Article ID: 1000-5641(2008)03-0051-08

$I(\chi)$ -Reduced representations of generalized Jacobson-Witt algebras $W(m; \mathbf{n})$

LI Sha-sha¹, SHU Bin²

 School of Mathematics and Information Science, Shandong University of Technology, Zibo Shandong 255049, China; 2. Department of Mathematics, East China Normal University, Shanghai 200062, China)

Abstract: This paper studied the representations of graded Cartan type Lie algebra $W(m; \mathbf{n})$ in characteristic p > 2, by generalizing the arguments of Shu's for restricted Lie algebras $W(m; \mathbf{1})$. Especially, the rank-reducing method exploited in the restricted case was extended to non-restricted case. The simple modules for $W(m; \mathbf{n})$ with generalized p-character χ were described by reduction when χ was regular semisimple.

Key words: graded Lie algebra; Cartan type; regular semisimple; loop algebra CLC number: O152.5 Document code: A

广义 Jacobson-Witt 代数 $W(m; \mathbf{n})$ 的 $I(\chi)$ -约化表示

李莎莎1, 舒 斌2

(1. 山东理工大学 数学与信息科学学院,山东 淄博 255049; 2. 华东师范大学 数学系,上海 200062)

摘要:推广了对限制李代数 *W*(*m*;**1**)的研究方法,研究了当特征 *p* > 2 时的阶化 Cartan 型李 代数 *W*(*m*;**n**)的表示.特别地,把对限制型李代数所用的降秩的方法推广到了非限制的情形. 描述了当 χ 正则半单时 *W*(*m*;**n**)的不可约广义 χ-约化表示. 关键词:阶化李代数; Cartan 型; 正则半单; loop 代数

0 Introduction

So far, except for a few examples of Cartan type Lie algebras in prime characteristic with low ranks, we are far away from understanding their simple modules. Generally speaking, the lower-rank case is easier than the higher-rank case in the study of their representations. For rank-one Cartan type Lie algebras of type W, there is a complete determination for the restricted case^[1,2] and for the nonrestricted case^[3]. For the study of representations of $W(m; \mathbf{1})$,

收稿日期: 2007-04

第一作者: 李莎莎, 女, 硕士. E-mail: luoye.lisa@163.com.

通讯作者: 舒 斌, 男, 教授. E-mail: bshu@euler.math.ecnu.edu.cn.

the second author introduced a rank-reducing method and effectively studied simple modules when the corresponding p-characters are so-called regular semisimple.

This paper generalizes Shu's arguments^[4]. For this, we have to adopt the machinery of so-called generalized restricted Lie algebras. In general, the graded Cartan type Lie algebras $L = W(m; \mathbf{n})$ (generalized Jacobson-Witt algebras) are not restricted unless $\mathbf{n} = \mathbf{1}$. So, the Kac-Weisfeiler's method of classifying the irreducible modules through *p*-character functions doesn't work. To elude such inconvenience the second author introduced the notion of the generalized restricted Lie algebras and related representation methods^[5]. And generalized restricted χ -reduced module category coincides with the $\overline{\chi}$ -reduced module category of its primitive *p*-envelope, where $\overline{\chi}$ is the trivial extension of χ in the primitive *p*-envelope^[3,6].

Thus, the significance of I associated with an arbitrary χ can be recovered, where I is an index subset of $\{1, 2, \dots, m\}$ (in this note we will denote it by $I(\chi)$). Especially, associated with $I, L = W(m; \mathbf{n})$ admits a grading structure $L = \sum_{q \ge -1} L_{[q],I}$ and thereby all generalized χ -reduced representations admit an I-gradation.

The first main result in this paper is: when χ is regular semisimple(to see Definition 3.1), the irreducible generalized χ -reduced modules of $L = W(m; \mathbf{n})$ are all determined by those of the grade-0 component $L_{\bar{0}} = L_{[0],I}$ associated with their *I*-gradations. And any irreducible $W(m; \mathbf{n})$ -module in this way is isomorphic to the induced module of an irreducible generalized χ -reduced $L_{[0],I}$ -module. The conclusion of Guang-yu Shen is generalized (see Section 2). Note that in aid of language of "height" of generalized *p*-character, Guangyu Shen's graded module category is within the χ -reduced representation category with the height of χ smaller than 1. In the present paper, our work is on the χ -reduced category with the generalized *p*-character χ be regular semi-simple whose height may be much bigger than 1, for example when $I = \{m\}$, and then $\hat{I} = \{1, 2, \dots, m-1\}$, the corresponding semi-simple character χ is of the height $p\sum_{i=1}^{m-1} n_i + 1$.

Furthermore, we can generalize the representation theory corresponding to the "loop algebra" constructed by $\mathfrak{gl}(m)$ tensoring divided power algebra to the case of $W(m; \mathbf{n})^{[4]}$. Then we finally reduce the irreducible representations of $L_{\bar{0}}$ to the irreducible representation of L_I .

Thus we obtain the second main result in this paper: when χ is regular semisimple, the irreducible generalized χ -reduced $L_{[0],I}$ -modules of $W(m; \mathbf{n})$ coincide with the induced representations of the corresponding irreducible representations of $L_I = S_{\hat{I}} \oplus W(\hat{I}) \oplus \mathfrak{A}(\hat{I}) \otimes \mathfrak{h}(I)$.

It's worthy of mention that Guang-yu Shen extensively and deeply studied irreducible graded modules of Lie algebras of type $L = W(m; \mathbf{n})^{[7,8,9]}$, as well as for types S, and H. Those irreducible modules are determined by the irreducible ones of the grade-0 component $L_{[0]} \cong \mathfrak{gl}(m)$. Especially, when this $L_{[0]}$ -irreducible module V_0 is not the exceptional weight restricted module, the graded irreducible module of $L = W(m; \mathbf{n})$ is the mixed products of the divided power algebra $\mathfrak{A}(m; \mathbf{n})$ and V_0 . Our results may be regarded as the generalization of Shen's related results.

The authors thank Yufeng Yao for his pointing out the missing terms of grading structure of L associated to I.

1 Notations and Λ_I -gradations of \mathcal{L}

Throughout \mathcal{K} will be an algebraically closed field of characteristic p > 2.

1.1 Notations

第3期

Let $J = \{1, 2, \dots, m\}$ be an index set and α be a function on J over \mathbb{Z} . Denote $A(m) \stackrel{\triangle}{=} \{\alpha \mid \alpha : J \to \mathbb{Z}, 0 \leq \alpha(i) \leq p^{n_i} - 1, \forall i \in J\}$. We can write $(\alpha(1), \alpha(2), \dots, \alpha(m)) \stackrel{\triangle}{=} (\alpha_1, \alpha_2, \dots, \alpha_m)$ for α . Let I be a subset of J and $I = \{i_1 < i_2 < \dots < i_l\}$, then $A(I) \stackrel{\triangle}{=} \{\alpha(I) \mid \alpha \in A(m)\}$, where $\alpha(I)$ means $(\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_l})$. In order to emphasize the index subset I of J, we sometimes write α_I for the elements of A(I).

Set $L = W(m; \mathbf{n}) = \sum_{i=1}^{m} \mathfrak{A}(m; \mathbf{n}) D_i$. Recall that $L = W(m; \mathbf{n}) = \sum_{i=1}^{m} \mathcal{K} D_i + \sum_{i=1}^{m} \sum_{|\alpha| > 0} \mathcal{K} x^{\alpha} D_i$

 $\stackrel{\triangle}{=} L_{[-1]} + L_0. \quad (L_0, [p]) \text{ is a restricted subalgebra of } L \text{ with the standard basis elements like } \\ D \in \{x^{\alpha}D_i \mid \sum_{i=1}^m \alpha_i > 0, 0 \leqslant \alpha_i \leqslant p^{n_i} - 1, i = 1, 2, \cdots, m\}. \text{ We have known that } (L, \underline{s}, \varphi_{\underline{s}}) \text{ is a generalized restricted Lie algebra with } \underline{s} = (n_1, n_2, \cdots, n_m, 1, 1, \cdots, 1) \text{ and } \varphi_{\underline{s}} : D_i \mapsto 0, D \mapsto D^{[p][3]}. \text{ By Schur's Lemma, it's easily shown that an arbitrary given simple } L\text{-module } (V, \rho) \text{ is subject to a linear function } \chi \text{ on } L^{[3,6]}, \text{ which satisfies }$

$$\rho(D)^p - \rho(D^{[p]}) = \chi(D)^p \cdot \operatorname{Id}_V, \quad \forall \ D \in L_0, \rho(D_i)^{p^{n_i}} = \chi(D_i)^{p^{n_i}} \cdot \operatorname{Id}_V, \quad i = 1, 2, \cdots, m.$$
(1.1)

A representation (resp. module) of L satisfying (1.1) is called a generalized reduced representation (resp. module), or χ -reduced representation (χ -reduced module).

1.2 Λ_I -Gradations of L

Let $\mathcal{E} = \{$ the standard basis of L_0 presented above $\bigcup \{D_1, \cdots, D_m\}$ be the standard basis of L. Define deg : $\mathcal{E} \to \mathbb{Z}^m$ by

$$\deg x^{\alpha} D_j = (\alpha_1, \cdots, \alpha_j - 1, \cdots, \alpha_m).$$

Denote

$$\Lambda(L) = \{ \deg(D) \mid D \in \mathcal{E} \}, \quad \Lambda_I = \{ \alpha(I) \mid \alpha \in \Lambda(L) \}$$

where I is an index subset of $J = \{1, 2, \dots, m\}$. Then there is a Λ_I -gradation of L:

$$L = \bigoplus_{\alpha \in \Lambda_I} L_{\alpha}, \quad L_{\alpha} = \mathcal{K}\operatorname{-span}\{D \in \mathcal{E} \mid \deg D(I) = \alpha\}.$$

For Λ_I , we can define an order \succ_I . Set

$$L^+(I) = \bigoplus_{\alpha_I \succ_I 0} L_{\alpha_I}, \quad L^-(I) = \bigoplus_{\alpha_I \prec_I 0} L_{\alpha_I}, \quad L^0(I) = L_I,$$

where $L_I \stackrel{\triangle}{=} \mathcal{K}$ -span $\{x^{\alpha}D_j \mid (\deg x^{\alpha}D_j)(I) = 0\}$. Then $L = L^-(I) + L^0(I) + L^+(I)$.

For L_I , we have the following lemma by direct verification.

Lemma 1.1 Set $\hat{I} := \{1, 2, \dots, m\} \setminus I$, then $L_I = L_I^c \oplus L_I^0$, where $L_I^c = \mathcal{K}$ -span $\{x^{\alpha_{\hat{I}}+\varepsilon_i}D_i \mid \alpha_{\hat{I}} \in A(\hat{I}), i \in I\}$ is an abelian ideal of L_I , and $L_I^0 = \mathcal{K}$ -span $\{x^{\alpha_{\hat{I}}}D_k \mid \alpha_{\hat{I}} \in A(\hat{I}), k \in \hat{I}\}$ can be regarded as a simple generalized Witt algebra $W(\hat{I})$ corresponding to \hat{I} .

1.3 About \mathcal{L}

Now let

$$\mathcal{L} = L + \sum_{i=1}^{m} \sum_{d_i=1}^{n_i-1} \mathcal{K} D_i^{[p]^{d_i}} \subset \operatorname{Der} \mathfrak{A}(m; \mathbf{n}),$$

(*i* with $n_i > 1$), then $(\mathcal{L}, [p])$ is a restricted Lie subalgebra of $\text{Der}\mathfrak{A}(m; \mathbf{n})$. For any simple \mathcal{L} -module $(V, \overline{\rho})$ there are following equations:

$$\overline{\rho}(D)^p - \overline{\rho}(D^{[p]}) = \overline{\chi}(D)^p \cdot \mathrm{Id}_V, \quad \forall \ D \in \mathcal{L}.$$
(1.2)

Where $\overline{\chi}$ is a character of \mathcal{L} which is a trivial extension of $\chi \in L^*$, i.e., satisfying $\overline{\chi}|L = \chi$ and

$$\overline{\chi}(D) = \chi(D), \quad \forall \ D \in L, \\ \overline{\chi}(D_i^{[p]^{d_i}}) = 0, \quad 1 \leq d_i \leq n_i - 1$$

A representation $(V, \overline{\rho})$ satisfying (1.2) is called a $\overline{\chi}$ - reduced representation of \mathcal{L} .

1.4 Λ_I -Gradations of \mathcal{L}

Set

$$\mathcal{L}^{+}(I) = L^{+}(I),$$

$$\mathcal{L}^{-}(I) = L^{-}(I) + S_{I} \stackrel{\triangle}{=} L^{-}(I) + \sum_{i \in I} \sum_{d_{i}=1}^{n_{i}-1} \mathcal{K}D_{i}^{[p]^{d_{i}}},$$

$$\mathcal{L}_{I} = L_{I} + S_{\hat{I}} \stackrel{\triangle}{=} L_{I} + \sum_{k \in \hat{I}} \sum_{d_{k}=1}^{n_{k}-1} \mathcal{K}D_{k}^{[p]^{d_{k}}},$$

where $\hat{I} = \{1, 2, \dots, m\} \setminus I$. Then $\mathcal{L} = \mathcal{L}^-(I) \oplus \mathcal{L}_I \oplus \mathcal{L}^+(I)$. All three subalgebras are restricted Lie algebras.

The following proposition is clear.

Proposition 1.1 For any $\overline{\chi} \in \mathcal{L}^*$, there exists the smallest index set $I(\chi)$ such that $\overline{\chi}(\mathcal{L}^{\pm}(I)) = 0$. $(I(\chi)$ will be mostly denoted by I for simplicity whenever the context is clear.)

2 The simplicity of induced modules of $L = W(m; \mathbf{n})$

Fix a $\chi \in L^*$. Then there is the smallest index set I such that $\overline{\chi}(\mathcal{L}^{\pm}(I)) = 0$. Let

$$\begin{split} L_{[0],I} &= L_I + \sum_{\substack{\alpha_{\hat{i}} \in A(\hat{I}) \ i \neq j) \in I}} \sum_{i \neq j \in I} \mathcal{K} x^{\alpha_{\hat{i}} + \varepsilon_i} D_j, \\ L_{[q],I} &= \sum_{\substack{\alpha_{\hat{i}} \in A(\hat{I}) \ |\alpha_I| = q+1}} \sum_{i \in I} \mathcal{K} x^{\alpha_{\hat{i}} + \alpha_I} D_i + \sum_{\substack{\alpha_{\hat{i}} \in A(\hat{I}) \ |\alpha_I| = q}} \sum_{k \in \hat{I}} \mathcal{K} x^{\alpha_{\hat{i}} + \alpha_I} D_k \end{split}$$

for q = -1 and q > 0. We have a \mathbb{Z} -gradation of $L : L = \bigoplus_{q \ge -1} L_{[q],I}$. Set $L_{q,I} = \sum_{k \ge q} L_{[k],I}$ for $q \ge -1$. Then $L_{q,I}$ is a filtration of L. Thus we have $L = L_{[-1],I} \oplus L_{[0],I} \oplus L_{1,I}$. Now let

$$\mathcal{L}_{1,I} = L_{1,I},$$

$$\mathcal{L}_{[0],I} = L_{[0],I} + S_{\hat{I}} = L_{[0],I} + \sum_{k \in \hat{I}} \sum_{d_{k}=1}^{n_{k}-1} D_{k}^{[p]^{d_{k}}},$$

$$\mathcal{L}_{[-1],I} = L_{[-1],I} + S_{I} = L_{[-1],I} + \sum_{i \in I} \sum_{d_{i}=1}^{n_{i}-1} D_{i}^{[p]^{d_{i}}}.$$

第3期

Then $\mathcal{L} = \mathcal{L}_{[-1],I} \oplus \mathcal{L}_{[0],I} \oplus \mathcal{L}_{1,I}$. All three are restricted subalgebras and $\mathcal{L}_{[-1],I}$ is also Abelian.

A simple $L_{[0],I}$ -module V is naturally a simple $\mathcal{L}_{[0],I}$ -module via the action: $\overline{\rho}(D_k^{[p]^{a_k}})$ $= \overline{\rho}(D_k)^{p^{d_k}} - \overline{\chi}(D_k)^{p^{d_k}} \cdot \mathrm{Id}_V, k \in \hat{I}$. Notice that $\overline{\chi}(D_k) = 0$ for $k \in \hat{I}$, and then $\overline{\rho}(D_k^{[p]^{d_k}}) = \overline{\rho}(D_k)^{p^{d_k}}$. If V is a simple $\mathcal{L}_{[0],I}$ -module with character $\overline{\chi}$, then V can be extended to a simple $\mathcal{L}_{0,I}$ -module via a trivial $\mathcal{L}_{1,I}$ - action. Hence we have the induction functor $\mathrm{Ind}_{\mathcal{L}_{0,I}}^{\mathcal{L}}$ from the $u_{\overline{\chi}}(\mathcal{L}_{[0],I})$ -module category $u_{\overline{\chi}}(\mathcal{L}_{[0],I})$ -Mod to the $u_{\overline{\chi}}(\mathcal{L})$ -module category $u_{\overline{\chi}}(\mathcal{L})$ -Mod:

$$\operatorname{Ind}_{\mathcal{L}_{0,I}}^{\mathcal{L}}(V) = u_{\overline{\chi}}(\mathcal{L}) \otimes_{u_{\overline{\chi}}(\mathcal{L}_{[0],I})} V.$$

On the other hand, for a $u_{\overline{\chi}}(\mathcal{L})$ -module W, set $W^{\mathcal{L}_{1,I}} = \{w \in W \mid \mathcal{L}_{1,I} \cdot w = 0\}$. Since $\mathcal{L}_{[0],I}$ normalizes $\mathcal{L}_{1,I}, W^{\mathcal{L}_{1,I}}$ is an $\mathcal{L}_{[0],I}$ -module. Thus we have the fixed-point functor $\mathfrak{K} = (-)^{\mathcal{L}_{1,I}}$ from $u_{\overline{\chi}}(\mathcal{L})$ -Mod to $u_{\overline{\chi}}(\mathcal{L}_{[0],I})$ -Mod.

Proposition 2.1 Set $\pi_{\hat{I}} = \sum_{j \in \hat{I}} (p^{n_j} - 1)\varepsilon_j$. Suppose $\chi(G_i) \neq 0$ for a certain $i \in I$ and $G_i = x^{\pi_{\hat{I}} + \varepsilon_i} D_i$. Then the functor $\operatorname{Ind}_{\mathcal{L}_{0,I}}^{\mathcal{L}}$ is one-to-one correspondence between the isomorphism classes of simple $\mathcal{L}_{[0],I}$ -modules and simple \mathcal{L} -modules with the same character $\overline{\chi}$.

Proof Set $\mathcal{J} = \operatorname{Ind}_{\mathcal{L}_{0,I}}^{\mathcal{L}}$. Parallel to the arguments in restricted cases, we easily know that \mathcal{J} is left adjoint to \mathfrak{K} . What we need to do is to prove that both functors \mathcal{J} and \mathfrak{K} send the simple objects to the simple ones. For this, we need to prove that for any $w \in W = \mathcal{J}(V)$, we have $u_{\overline{\chi}}(\mathcal{L}) \cdot w = W$, where V is an arbitrary given simple $u_{\overline{\chi}}(\mathcal{L}_{0,I})$ -module.

Notice that $W = u_{\overline{\chi}}(\mathcal{L}_{[-1],I}) \otimes V$ as vector spaces. For any nonzero vector $w \in W$, we can express it as

$$w = \sum_{\mathbf{a}\in T_1} \sum_{\mathbf{b}\in T_2} F^{\mathbf{a}} E^{\mathbf{b}} \otimes v_{\mathbf{a},\mathbf{b}},$$

where $F^{\mathbf{a}} = F_1^{\mathbf{a}(1)} F_2^{\mathbf{a}(2)} \cdots F_{l_1}^{\mathbf{a}(l_1)}$, $E^{\mathbf{b}} = E_1^{\mathbf{b}(1)} E_2^{\mathbf{b}(2)} E_{l_2}^{\mathbf{b}(l_2)}$, the F_q 's are standard basis elements of $L_{[-1],I}$ like $F_q = x^{\alpha_I} D_i$, $i \in I$; the E_q 's are elements like $D_j^{[p]^{d_j}}$, $j \in I$, $1 \leq d_j \leq n_j - 1, n_j >$ 1. T_1 and T_2 are two subsets of the multiple number set $\{(x_1, x_2, \cdots, x_{l_1}) \mid 0 \leq x_i \leq p^{n_i - 1}\}$ and $\{(x_1, x_2, \cdots, x_{l_2}) \mid 0 \leq x_i \leq p^{n_i - 1}\}$ respectively for $l_1 = \dim L_{[-1],I}$ and $l_2 = \sum_{i \in I} (n_i - 1)$.

If $w \in 1 \otimes V$, it is naturally true that $w = u_{\overline{\chi}}(\mathcal{L}) \cdot w$ because V is simple. So we only need to consider the case $w \notin 1 \otimes V$, for which the proof will be divided into two cases as follows.

Case 1 $w \notin 1 \otimes V$ and $\mathbf{a} \neq 0$. Let $F_1 = x^{\alpha_i} D_{i_1}$, $\widetilde{F}_1 = x^{\pi_i - \alpha_i + \varepsilon_i} D_i \in L_{1,I}$, this is because $[\widetilde{F}_1, D_j^{[p]^{d_j}}] = 0$ for all $j \in I$, $1 \leq d_j \leq n_j - 1$, $n_j > 1$.

Case 2 $w \notin 1 \otimes V$ and $\mathbf{a} = 0$. Then there is a $\mathbf{b} \neq 0$ and $v_{\mathbf{b}} \neq 0$ such that

$$w = \sum_{\mathbf{b}\in T_2} E^{\mathbf{b}} \otimes v_{\mathbf{b}}.$$
 (*)

Without loss of generality we may suppose $E_1 = D_{j_1}^{[p]^{d_{j_1}}}$ with $\mathbf{b}(1) \neq 0$ for a certain $\mathbf{b} \in T_2$ such that d_{j_1} is the smallest one among all the d as long as $E_q = D_{j_q}^{[p]^d}$ with $\mathbf{c}_q \neq 0$ for a certain $\mathbf{c} \in T_2$ appearing in the sum expression of w (*), and simultaneously such that $j_1 = i$ if $D_i^{[p]^{d_i}}$ appears there, as a factor of a certain summand. Thus we can rewrite w as follows.

$$w = E_1^{r_1} \widehat{E}_{1r_1} + E_1^{r_1 - 1} \widehat{E}_{1(r_1 - 1)} + \dots + E_1 \widehat{E}_{11} + \widehat{E}_{10},$$

where

$$\widehat{E}_{1q} = \sum_{\substack{\mathbf{b} \in T_2 \\ \mathbf{b}(1) = q}} E^{\mathbf{b}|_2^{l_2}} \otimes v_{\mathbf{b}}, q = 0, 1, 2, \cdots, r_1(< p),$$
$$\mathbf{b}|_2^{l_2} = (\mathbf{b}(2), \mathbf{b}(3), \cdots, \mathbf{b}(l_2)).$$

By the assumption, $\widehat{E}_{1r_1} \neq 0$.

Set $\widetilde{E}_1 = x^{\pi_i + p^{d_{j_1}} \varepsilon_{j_1} + \varepsilon_i} D_i \in \mathcal{L}_{1,I}$. Then for all $D_{j_q}^{[p]^d}$ appearing in the sum expression (*)

$$[\widetilde{E}_1, D_{j_q}^{[p]^d}] = \begin{cases} -G_i, & \text{if } d = d_j, j_q = j_1, \\ 0, & \text{otherwise.} \end{cases}$$

which implies the trivial action of \widehat{E}_1 on \widehat{E}_{1q} for $q = 0, 1, 2, \cdots, r_1$. Furthermore,

$$\widetilde{E}_1 \cdot E_1^k = \sum_{q=0}^k (-1)^q \binom{k}{q} E_1^{k-q} (\mathrm{ad} E_1)^q \widetilde{E}_1$$
$$= E_1^k \widetilde{E}_1 - k E_1^{k-1} G_i.$$

Note that $[G_i, E_q] = 0$ for $q \ge 2$. From the above, we first have

$$\widetilde{E}_1 \cdot E_1^{r_1} \widehat{E}_{1r_1} = E_1^{r_1} \widetilde{E}_1 \cdot \widehat{E}_{1r_1} - r_1 E_1^{r_1 - 1} G_i \widehat{E}_{1r_1} = -r_1 E_1^{r_1 - 1} G_i \widehat{E}_{1r_1} \neq 0.$$

This is due to the fact $G_i^p \widehat{E}_{1r_1} = \overline{\chi}(G_i)^p \widehat{E}_{1r_1} \neq 0$, along with the fact $G_i \widehat{E}_{1r_1}$ is in $u_{\overline{\chi}}(\bigoplus_{i=2}^{n_2} \mathcal{K}E_j) \otimes V$. Then we have

$$\widetilde{E}_1 \cdot w = E_1^{r_1 - 1} \widehat{\widehat{E}}_{1(r_1 - 1)} + E_1^{r_1 - 2} \widehat{\widehat{E}}_{1(r_1 - 2)} + \dots + E_1 \widehat{\widehat{E}}_{11} + \widehat{\widehat{E}}_{10},$$

such that $\widehat{\widehat{E}}_{1q}, q = 0, 1, 2, \cdots, r_1 - 1$ are all in $u_{\overline{\chi}}(\sum_{j=2}^{n_2} \mathcal{K}E_j) \otimes V$ and $\widehat{\widehat{E}}_{1(r_1-1)} = -r_1 G_i \widehat{E}_{1r_1} \neq 0$. Hence $\widetilde{E}_1 \cdot w \neq 0$. The above argument can be repeated. Thus, we have $\widetilde{E}_1^{r_1} \cdot w \neq 0$ and there is no factor E_1 appearing in any nonzero component of the sum expression of $\widetilde{E}_1^{r_1} \cdot w$, similar to (*). Iterating the above process, we will have

$$0 \neq \widetilde{E}_s^{r_s} \cdots \widetilde{E}_1^{r_1} \cdot w \in 1 \otimes V.$$

where the meaning of \widetilde{E}_q $(q = 2, 3, \dots, s)$ is similar to that of \widetilde{E}_1 . This implies the simplicity of $\operatorname{Ind}_{\mathcal{L}_{0,I}}^{\mathcal{L}}(V)$.

Conversely, suppose W is an arbitrary simple $u_{\overline{\chi}}(\mathcal{L})$ -module. If $\mathfrak{K}(W)$ contains a simple submodule W', by the above argument $\mathcal{J}(W')$ is a simple $u_{\overline{\chi}}(\mathcal{L})$ -module. Hence $\mathcal{J}(W') \cong W$ and $\mathfrak{K} \circ \mathcal{J}(W') \cong \mathfrak{K}(W)$. Furthermore, the above argument shows that for any $w \in \mathcal{J}(W') \setminus W'$, there is an $\widetilde{F}_1 \in \mathcal{L}_{1,I}$ or a $\widetilde{E}_1 \in \mathcal{L}_{1,I}$ such that $\widetilde{F}_1 \cdot w \neq 0$ or $\widetilde{E}_1 \cdot w \neq 0$, Hence $\mathfrak{K} \circ \mathcal{J}(W') = W'$. This implies that W' coincides with $\mathfrak{K}(W)$. Hence $\mathfrak{K}(W)$ is a simple $u_{\overline{\chi}}(\mathcal{L}_{[0],I})$ -module.

Thus, the adjunction morphisms $\mathcal{J} \circ \mathfrak{K} \longmapsto \mathrm{Id}_{u_{\overline{\chi}}(\mathcal{L})-\mathbf{Mod}}$ and $\mathfrak{K} \circ \mathcal{J} \longmapsto \mathrm{Id}_{u_{\overline{\chi}}(\mathcal{L}_{[o],I})-\mathbf{Mod}}$ are both isomorphisms for simple objects. The proposition is proved.

Remark In the case when $I = \{1, 2, \dots, m\}$, $\mathcal{L}_{[0],I} = L_{[0],I} = L_{[0]}$ where $L_{[0]}$ is the canonical grade-0 component of L, arising from the gradation of the divided power algebra^[10]. The corresponding results have been known^[9,11].

3 The representations corresponding to loop algebras

Set $L = W(m; \mathbf{n})$. For the divided power algebra $\mathfrak{A} = \mathfrak{A}(s; \mathbf{n})$ and a restricted Lie algebra $(\mathfrak{g}, [p])$, we can define a loop algebra $O(\mathfrak{g}) = \mathfrak{A} \otimes \mathfrak{g}$ with Lie product:

$$[x^{\alpha} \otimes X, x^{\beta} \otimes Y] = \binom{\alpha + \beta}{\alpha} x^{\alpha + \beta} \otimes [X, Y].$$

Then $O(\mathfrak{g})$ is still a restricted Lie algebra with

$$(x^{\alpha} \otimes X)^{[p]} = \begin{cases} 0, & \text{if } \alpha \neq 0, \\ 1 \otimes X^{[p]}, & \text{if } \alpha = 0. \end{cases}$$
(3.1)

When \mathfrak{g} is centerless, there is a unique [p]-mapping for $O(\mathfrak{g})$. In fact, in this case $O(\mathfrak{g})$ is also centerless^[4].

In the rest of this paper, we only deal with $\mathfrak{gl}(I)$ for I as in the preceding sections. Here $\mathfrak{gl}(I)$ is the classical Lie subalgebra of $\mathfrak{gl}(m)$ corresponding to the index set $I = \{i_1, i_2, \cdots, i_l\} \subset \{1, 2, \cdots, m\}$, which is isomorphic to $\mathfrak{gl}(\#I)$. Denote by $\mathfrak{A}(\hat{I})$ the divided power subalgebra of $\mathfrak{A}(m)$ with generators $x^{\alpha_{\hat{I}}}$ for all $\alpha_{\hat{I}} \in A(\hat{I})$ (when $\hat{I} = \emptyset$, let naturally define $\mathfrak{A}(\hat{I})$ to be \mathcal{K}). In the sequel, we always suppose that all loop algebras $O(\mathfrak{g})$ are associated with the divided power algebra $\mathfrak{A}(\hat{I})$. Set $\widehat{\mathfrak{gl}}(I) = O(\mathfrak{gl}(I)), \mathcal{L}_{\bar{0}} = \mathcal{L}_{[0],I}$. Then $\mathcal{L}_{\bar{0}} = S_{\hat{I}} \oplus L_{I}^{0} \oplus \mathfrak{g}_{\hat{I}}$, where

$$\mathfrak{g}_{\hat{I}} = \sum_{\alpha_{\hat{I}} \in A(\hat{I})} \sum_{i,j \in I} \mathcal{K} x^{\alpha_{\hat{I}} + \varepsilon_i} D_j.$$

Lemma 3.1 $\mathfrak{g}_{\hat{I}}$ is Lie-isomorphic to the loop algebra $\widehat{\mathfrak{gl}}(I)$.

Proof Set $\phi : x^{\alpha_i + \varepsilon_i} D_j \mapsto x^{\alpha_i} \otimes E_{ij}$, where E_{ij} is the $m \times m$ matrix with (i, j)-entry being 1 and with the others being 0. This is an isomorphism.

Hence we can identify $\mathfrak{g}_{\hat{I}}$ with $\widehat{\mathfrak{gl}}(I)$ in the following discussion. In particular, $\mathfrak{g}_{\hat{I}}$ is a *p*-subalgebra of (L, [p]) with [p]-mapping satisfying

$$(x^{\alpha_{\hat{i}}+\varepsilon_i}D_j)^{[p]} = \begin{cases} x^{\varepsilon_i}D_i, & \text{if } \alpha_{\hat{i}}=0 \text{ and } i=j, \\ 0, & \text{otherwise.} \end{cases}$$

This is admissible to the [p]-mapping as defined in (3.1) for $\widehat{\mathfrak{gl}}(I)$. Notice that for $k \in \hat{I}, i, j \in I$, $1 \leq d_k \leq n_k - 1$,

$$\begin{split} & [x^{\beta_{\tilde{I}}}D_{k}, x^{\alpha_{\tilde{I}}} \otimes E_{ij}] = {\beta_{\tilde{I}} + \alpha_{\tilde{I}} - \varepsilon_{k} \choose \beta_{\tilde{I}}} x^{\beta_{I} + \alpha_{I} - \varepsilon_{k}} \otimes E_{ij}, \\ & [D_{k}^{[p]^{d_{k}}}, x^{\alpha_{\tilde{I}}} \otimes E_{ij}] = x^{\alpha_{\tilde{I}} - p^{d_{k}} \varepsilon_{k}} \otimes E_{ij}. \end{split}$$

Then we obtain the following lemma.

Lemma 3.2 If \mathfrak{g}' is a subalgebra of $\widehat{\mathfrak{gl}}(I)$, then the loop algebra $\mathfrak{A}(\hat{I}) \otimes \mathfrak{g}'$ is normalized by L^0_I and $S_{\hat{I}}$.

Let Φ be the root system of $\mathfrak{g} = \mathfrak{gl}(I)$. For $\alpha \in \Phi$, let $e_{\alpha} \in \mathfrak{g}$ be a nonzero root vector. We can assume that those root vectors are normalized so that if $h_{\alpha} = [e_{\alpha}, e_{-\alpha}]$ then the system $\{e_{\pm\alpha}, h_{\alpha}\}$ satisfies $[h_{\alpha}, e_{\pm\alpha}] = \pm 2e_{\pm\alpha}$. We have the decomposition of root spaces, $\mathfrak{g} = \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, Canonically, denote $\mathfrak{n}^{\pm} = \bigoplus_{\alpha \in \Phi^{\pm}} \mathfrak{g}_{\alpha}$. Let \mathfrak{b} be the Borel subalgebra of \mathfrak{g} associated with Φ^+ .

Denote $\mathfrak{b}_{\bar{0}} = O(\mathfrak{b}) \oplus L_I^0 \oplus S_{\hat{I}}, \mathfrak{n}_{\bar{0}}^{\pm} = O(\mathfrak{n}^{\pm})$ Then $\mathfrak{b}_{\bar{0}} = S_{\hat{I}} \oplus L_I \oplus \mathfrak{n}_{\bar{0}}^+ = \mathcal{L}_I \oplus \mathfrak{n}_{\bar{0}}^+$. By the arguments in section 3.1, $(x^{\mathbf{a}} \otimes e_{\alpha})^{[p]} = 0$ for all \mathbf{a}, α and $(x^{\mathbf{a}} \otimes h_{\alpha})^{[p]} = 0$ for $\mathbf{a} \neq 0$ and all α . Thus all elements of $\mathfrak{n}_{\bar{0}}^{\pm}$ act nilpotently on any $\overline{\chi}$ -reduced modules of $\mathfrak{n}_{\bar{0}}^{\pm}$ because of $\overline{\chi}(\mathfrak{n}_{\bar{0}}^{\pm}) = 0$. In particular, for any simple module V of \mathcal{L}_I, V can act as a $\mathfrak{b}_{\bar{0}}$ - module with the trivial $\mathfrak{n}_{\bar{0}}^{\pm}$ -action. Here we have an induced module:

Ind
$$V = u_{\overline{\chi}}(\mathcal{L}_{\bar{0}}) \otimes_{u_{\overline{\chi}}(\mathfrak{b}_{\bar{0}})} V$$
.

Definition 3.1 Let $\overline{\chi} \in \mathcal{L}^*$. We call $\overline{\chi}$ regular semisimple if $\overline{\chi}(G_{\alpha}) \neq 0$ for all $\alpha \in \Phi^+$ and $\overline{\chi}(\mathcal{L}^{\pm}(I)) = 0$, where $G_{\alpha} = x^{\pi_i} \otimes h_{\alpha}$.

Lemma 3.3 Suppose $\overline{\chi} \in \mathcal{L}^*$ is regular semisimple. Then for any simple $u_{\overline{\chi}}(\mathcal{L}_{\overline{0}})$ -module M, M^N is a simple B- submodule and the natural mapping $\operatorname{Ind} M^N \longrightarrow M$ is a $u_{\overline{\chi}}(\mathcal{L}_{\overline{0}})$ -module isomorphism. Any simple $u_{\overline{\chi}(\mathcal{L}_{\overline{0}})}$ -module is N-projective. Here the functor Ind is defined as above. $B = u_{\overline{\chi}}(\mathfrak{b}_{\overline{0}})$ and $N = u(O(\mathfrak{n}^+))$. (Note: $\overline{\chi}(O(\mathfrak{n}^+)) = 0$.)

Proposition 3.1 Suppose $\overline{\chi} \in \mathcal{L}^*$ is regular semisimple. Then $u_{\overline{\chi}}(\mathcal{L}_I)$ and $u_{\overline{\chi}}(\mathcal{L}_{\overline{0}})$ are Morita equivalent. In particular, the modules $\operatorname{Ind} V$ constitute the corresponding set for $u_{\overline{\chi}}(\mathcal{L}_{\overline{0}})$ when V runs over a set of representatives of the isomorphism class of simple $u_{\overline{\chi}}(\mathcal{L}_I)$ -modules.

The proof of this proposition is mainly from lemma 3.3 and its $\text{proof}^{[4]}$.

4 The main result

Let $L = W(m; \mathbf{n}), \ \chi \in L^*$. $\mathcal{L} = L + \sum_{i=1}^m \sum_{d_i=1}^{n_i-1} \mathcal{K}D_i^{[p]^{d_i}}$. For any $\overline{\chi} \in \mathcal{L}^*$, there exists the smallest index set $I(\chi)$ such that $\overline{\chi}(\mathcal{L}^{\pm}(I(\chi))) = 0$ (Proposition 1.1). Associated with I, we have the subalgebra \mathcal{L}_I of \mathcal{L} : $\mathcal{L}_I = S_{\hat{I}} \oplus W(\hat{I}) \oplus L_I^c$, where $L_I^c \cong \mathfrak{A}(\hat{I}) \otimes \mathfrak{h}(I), \ \mathfrak{h}(I)$ is the canonical torus of W(I). Let $B(I) = \mathcal{L}_I \oplus \mathcal{L}^+(I)$. For any given simple \mathcal{L}_I -module V, V can be regarded as a simple B(I)-module with the trivial $\mathcal{L}^+(I)$ -action. Then we have the induced module $\mathrm{Ind}_{B(I)}^{\mathcal{L}}(V) = u_{\overline{\chi}}(\mathcal{L}) \otimes_{u_{\overline{\chi}}(B(I))} V$. Hence, we similarly have a functor $\mathrm{Ind}_{B(I)}^{\mathcal{L}}$ from $u_{\overline{\chi}}(\mathcal{L}_I)$ -module category to $u_{\overline{\chi}}(\mathcal{L})$ -module category.

Theorem 4.1 Suppose $\overline{\chi} \in \mathcal{L}^*$ is regular semisimple. Then the functor $\operatorname{Ind}_{B(I)}^{\mathcal{L}}$ is one-to-one between the isomorphism classes of simple $u_{\overline{\chi}}(\mathcal{L}_I)$ -module and simple $u_{\overline{\chi}}(\mathcal{L})$ -module.

Proof Note that $B(I) = \mathcal{L}_I \oplus \mathcal{L}^+(I) = \mathfrak{b}_{\bar{0}} \oplus \mathcal{L}_{1,I} \subset \mathcal{L}_{0,I} = \mathcal{L}_{\bar{0}} \oplus \mathcal{L}_{1,I}$.

$$\operatorname{Ind}_{B(I)}^{\mathcal{L}}(V) = u_{\overline{\chi}}(\mathcal{L}) \otimes_{u_{\overline{\chi}}(\mathcal{L}_{0,I})} (u_{\overline{\chi}}(\mathcal{L}_{0,I}) \otimes_{u_{\overline{\chi}}(B(I))} V)$$
$$= u_{\overline{\chi}}(\mathcal{L}) \otimes_{u_{\overline{\chi}}(\mathcal{L}_{0,I})} (u_{\overline{\chi}}(\mathcal{L}_{\overline{0}}) \otimes_{u_{\overline{\chi}}(\mathfrak{b}_{\overline{0}})} V)$$
$$= \operatorname{Ind}_{\mathcal{L}_{0,I}}^{\mathcal{L}} (\operatorname{Ind} V).$$

The second equality holds because $u_{\overline{\chi}}(\mathcal{L}_{0,I}) \otimes_{u_{\overline{\chi}}(B(I))} V$ is isomorphic to Ind V as $u_{\overline{\chi}}(\mathcal{L}_{\overline{0}})$ modules, with the trivial $\mathcal{L}_{1,I}$ -action on both. The theorem is proved due to Proposition 2.1
and Proposition 3.1.

(下转第66页)