack in Section 3. In the particular
use case described above, the string X is known but the variables r and H(m) are unknown to the
attacker. Therefore the total number of unknown bits is:

kr + kh = 128 + 160 = 288

Hence, for a 1024-bit modulus N , we get:

γ + δ =
288
1024

≈ 0.28

which is well beyond the range of practical applicability of [4], as shown in Table 2. However, the
new attack will factor N in a fraction of a second using about ten faulty signatures.

References

1. M. Bellare and P. Rogaway, The Exact security of digital signatures: How to sign with rsa and Rabin, Proceedings
of Eurocrypt 1996, lncs, vol. 1070, Springer-Verlag, 1996, pp. 399–416.

2. D. Boneh, R.A. DeMillo and R.J. Lipton. On the importance of checking cryptographic protocols for faults,
Journal of Cryptology, 14(2), Springer-Verlag, 2001, pp. 101–119.

3. D. Coppersmith, Small solutions to polynomial equations, and low exponent vulnerabilities, Journal of Cryptol-
ogy, 10(4), 1997, pp. 233–260.

4. J.-S. Coron, A. Joux, I. Kizhvatov, D. Naccache and P. Paillier, Fault attacks on rsa signatures with partially
unknown messages, Proceedings of ches 2009, lncs, vol. 5747, Springer-Verlag, 2009, pp. 444–456. Full version:
eprint.iacr.org/2009/309.

5. J.-S. Coron, D. Naccache and J.P. Stern, On the security of rsa padding, Proceedings of Crypto 1999, lncs, vol.
1666, Springer-Verlag, 1999, pp. 1–18.

6. J.-S. Coron, D. Naccache, M. Tibouchi and R. P. Weinmann, Practical cryptanalysis of iso/iec 9796-2 and emv
signatures, Proceedings of Crypto 2009, lncs, vol. 5677, Springer-Verlag, 2009. Full version: eprint.iacr.org/
2009/203.

7. J.-S. Coron, Optimal security proofs for pss and other signature schemes, Proceedings of Eurocrypt 2002, lncs,
vol. 2332, Springer-Verlag, 2002, pp. 272–287.

8. J.-S. Coron, M. Joye, D. Naccache and P. Paillier, Universal padding schemes for rsa, Proceedings of Crypto
2002, lncs, vol. 2442, Springer-Verlag, 2002, pp. 226–241.

9. M. Herrmann and A. May, Solving linear equations modulo divisors: On factoring given any bits, Proceedings of
Asiacrypt 2008, lncs, vol. 5350, 2008, pp. 406–424.

10. emv, Integrated circuit card specifications for payment systems, Book 2. Security and Key Management. Version
4.2. June 2008. www.emvco.com.

11. emv, EMVCo type approval terminal level 2 test cases. Version 4.2a. April 2009. www.emvco.com.
12. iso/iec 8825-1:2002, Information technology – ASN.1 encoding rules: Specification of Basic Encoding Rules

(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), 2002.
13. iso/iec 9796-2, Information technology – Security techniques – Digital signature scheme giving message recovery,

Part 2: Mechanisms using a hash-function, 1997.

14. iso/iec 9796-2:2002 Information technology – Security techniques – Digital signature schemes giving message
recovery – Part 2: Integer factorization based mechanisms, 2002.

15. M. Joye, A. Lenstra, and J.-J. Quisquater, Chinese remaindering cryptosystems in the presence of faults, Journal
of Cryptology, 21(1), Springer-Verlag, 1999, pp. 27–51.

16. P. Nguyen and J. Stern, Cryptanalysis of a fast public key cryptosystem presented at sac ’97, Proceedings of
sac 1998, lncs, vol. 1556, Springer-Verlag, 1998, pp. 213–218.

17. P. Nguyen and J. Stern, Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone cryptosystem based on
group factorization, Proceedings of Crypto 1997, lncs, vol. 1294, Springer-Verlag, 1997, pp. 198–212.

18. A. Lenstra, H. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coefficients, Mathematische
Annalen, vol. 261, Springer-Verlag, 1982, pp. 513–534.

19. W.A. Stein et al., Sage mathematics software, Version 4.1, The Sage Development Team, 2009, www.sagemath.org.
20. E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern, rsa-oaep is secure under the rsa assumption, Journal of

Cryptology, vol. 17(2), Springer-Verlag, 2004, pp. 81–104.
21. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems,

Communications of the acm, vol. 21, acm, 1978, pp. 120–126.

