文章编号:1671-9352(2007)06-0081-06

Adjacent-vertex distinguishing total chromatic number on $W_s \vee K_{m,n}$

CHENG Hui¹, YAO Bing² and ZHANG Zhong-fu^{1,2}

- (1. College of Mathematics and Information Science, Northwest Normal Univ., Lanzhou 730070, Gansu, China;
 - 2. Institute of Applied Mathematic, Lanzhou Jiaotong Univ., Lanzhou 730070, Gansu, Chin)

Abstract: A conjecture about the concept of the adjacent-vertex distinguishing total colorings (AVDTC) on graphs is stated as this: For any simple graph G, then $\chi_{at}(G) \leq \Delta(G) + 3$. The AVDTC-chromatic number of a join graph $W_s \vee K_{m,n}$ is determined in the form $\Delta(W_s \vee K_{m,n}) + 1 \leq \chi_{at}(W_s \vee K_{m,n}) \leq \Delta(W_s \vee K_{m,n}) + 2$.

Key words: graph; total coloring; adjacent-vertex-distinguishing total coloring; adjacent-vertex-distinguishing total chromatic number

联图 $W_s \vee K_{m,n}$ 的邻点可区别全色数

程辉,姚兵,张忠辅1,2

(1. 西北师范大学 数学与信息科学学院, 甘肃 兰州 730070; 2. 兰州交通大学 应用数学研究所, 甘肃 兰州 730070)

摘要:图的邻点可区别全染色(AVDTC)数为 $\chi_{at}(G)$,有猜想: $\chi_{at}(G) \leq \Delta(G) + 3$. 联图 $W_s \vee K_{m,n}$ 的邻点可区别全色数被确定为 $\chi_{at}(W_s \vee K_{m,n}) = \Delta(W_s \vee K_{m,n}) + 1$ 或 $\Delta(W_s \vee K_{m,n}) + 2$.

关键词:图;全染色;邻点可区别全染色;邻点可区别全色数

中图分类号: 0157.5 文献标识码: A

0 Introduction

The concept of the vertex-distinguishing proper edge-coloring (VDPEC) was introduced and discussed by Burris and Schelp in reference [1], and there are many results have been obtained^[2,3]. Although there are many results on the total coloring of graphs^[4], the famous total coloring conjecture $\chi_T(G) \leq \Delta(G) + 2$ is open. Zhang Zhongfu et al. first introduced the concepts of the adjacent-vertex distinguishing proper edge-colorings (AVDPEC) and the adjacent-vertex distinguishing total colorings (AVDTC) on graphs, and investigated some particular graphs such as paths, cycles, complete graphs, complete bipartite graphs, stars, fans and wheels about the AVDPEC-chromatic index and AVDTC-chromatic numbers in references of [5] and [6]. In 2005, Zhang Zhongfu et al. proposed a conjecture: For any simple graph G, then $\chi_{ul}(G) \leq \Delta(G) + 3$ in reference[7]. Unfortunately, there is little works on graphs AVDTC nowadays. In this paper, the AVDTC-chromatic number of a join graph $W_s \vee K_{m,n}$ is determined, that is,

$$\Delta(W_s \vee K_{m,n}) + 1 \leq \chi_{al}(W_s \vee K_{m,n}) \leq \Delta(W_s \vee K_{m,n}) + 2.$$

For the sake of simplicity, we use the symbol [k] is used instead of the set $\{1, 2, \dots k\}$, where k is a natural number and [k] is often called a color set. Equivalently, the color set $[m]^0 = \{0,1,2,\dots m\}$ is also used. Let f be a

Received date: 2006-07-10

Foundation term: NNSFC (60474029); The Science and Research Project of the Education Department of Gansu Province (0501-02)

Biography: CHENG Hui(1953-), female, associate professor, master, research field is graph theory and its applications. E-mail: chenghuinwnu@163.com

proper total coloring of a graph G from $V(G) \cup E(G)$ to [k], then the color set C(v) of a vertex v of G as the form $C(v) = \{f(v)\} \cup \{f(vw) \mid w \in V(G), vw \in E(G)\}$, and $\overline{C}(v) = [k] \setminus C(v)$ is called the color complement set of C(v).

Definition 1^[7] Let f be a proper total coloring of a graph G from $V(G) \cup E(G)$ to [k]. If f satisfies that

- (i) $\forall u, v \in V(G), uv \in E(G), f(u) \neq f(v), f(u) \neq f(uv) \neq f(v);$
- (ii) $\forall uv, vw \in E(G), f(uv) \neq f(vw);$
- $(||||) \forall uv \in E(G), C(u) \neq C(v).$

Then f is called a k-AVDTC of G, and the smallest number of k over all k-AVDTCs of G, $\chi_{al}(G)$, is called the AVDTC-chromatic number of G.

Definition 2^[8] The join graph $G \vee H$ of two graphs G and H has the vertex set $V(G \vee H) = V(G) \cup V(H)$ and edge set $E(G \vee H) = E(G) \cup E(H) \cup \{uv \mid u \in V(G), v \in E(H)\}$.

Some notations and terminologies not mentioned are cited from [8].

1 Main results and proofs

In order to address the result clearly, some notations are needed. It is known that the wheel W_s is the join graph $K_1 \vee C_s$ of an isolated vertex $v_0 = K_1$ and a cycle $C_s = \{v_1, v_2, \dots v_s\}$, thereby, it has the vertex set $V(W_s) = \{v_0, v_1, v_2, \dots v_s\}$ and the edge set $E(W_s) = \{v_0 v_i \mid 1 \le i \le s\} \cup \{v_i v_{i+1} \mid 1 \le i \le s \text{ and } v_{s+1} = v_1\}$. For $m \le n$, let H_m and H_n be non-edge graphs, namely, $E(H_m) = \emptyset$ and $E(H_n) = \emptyset$, and let $V(H_m) = \{u_1, u_2, \dots u_m\}$ and $V(H_n) = \{w_1, w_2, \dots w_n\}$. A complete bipartite graph $K_{m,n} = H_m \vee H_n$ is defined, write its edge set $E(K_m, n) = \{u_j w_k \mid 1 \le j \le m, 1 \le k \le n\}$. Successively, $V(W_s \vee K_{m,n}) = V(W_s) \cup V(K_{m,n})$ are obtained and

$$E(W_s \vee K_{m,n}) = E(W_s) \cup E(K_{m,n}) \cup \{xy \mid x \in V(W_s), y \in V(K_{m,n})\},$$

where, in detail,

$$\{xy \mid x \in V(W_s), y \in V(K_{m,n})\} = \{v_i u_j \mid 0 \le i \le s, 1 \le j \le m\} \cup \{v_i w_k \mid 0 \le i \le s, 1 \le k \le n\}.$$

It is clear that $W_s \vee K_{m,n} = (K_1 \vee C_s) \vee (H_m \vee H_n)$. The following Lemma 1 and Lemma 2 are obvious, so the proofs on them are omitted.

Lemma 1 Let G(V, E) be a connected graph. If G has no two adjacent vertices of maximum degree, then $\chi_{al}(G) \ge \Delta(G) + 1$, otherwise, have $\chi_{al}(G) \ge \Delta(G) + 2$.

Lemma 2 Let f be a k-AVDTC of the join graph $W_s \vee K_{m,n}$, then:

- (1) For $1 \le i \le s$, $|C(v_i)| = |C(v_{i+1})|$, here $v_{s+1} = v_1$.
- (2) If m=n, for $1 \le j$, $k \le n$ then $|C(u_i)| = |C(w_k)|$.
- (3) For $1 \le j \le m$, $1 \le k \le n$, then $|C(u_j)| = |C(v_i)|$ if s = m + 2 and $1 \le i \le s$; and there are $|C(w_k)| = |C(v_i)|$ if s = n + 2 and $1 \le i \le s$.

Theorem 1 For $\chi_{at}(W_3 \vee K_{m,n}) = m + n + 5$.

Proof Since there are at least two maximum degree vertices which are adjacent, then $\chi_{a}(W_3 \vee K_{m,n}) \ge m+n+5$ by Lemma 1. Only a (m+n+5)-AVDTC of $W_3 \vee K_{m,n}$ is used for completing the proof.

A total coloring $g: V(W_3 \vee K_{m,n}) \cup E(W_3 \vee K_{m,n}) \rightarrow [m+n+4]^0$ is defined to the join graph $W_3 \vee K_{m,n}$ as follows.

Firstly, all vertices and edges in the part W_3 of $W_3 \vee K_{m,n}$ are colored. Setting $g(v_0) = 0$, $g(v_i) = 2i$ and $g(v_0v_i) = i$ for $1 \le i \le 3$, $g(v_1v_2) = 3$, $g(v_2v_3) = 5$, $g(v_3v_1) = 4$, $g(v_iu_j) = i + j + 4$ (mod m + n + 5) for $0 \le i \le 3$ and $1 \le j \le m$, and $g(v_iw_k) = i + k + m + 4$ (mod m + n + 5) for $0 \le i \le 3$ and $1 \le k \le n$.

Secondly, colors are assigned to the remaining part of $W_3 \vee K_{m,n}$ in the following two cases.

Case 1 m > 1

 $g(u_i w_k) = j + k + m + 7 \pmod{m + n + 5}$ is colored with respect to $1 \le j \le m$ and $1 \le k \le n$,

$$g(u_j) = \begin{cases} 1, & n=2; \\ m+7, & n=3; \\ m+8, & n>3. \end{cases} \quad 1 \le j \le m-1, \ g(u_m) = \begin{cases} 1, & n=2,3; \\ m+8, & n>3, \end{cases}$$

as well as $g(w_k) = \begin{cases} 5, & m = 2; \\ m+4, & m > 2. \end{cases}$ $1 \le k \le n$.

Case 2 m = 1.

 $g(u_1w_n) = 4$, $g(u_1) = 3$, $g(w_k) = 5$ is set with $1 \le k \le n$. If n = 2, it must be $g(u_1w_1) = 2$. If n > 2, then $g(u_1 w_k) = k + 9 \pmod{n+6}$ for $1 \le k \le n-1$.

This coloring g is shown as satisfying Definition 1. Under the coloring g, then $\overline{C}(v_i) = \{i+4\} \pmod{m+n+5}$ for $0 \le i \le 3$. When m = 1, if n > 3, then $\overline{C}(u_1) = \{9\}$; if n = 3, then $\overline{C}(u_1) = \{0\}$; if n = 2, then $\overline{C}(u_1) = \{1\}$; if n = 1, then $\overline{C}(u_1) = \{2\}$.

If m = n = 1, $\{2\} = \overline{C}(u_1) \neq \overline{C}(w_1) = \{3\}$. For m = n = 2, $\overline{C}(u_1) = \{0,4\}$, $\overline{C}(u_2) = \{2,5\}$, $\overline{C}(w_1) = \{4,6\}$ 6}, $\overline{C}(w_2) = \{6,7\}$. If m = n = 3, $0 \in \overline{C}(u_j)$, but $0 \notin \overline{C}(w_k)$ for $1 \le j$, $k \le 3$. When m = n > 3, $m + 3 \in \overline{C}(w_k)$ with $1 \le k \le n$, but $m + 3 \notin \overline{C}(u_i)$ for $m - 4 \le j \le m - 1$. And then $1 \in \overline{C}(u_m)$ and $m + 4 \in \overline{C}(u_i)$ for $1 \le t \le m - 1$. 5, but these two numbers 1, $m+4\notin \bar{C}(w_k)$ when $1\leq k\leq n$. Hence, $C(u_i)\neq C(w_k)$ has been verified for $1\leq j$, $k \leq m$.

Gathering up all verifications together, the coloring g is exactly a (m + n + 5)-AVDTC of the graph $W_3 \vee K_{m,n}$, which gives out $\chi_{al}(W_3 \vee K_{m,n}) = m + n + 5$, as desired.

Theorem 2
$$\chi_{at}(W_4 \lor K_{m,n}) = \begin{cases} n+7, & m=1; \\ m+n+5, & m>1. \end{cases}$$

Proof For m=1, notice that both v_0 and u_1 are two adjacent vertices of maximum degree in $W_4 \vee K_{1,n}$. Thereby, $\chi_{a}(W_4 \vee K_{1,n}) \ge n+7$ by Lemma 1. A (n+7)-AVDTC f is given to $W_4 \vee K_{1,n}$, namely, $f: V(W_4 \vee K_{1,n}) \cup X$ $E(W_4 \vee K_{1,n}) \rightarrow [n+6]^0$.

Let $f(v_0) = 1$, $f(v_1) = f(v_3) = 3$, $f(v_2) = 4$, $f(v_4) = 7$; $f(v_0v_i) = i + 1$ for $1 \le i \le 4$, $f(v_1v_2) = 1$, $f(v_2v_3) = 5$, $f(v_3v_4) = 6$, $f(v_4v_1) = 4$, $f(w_k) = 5$ for $1 \le k \le n$.

Set

$$f(v_i u_1) = \begin{cases} 6, & i = 0; \\ 5, & i = 1; \text{ and } f(v_4 u_1) = \begin{cases} 3, & n = 1; \\ 9 \pmod{n+7}, & n > 1; \end{cases}$$

$$f(v_{i}u_{1}) = \begin{cases} 6, & i = 0; \\ 5, & i = 1; \text{ and } f(v_{4}u_{1}) = \begin{cases} 3, & n = 1; \\ 9(\bmod{n+7}), & n > 1, \end{cases}$$

$$f(u_{1}) = \begin{cases} 2, & n = 1, 2; \\ 0, & n = 3; \text{ and } f(v_{i}w_{k}) = \begin{cases} k+6, & i = 0; \\ k+5, & i = 1; \\ 10, & n > 3, \end{cases}$$

$$k+i+5(\bmod{n+7}), \quad i = 2, 3, 4;$$

 $f(u_1 w_k) = k + 10 \pmod{n+7}$, for $n \ge 3$ and $1 \le k \le n$.

For n = 1, let $f(u_1 w_1) = 4$. If n = 2, then $f(u_1 w_1) = 3$, $f(u_1 w_2) = 4$. Obviously, f is a total coloring from V $(W_4 \vee K_{1,n}) \bigcup E(W_4 \vee K_{1,n}) \text{ to } [n+6]^0.$

Under this coloring f, then $\overline{C}(v_1) = \{n + 6, 0\}$, $\overline{C}(v_2) = \{2, 6\}$, $\overline{C}(v_3) = \{2, 7\}$. If n > 1, then $\overline{C}(v_4) = \{3, 7\}$. 8 . When n = 1, then $\overline{C}(v_4) = \{1, 8\}$, $\overline{C}(v_0) = \{0\}$, $\overline{C}(u_1) = \{1\}$ and $\overline{C}(w_1) = \{3\}$. When n = 2, $\overline{C}(w_1) = \{2, 3\}$. 4 and $C(w_2) = \{3,6\}$.

It is easy to verify that f is a (n+7)-AVDTCof $W_4 \vee K_{1,n}$, that is $\chi_{at}(W_4 \vee K_{1,n}) = n+7$.

The case of m>1 is dealt with. Since v_0 is the unique vertex of maximum degree in W_4 \vee $K_{m,n}$, $\chi_{al}(W_4 \lor K_{m,n}) \ge m + n + 5$ according to Lemma 1. Therefore it is only needed to prove that there exists a (m + n + 1)5)-AVDTC of $W_4 \vee K_{m,n}$. A total coloring f is constructed from $V(W_4 \vee K_{m,n}) \cup E(W_4 \vee K_{m,n})$ to $[m+n+4]^0$ as follows. Let $f(v_0) = 1$, $f(v_1) = f(v_3) = 3$, $f(v_2) = 4$, $f(v_0v_i) = i+1$ for $1 \le i \le 4$, $f(v_1v_2) = 1$, $f(v_3v_4) = 6$. The following cases have to be colored.

Case 1 m = n = 2.

Set $f(v_4) = 4$, $f(v_2 v_3) = 2$, $f(v_4 v_1) = 0$

$$f(v_i u_j) = \begin{cases} j+5, & i=0; \\ i+j+2, & i=1,2; \ j=1,2, \text{ except } i=4 \text{ and } j=2, \\ i+j+3, & i=3,4; \end{cases}$$

$$f(v_i w_k) = \begin{cases} k + 7 \pmod{9}, & i = 0; \\ i + k + 4, & i = 1, 2; \end{cases} k = 1, 2.$$

Other labels are $f(v_3 w_1) = 0$, $f(v_3 w_2) = 1$, $f(v_4 w_k) = k + 1$ and $f(u_1 w_k) = k$ for $k = 1, 2, f(v_4 u_2) = 1$, $f(u_i) = 0$, j = 1, 2, as well as $f(u_2 w_k) = k + 2$ and $f(w_k) = 5$ for k = 1, 2.

It is easy to see that f is a 9-AVDTC, which shows $\gamma_{at}(W_4 \vee K_{2,2}) = 9$.

Case 2 $2 \le m < n$ and $3 \le m \le n$. Let L = m + n + 5. Set $f(v_4) = 7$, $f(v_2 v_3) = 5$, $f(v_4 v_1) = 4$, $f(v_2, w_n) = 6,$

$$\begin{split} f(v_i u_j) &= \begin{cases} j+5, & i=0; \\ j+4, & i=1; & 1 \leq j \leq m, \\ i+j+4 \pmod{L}, & i=2,3,4; \end{cases} \\ f(v_i w_k) &= \begin{cases} k+m+5 \pmod{L}, & i=0; \\ k+m+4, & i=1; & 1 \leq k \leq n, \text{ except } k=n \text{ and } i=2. \\ k+i+m+4 \pmod{L}, & i=2,3,4; \end{cases} \\ k+j+m+8 \pmod{L} \text{ for } 1 \leq j \leq m \text{ and } 1 \leq k \leq n, \text{ except the case of } k=n \text{ and } j=3. \end{split}$$

 $f(u_j w_k) = k + j + m + 8 \pmod{L}$ for $1 \le j \le m$ and $1 \le k \le n$, except the case of k = n and j = 3.

$$f(u_3 w_n) = \begin{cases} m + 11 \pmod{L}, & n \ge 8; \\ n + m + 3, & n \le 7, \text{ but } m + n > 8; \\ 1, & n \le 7, \text{ but } m + n \le 8. \end{cases}$$

When n = 3, $f(u_i) = m + 8 \pmod{L}$ for $1 \le j \le m - 1$ and $f(u_m) = 2$. When n = 6, $f(u_i) = m + 9$ for $1 \le j \le m - 1$ m except j = 3, $f(u_3) = m + 10$. When $n \neq 3, 6$, then $f(u_i) = m + 9$ with $1 \leq j \leq m$. When m = 2, 3, $f(w_k) = 6$ for $1 \le k \le n-1$ as well as $f(w_n) = 8$. When $m \ne 2,3$, $f(w_k) = m+4$ for $1 \le k \le n$.

Obviously, f is a total coloring from $V(W_4 \vee K_{m,n}) \cup E(W_4 \vee K_{m,n})$ to $[m+n+4]^0$. It is going to verify that the coloring f satisfies Definition 1.

We have $\overline{C}(v_1) = \{0\}$, $\overline{C}(v_2) = \{2\}$, $\overline{C}(v_3) = \{7\}$, $\overline{C}(v_4) = \{8\}$.

When m = 2, if n = 3, then $\overline{C}(u_1) = \overline{C}(u_2) = \{1\}$; if n = 4, then $\overline{C}(u_1) = \{10\}$, $\overline{C}(u_2) = \{1\}$; if n > 4, then $\overline{C}(u_1) = \{10\}, \ \overline{C}(u_2) = \{12\} \pmod{L}$.

When m = n = 3, $7 \in \overline{C}(w_k)$, but $7 \notin \overline{C}(u_i)$ for $1 \le j$, $k \le 3$.

When $m = n \ge 4$, $\overline{C}(w_1) = \{5,6,\cdots m+3\}$, $\overline{C}(w_k) = \{4+k,\cdots m+3\} \cup \{m+5,\cdots m+k+3\}$ for $2 \le m \le 1$ $k \leq m-1$.

If $n \ge 8$, then $\overline{C}(w_m) = \{1, m+5, m+6, \dots m+10, m+12, \dots 2m+3\}$.

If $n \le 7$ and m + n > 8, then $\overline{C}(w_m) = \{1, m + 5, m + 6, \dots 2m + 2\}$.

If $n \le 7$ and $m + n \le 8$, then $\overline{C}(w_m) = \{m + 5, m + 6, \dots 2m + 3\}$. But $\overline{C}(u_1) = \{10, 11, \dots m + 8\}$, and $\overline{C}(u_2) = \{1, 11, 12\}, \ \overline{C}(u_3) = \{2, 6, 12\}, \ \overline{C}(u_4) = \{1, 2, 3\} \text{ when } m = n = 4.$

When $m = n \ge 5$, $\overline{C}(u_i) = \{9 + j, \dots m + 8\} \cup \{m + 10, \dots m + j + 8\} \pmod{L}$ for $2 \le j \le m - 1$ and $j \ne 3$, $\overline{C}(u_m) = \{m+10, \dots 2m+4\} \cup \{0,1,2,3\}.$

If m = n = 5, then $\overline{C}(u_3) = \{0, 1, 6, 12\}$. If $m = n \ge 6$, then

$$\overline{C}(u_3) = \{6\} \bigcup \{12, 13, \dots m + 8\} \bigcup \{m + 11\} \pmod{L}.$$

n .

Furthermore, it is shown that f is a (m+n+5)-AVDTC of $W_4 \vee K_{m,n}$, namely, $\chi_{at}(W_4 \vee K_{m,n}) = m+n+5$. The proof of this theorem is completed.

Theorem 3 For integer
$$s \ge 5$$
, $\chi_{at}(W_s \lor K_{m,n}) = \begin{cases} s + n + 3, & m = 1; \\ s + m + n + 1, & m > 1. \end{cases}$

Proof In the case of m = 1, both v_0 and u_1 are two adjacent vertices of maximum degree of $W_s \vee K_{m,n}$, $\chi_{al}(W_s \lor K_{1,n}) \ge s + n + 3$ by Lemma 1. A definition is needed for a (s + n + 3)-AVDTC of $W_s \lor K_{1,n}$ from $V(W_s \vee K_{1,n}) \cup E(W_s \vee K_{1,n})$ to $[s+n+2]^0$.

Let
$$M = s + n + 3$$
. Set $f(v_0) = 1$, $f(v_0 v_i) = i + 1$ for $1 \le i \le s$, $f(v_s v_1) = 4$,

$$f(v_i) = \begin{cases} 3, & i \text{ is odd;} \\ 4, & i \text{ is even.} \end{cases} i = 1, 2, \dots s - 1, \quad f(v_s) = \begin{cases} 8, & s = 5; \\ s, & s \neq 5, \end{cases}$$

$$f(v_i) = \begin{cases} 3, & i \text{ is odd}; \\ 4, & i \text{ is even.} \end{cases} i = 1, 2, \dots s - 1, \quad f(v_s) = \begin{cases} 8, & s = 5; \\ s, & s \neq 5, \end{cases}$$

$$f(v_i u_1) = \begin{cases} s + 2, & i = 0; \\ i + 4, & 1 \leq i \leq s - 3; \\ i + 5 \pmod{M}, & i = s - 2, s - 1, \end{cases} f(v_s u_1) = \begin{cases} 3, & n = 1; \\ s + 5 \pmod{M}, & n > 1, \end{cases}$$

$$f(v_i w_k) = \begin{cases} k+s+2, & i=0; \\ k+i+4, & 1 \le i \le s-3; & 1 \le k \le n. \\ k+i+5 \pmod{M}, & i=s-2, & s-1, & s, \end{cases}$$

 $f(u_1 w_k) = k + s + 6 \pmod{M}$ for $n \ge 3$ and $1 \le k \le n$. When n = 1, $f(u_1 w_1) = 4$. When n = 2, $f(u_1 w_1) = 4$.

3 and $f(u_1w_2) = 4$. Then $f(v_iv_{i+1}) = \begin{cases} 1, & i \text{ is odd;} \\ 2, & i \text{ is even.} \end{cases}$ for $i = 1, 2, \dots s - l$, and $f(v_iv_{i+1}) = t + 3$ with t = s - l + 1,

 $\cdots s-1 \text{ where } l=3 \text{ if } s \text{ is odd and } l=4 \text{ if } s \text{ is even. } f(u_1)=\begin{cases} 2, & n=1,2;\\ s+6 \pmod{M}, & n\neq 1,2. \end{cases} \text{ and } f(w_k)=5 \text{ for } 1\leq k\leq 1$

Obviously, f is a total coloring from $V(W_s \vee K_{1.n}) \cup E(W_s \vee K_{1.n})$ to $\lceil s + n + 2 \rceil^0$.

Under this coloring f, $C(v_i) \neq C(v_{i+1})$, $i = 0, 1, 2, \dots s$ when i = s, $v_{i+1} = v_1$.

When $n \le 2$, $\overline{C}(u_1) = \{1\}$. When n > 2, $\overline{C}(u_1) = \{4\}$. When m = n = 1, $\overline{C}(w_1) = \{3\}$. when $s \ge 7$ and s = 1 $n+2, 5 \in C(w_k), 1 \le k \le n$, but $5 \notin C(v_l), 2 \le l \le s, l \ne 4$. Furthermore, $\overline{C}(v_l) = \{n+6, n+7, \dots s+n+2, n+2, n+3\}$ $|0| \neq \overline{C}(w_k), 1 \leq k \leq n, \overline{C}(v_4) = \{3,6,7,n+9,\dots s+n+2,0\} \neq \overline{C}(w_k) \text{ for } 1 \leq k \leq n. \text{ When } s=5,6,\{3,8\} \subseteq \mathbb{C}$ $\overline{C}(v_4)$, but $\{3,8\} \not\subset \overline{C}(w_k)$, $10 \in \overline{C}(v_1)$, but $10 \notin \overline{C}(w_k)$ with $1 \le k \le n$.

Clearly, this coloring f is a (s+n+3)-AVDTC of $W_s \vee K_{1,n}$, thus, $\chi_{at}(W_s \vee K_{1,n}) = s+n+3$.

For the case of m > 1, χ_{al} ($W_s \lor K_{m,n}$) $\geq s + m + n + 1$ by means of Lemma 1, because that v_0 is the unique vertex of maximum degree of $W_s \vee K_{m,n}$. The key is to prove the existence of a (s+m+n+1)-AVDTC of $W_s \vee K_{m,n}$. A total coloring f is defined from $V(W_s \vee K_{m,n}) \cup E(W_s \vee K_{m,n})$ to $[s+m+n]^0$ in the following.

Let R = s + m + n + 1. We let $f(v_0) = 1$, $f(v_0 v_i) = i + 1$ for $1 \le i \le s$, $f(v_s v_1) = 4$,

$$f(v_i) = \begin{cases} 3, & i \text{ is odd;} \\ 4, & i \text{ is even.} \end{cases} i = 1, 2, \dots s - 1. \ f(v_s) = s;$$

$$f(v_i u_j) = \begin{cases} s+j+1, & i=0; \\ j+i+3, & 1 \leq i \leq s-3; \ 1 \leq j \leq m \,, \text{ except } i=s \text{ and } j=m \,. \\ j+i+4 (\bmod R) \,, & s-2 \leq i \leq s \end{cases}$$

$$f(v_s u_m) = \begin{cases} 1, & m = n = 2; \\ s + m + 4 \pmod{R}, & \text{otherwise.} \end{cases}$$

$$f(v_i w_k) = \begin{cases} s + m + k + 1 \pmod{R}, & i = 0; \\ i + m + k + 3, & 1 \le i \le s - 3; \ 1 \le k \le n. \\ i + m + k + 4 \pmod{R}, & s - 2 \le i \le s. \end{cases}$$

Again, $f(u_i w_k) = s + m + j + k + 4 \pmod{R}$, $1 \le j \le m$, $1 \le k \le n$, and

$$f(u_j) = \begin{cases} 2, & n = 2; \\ s + m + 4 \pmod{R}, & n = 3; \\ s + m + 5 \pmod{R}, & \text{otherwise.} \end{cases} 1 \le j \le m - 1.$$

$$f(u_m) = \begin{cases} 2, & n = 2,3; \\ s + m + 5 \pmod{R}, & \text{otherwise.} \end{cases}$$

$$f(u_m) = \begin{cases} s + m + 5 \pmod{R}, & \text{otherwise.} \end{cases}$$

$$f(w_1) = \begin{cases} m + 3, & m + 4 = s; \\ m + 4, & \text{otherwise.} \end{cases}$$

$$f(w_k) = \begin{cases} m + 4, & m + 4 \neq s; \\ m + 5, & \text{otherwise.} \end{cases}$$

$$2 \le k \le n - 1.$$

When s = 5 and m = n = 3, $f(w_n) = 8$, otherwise $f(w_n) = \begin{cases} m + 4, & m + 4 \neq s; \\ m + 5, & \text{otherwise.} \end{cases}$

 $f(v_i v_{i+1}) = \begin{cases} 1, & i \text{ is old;} \\ 2, & i \text{ is even.} \end{cases}$ $i = 1, 2, \dots s - l$, and $f(v_i v_{i+1}) = t + 3$, t = s - l + 1, $\dots s - 1$ where l = 3 if s is

odd and l = 4 if s is even.

Therefore, f is a proper total coloring from $V(W_s \vee K_{m,n}) \cup E(W_s \vee K_{m,n})$ to $[s+m+n]^0$. Under this coloring $f, C(v_i) \neq C(v_{i+1})$ for $0 \leq i \leq s$, here $v_{s+1} = v_1$. And $C(w_k) \neq C(v_i) \neq C(u_i)$ for $1 \leq j \leq m$, $1 \leq k \leq n$ and $1 \leq j \leq m$ i < s. Several cases are considered in detail.

Case 1 When m = n = 2, $\bar{C}(u_1) = \{1\}$ and $\bar{C}(u_2) = \{3\}$.

If m+4=s, then $\overline{C}(w_1)=\overline{C}(w_2)=\{6\}$. If $m+4\neq s$, so $\overline{C}(w_1)=\{5\}$ and $\overline{C}(w_2)=\{7\}$.

Case 2 When m = n = 3, $1 \in \overline{C}(u_i)$, but $1 \notin \overline{C}(w_k)$ for $1 \le j$, $k \le 3$.

Case 3 When m = n > 3, $\overline{C}(u_1) = \{s + 6, \dots s + m + 4\}$, and

 $\overline{C}(u_i) = \{s+j+5, \dots s+m+4\} \bigcup \{s+m+6, \dots s+m+j+4\} \pmod{R} \text{ for } 2 \le j \le m.$

If m + 4 = s, then $\bar{C}(w_1) = \{5, 6, \dots, m + 2, m + 4\}, \bar{C}(w_2) = \{6, 7, \dots, m + 4\}, \bar{C}(w_k) = \{6, 7, \dots, m + 4\}, \bar{C}(w$ $\{k+4, \dots m+4\} \cup \{m+6, \dots m+k+3\} \text{ for } 3 \le k \le n.$

n-1, and $\bar{C}(w_n) = \{m+5, \dots m+n+3\}$.

At last, $C(u_i) \neq C(w_k)$ for $1 \leq i, k \leq m$ is obtained, it means that f is a (s + m + n + 1)-AVDTC of $W_s \vee W_s$ $K_{m,n}$ as claimed.

References:

- [1] A C Burris, R H Schelp. Vertex-distingushing properedge-colorings[J]. Journal of Graph Theory, 1997, 26(2):73 ~ 82.
- [2] P N Balister, B Bollobás, R H Schelp. Vertex-distinguishing colorings of graphs with $\Delta(G) = 2[J]$. Discrete Mathmatics, 2002, $252(1 \sim 3):17 \sim 29$.
- [3] C Bazgan, A Harkat-Benhamdine, H Li, et al. On the vertex-distinguishing properedge-colorings of graphs [J]. Journal of Combinatorial Theory B, 1999, $75(3):288 \sim 301$.
- [4] Hian-Poh Yap. Total colorings of Graphs [M]. New York: Springer, 1996.
- [5] Zhang Zhongfu, Liu Linzhong, Wang Jianfang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002, 15(5): $623 \sim 626$.
- [6] Tian Shuangliang, Li Jinwen, Zhongfu Zhang. On the adjacent strong edge chromatic number of $C_n \vee K_n[J]$. Journal of Shandong University (Natural Science), 2005, 40(1); $7 \sim 10$.
- [7] Zhongfu Zhang. On the adjacent vertex distinguishing total coloring of graphs [J]. Science In China, Series A, 2005, 48(3):289 ~ 299.
- [8] J A Bondy, U S R Murty. Graph Theory with Application[M]. New York: Macmillan, 1976.

(编辑,李晓红)