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Abstract

In this paper, we consider a risk model in which the premium arriving number process is a
Poisson process with parameter A > 0 while the claim number process is the thinning of the pre-
mium arriving number process. Under such a model, we obtain the integral equation, the integro-
differential equation and the recursive formula for the expected discounted penalty function. Using
the integro-differential equation we get the closed form expressions for the Laplace transform of
the time of ruin and the deficit at ruin when the premium and the claim sizes are exponentially
distributed.
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§1. Introduction

Let (Q2, F,P) be a complete probability space, all random variables in this paper are

defined on this space. Boikov[!l introduced a risk model given by

. N(t) N1 (t)
U=u+ S Xi— S Y,  t>0, (1.1)
=1 =1

(2

where u > 0 is the initial capital of an insurer; {N(¢),¢ > 0} is a Poisson process with
parameter A\>0 and N (¢) is the total number of the contracts sold by insurer in (0,¢];
{Xi,i > 1} is a sequence of independent and identically distributed (i.i.d.) nonnegative
random variables with a common distribution function G(x), G(0) = 0, which is indepen-
dent of N(t); X; indicates the i-th premium size; {Ni(t),t > 0} is a Poisson process with
parameter A\; > 0, which is the number of claims in (0, ¢]; let {Y;,7 > 1} is a nonnegative
sequence of i.i.d. random variables with common distribution function F(y), F'(0) = 0,
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which is independent of Ni(t); Y; denotes the amount of the i-th claim; U is the surplus
N() Na(t)
of the insurer at time ¢. In (1.1), it is assumed that Y  X; and > Y; are independent.
i i

We now generalize risk process (1.1) as follows:

Ny NP
Ut:U‘f‘ZXi—ZYi, t>0, (1.2)
=1 =1

where N? is the P-thinning process of Ny, i.e. N/ is a Poisson process with parameter
Ap > 0,0 < p <1 (see Chenl?). Note that we don’t distinguish between the symbols such

as N(t) and Ny. Let
N NY
SP=3X,-> Y.
i=1 i=1
The net profit condition is ESY = (AEX; — A\pEY;)t > 0, or, equivalently, EX; > pEY;.
The time of ruin 7" is defined as T' = inf{t : U; < 0} with inf{()} = co. The expected

discounted penalty function under risk process (1.2) is:

¢s(u) = E[w(Ur-,|Ur|)e™I(T < 00)|Up = u]
E4w(Up-, |Ur|)e T I(T < o)), (1.3)

(1>

where w(z,y), x > 0, y > 0 is a nonnegative function such that ¢s(u) exist; § > 0; and
I(C) is the indicator function of a set C.

Boikov!! derived the integral equations and exponential bounds of survival probability
for risk process (1.1). Furthermore, Yao and Xul®! obtained the integral equation for the
expected discounted penalty function.

In Section 2, we use the strong Markov property of Uy to derive the integral equation
and the recursive formula for the expected discounted penalty function. In Section 3, we
obtain the explicit expressions for the Laplace transform of the time of ruin, the deficit
at ruin under some certain assumptions. Finally, we give the numerical analysis for ruin

probability.

§2. Integral and Recursive Equations

It is easy to see that the risk process (1.2) has stationary and independent increments
and that it is right continuous with left limit. Thus, it is a Lévy process with the strong

Markov property.
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Theorem 2.1 Let u > 0, the ¢s5(u) satisfies the integral equation
(A 00st0) = (1= [ osu+2)dGla)
+px/ /' S+ 2 — y)dF(y)dC(z)
+ /0 /u+$ w(u,y —u—z)dF(y)dG(x)|. (2.1)

Proof Let T} denotes the first jump time of N;. Then T} is an exponential random
variable with parameter A. Thus, P(77 < co) = 1. Since U; > 0 for 0 < ¢ < T3, ruin does

not occur before time T3j. Using the strong Markov property of U, we get

ds(u) = E*[e™ T ¢5(Ur, ). (2.2)

We can decompose (2.2) into two parts:

¢s(u) = E'[eMes(Un)I(NF, = 0)] + E*[e "1 ¢5(Un, ) I(NF, = 1)]
£ F1 + Es.

Using the independent assumption, we get

By = E'e™"M65(Un)I(NF, = 0)] = E"[e™"" ¢5(u+ X1)I(N7, = 0)]
= B[N, = 0)]E[gs(u + X))

Since N? is the P-thinning of Ny, we have

E“le " I(N}, =0)] = /0 Xe MEY[e " I(NE, = 0)|T) = t]dt

_ /iAe@”W%N — 0|7y = t)dt
0

. A1 —p)
_ _ Oty g, AL —DP) .
= M1-p) /0 e dt = 15 (2.3)

Thus, we have
B =21=P) A+5 / b5(u + 2)dG (x). (2.4)

Let v > 0. Assume that u+X; —Y7 < 0, that is Up, < 0, from the strong Markov property

of Uy, one concludes that

¢s(Ur,) = EVT1 [w(Up—, |Up|)e T I(T < 00)] = w(u, Y1 —u — X3).
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It follows that
E“fe" s (Ur, ) I(NE, = D)I(u+ X3 — Y1 < 0)]
= E[e (N}, = D)I(u+ X1 — V1 < O)w(u, Y1 —u— X1)].
Thus, from the assumption of independence, we get
By = E'leTgs(Ur ) I(NY, = D)I(u+ Xy — Y1 > 0)]
+E“e ™ 5 (Ur, ) I(NY, = 1)I(u+ X1 — Y1 < 0)]
= Ele " I(N}, = D)][E(ds(u+ X1 — Y1) I(u+ X1 — Y7 > 0))
—i—E(’LU(u,Yl —u—Xl)I(u—i—Xl -Y < 0))] (2.5)
Note that P(N}, = 1Ty = t) = P(N} = 1|Ty = t) = p, similar to (2.3), we obtain
Ele T I(N2 = 1)] = L (2.6)
I A+ 6
Thus from (2.5) we get
By — )\p[/oodG(x)/U+z¢ (u+z—y)dF(y)
2 = 35 ; ; 5 Y Y
+ / dG(z) / w(u,y —u— x)dF(y)] (2.7)
0 u+x
from (2.4) and (2.7) we obtain the integral equation (2.1). O

Let T}, denotes the n-th time of receiving premium, define

5. (u) = E'[e™ T w(Up-, |Ur)I(T = T,)].

Following Wu et al.l¥ and Yuen et al.’), we now derive recursive integral equations

for ¢gn(u).
Theorem 2.2 Forn=1,2,---, and u > 0,

dsa(n) = >\+5/ /W wlu,y — u — 2)dF(y)dG(z),

¢5,n<u) = >\+5 / ¢5n 1 u—l—.%')dG( )

)\+5/ / d)(sn 1U—|—:L‘— )dF( )dG() n=223---.

(2.8)
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Proof Since {T' =1T,} = {UTf >0,Up >0, - ,Up- > 0,Ur, <0}, and ruin can

occur only at claim times, we have

$51(u) = E'le”Mw(Up, |Un|)I(Up- = 0,Ur, <0)]
— Eu[eﬂsle(UTl—, ‘UT1|)I(UTI— >0,Un, < 0)](]\7521 = 1)]

Using the independent assumption, we conclude

b5 (u / / e ST I(NE, = Duw(u,y — u— 2)dF(y)dG(z).

From this, together with (2.6), we obtain (2.8).
For n > 2, we get

b5 (u) = E[e™ " muw(Uy-, Ur,)I(Up- > 0,Up >0, ,Up->0,Ur, <0)].  (2.10)
Similar to theorem 2.1, we decompose (2.10) into two parts
Gon(u) = E'lew (U, |Ur,|)
X I(Up- > 0,Ur, >0, ,Up_ > 0,Ur, < 0)I(N}, =0)]
+E4 e w(Up-, |Ug,|)

xI(UTf >0,Upy >0, ,Up- > 0,Up, <0)I(Ny, =1)]
£ FEs+ E4. (2.11)

We may rewrite E3 as

By = / E' e T (Uy- [Ur, NI(Up > 0.Uzy > 0, Uy > 0,Ur, <0)
0
X I(N2. = 0)|X, = ]dG(x). (2.12)

Using the strong Markov property of U, the independent assumption and (2.3), we con-
clude that the expectation in the integrand on the right-hand side of (2.12) is

Eu[e—ale(N% - 0)]E“[e*5(T"*T1)w(UTn—, Uz, |)
X I(UTf >0,Up, >0, - ,Up- > 0,Ur, <0)|X1 =2z]dG(2)

>‘ 1- u+t+x[ . —
( )E + [ 6Tn_lw(UT;_l7‘UTn_1|)

A+6
X I(UTf >0,U >0,---,Up- >0,Ur, , < 0)]dG(z)
A1 —
- qu)gm_l(u +2)dG(). (2.13)

A+
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Similar to (2.13) and using (2.6), we get

Ey = / / [e 0 Tna( Ur |Ur, NI (Up > 0,Ugy >0, Uy > 0,Ur, <0)

x I(N}, = 1)|Xy = z,Y1 = y]dF(y)dG(z)

= / / 75T1[ Ng — 1)]Eu[ §(Tn—T1) ( T |UTnD
XI U > 0, UT2 > 0,- ’UT{ >07UTn <O)‘X1 =x,Y] :y]dF(y)dG(a:)

= / / 75T1I NP — 1)]Eu+x y[ 5Tn_1w(UT*_17 ‘UTn—1|)
x I( UTf >0,Up, >0,--,Up- >0,Ur,_, < 0)]dF(y)dG(x)

= —y)dF 2.14
22 [ dsnatat s = ), (214

Therefore, from (2.11)—(2.14),we conclude (2.9). O

From the definition of ¢5,,(u), n =1,2,---, we get (see Wu et al.[4])

6s(w) = 3 dnalu )\+6 L ey —umsapwacia)

+ A(jg 5) [ bsna(u+ )d6(@)

U+T oo
ST TS it - arwaGHa)

_ H5/ /M w(,y — u — 2)dF(y)dC(z)

+ )\+5 / ¢s(u+ z)dG(x)

#2 [7 [ batata = a6, .15

that is (2.1) in theorem 2.1.

The equation (2.15) gives us an recursive method to calculate ¢s(u).

83. Some Closed form Expressions

In this section, we give explicit expressions for some ruin quantities when the premium
and the claim sizes are exponentially distributed.

It is easy to verify the following theorem 3.1.
Theorem 3.1 Let G(z)=1-e"%, F(z)=1—e"%, and p<b/a, z,y,a,b>0, w(zx,y)
o0 (0]

has twice continuously partial derivative in x > 0, wl,(z,y)dy and wl (z,y)dy are
0 0



550 N FHME 2 4801 ¥+ hG

uniformly convergent, then ¢s(u) is satisfies the integro-differential equation

(A +8)@5 (u) + (bA + b5 — ad — ap))@s(u) — abdps(u)
= —abp)\eb“/ w! (u, z)e P*dz + abp)\eb“/ w! (u, z)e P*dz. (3.1)
0 a+b 0

Let w(z,y) =1 and § > 0, we have
¢s(u) = E*[e T I(T < 00)] £ ths(u)

is the Laplace transform of the time of ruin with an initial surplus u > 0, Let w(z,y) =y
and § > 0, then
¢5(u) = EX[|Ur|e T I(T < o0)] £ &5(u)

is the discounted expectation of deficit at ruin with an initial surplus v > 0, when G and
F are exponential distributions with G(z) = 1 —e ™, F(y) = 1 —e %, 2,9,a,b > 0,
p <b/a.

From theorem 3.1, we see that 15(u) satisfies the following equation:
A+ 8)y" + (A + b5 — ad — ap\)y’ — abdy = 0, (3.2)

with boundary conditions:
Ys(+00) =0

and

(A 00s0) = (L=p [ vsla)oc s
+pA [/0 /0 Vs(x —y)be Yae~dydx + CLL—FZ)] .

Solving this problem we get
Ys(u) = Cre™,

where
r__b)\—l-b(S—a(S—ap)\_1\/(b)\+b5—a5—ap)\>2 4abd <0
N 2(A +9) 2 A+46 A+6
= pa(r — a) > 0.

(ar +br — a?p)A + (a + b)(r — a)d

Let § = 0, we get the probability of ruin vy (u) as 1g(u) = (ap/b) - el®=0),
It is easy to see that £5(u) satisfies equation (3.2), together the following boundary

conditions:

s(+00) =0
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and
(A 060) = (1L=p) [ Esladoe s
—i—p)\[/oo /90 &s(x — y)be Yae " dydx + % .
o Jo (a+b)
Solving this problem, we get
Es(u) = Coe™,

where
ap\(r — a)

(abr + b%r — a?bp)X + (a + b)(r — a)bd ”
Let § = 0, we obtain the deficit at ruin &(u) as & (u) = (ap/b?) - el@@=b)v,

Now, we compare the ruin probability of risk process (1.1) with that of risk process

Coy = 0.

(1.2) under the assumption E(U?) = E(U;), i.e. A\; = pA. For convenience, we assume that
the premium and the claim sizes are exponentially distributed, under the assumptions,
Boikov[!) got the ruin probability of risk process (1.1)
. (a—l—b))\l (a)\l — b\ )
w(u)—b()\+)\l)ex N u
In the table, we present the values of ¥ (u), ¥o(u) and 1 (u)/9o(u), where a = 1/10,
b=1/15.

Table 1 Comparison of ruin probabilities

p b(u) Vo(w) () o)

u=20 10 20 30 u=20 10 20 30 u=20 10 20 30
0.1]0.2273 0.1358 0.0811 0.0485(0.1500 0.0851 0.0483 0.0274|1.5152 1.5953 1.6796 1.7684
0.210.4167 0.2824 0.1914 0.1298|0.3000 0.1881 0.1180 0.0740|1.3889 1.5012 1.6226 1.7539
0.3]10.5769 0.4351 0.3282 0.2475]0.4500 0.3119 0.2161 0.1498|1.2821 1.3953 1.5185 1.6525
0.4]0.7143 0.5904 0.4880 0.4034|0.6000 0.4596 0.3520 0.2696 |1.1905 1.2847 1.3864 1.4962
0.5]0.8333 0.7457 0.6673 0.5971]0.7500 0.6349 0.5374 0.4549|1.1111 1.1746 1.2417 1.3126
0.610.9375 0.8992 0.8625 0.8273]0.9000 0.8420 0.7877 0.7369|1.0417 1.0680 1.0951 1.1228

From the above table, we see that 1(u) > p(u) for all u and p, which coincides with
the result in Chen et al.lZl. Tt is easy to see that the impact of the correlation coefficient
p on the ruin probability is prominent. The last columns indicates that the ratios of

¥(u)/vo(u) get larger as u increases.
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