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Abstract: This paper studied the representations of graded Cartan type Lie algebra
W (m;n) in characteristic p > 2, by generalizing the arguments of Shu’s for restricted
Lie algebras W (m;1). Especially, the rank-reducing method exploited in the restricted case
was extended to non-restricted case. The simple modules for W(m;n) with generalized
p-character x were described by reduction when x was regular semisimple.

Key words: graded Lie algebra; Cartan type; regular semisimple; loop algebra
CLC number: 0152.5 Document code: A

I~ X Jacobson-Witt K& W (m;n) B I(x)-# R~

B, G2
(1. WWARBETORZE e 55 BREERE, AR IS 255049; 2. RRIMTRY H2ER, L 200062)

FEE: H TR BREIZAREL W (m; 1) IRFRE I, T T M4E1E p > 2 B EIF 4k Cartan 4%
B W (msn) BIERZR. R, FE6T B B 2= AR E0T F 0 Bk ) g e T 31 7 AR BRI P 1 .
TR T Y x ENERE W (m;n) AT X x-ZH R,
KR k2L Cartan Y, IENEH; loop AU

0 Introduction

So far, except for a few examples of Cartan type Lie algebras in prime characteristic with
low ranks, we are far away from understanding their simple modules. Generally speaking,
the lower-rank case is easier than the higher-rank case in the study of their representations.
For rank-one Cartan type Lie algebras of type W, there is a complete determination for the

restricted casel™? and for the nonrestricted casel®!. For the study of representations of W (m; 1),
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the second author introduced a rank-reducing method and effectively studied simple modules
when the corresponding p-characters are so-called regular semisimple.

This paper generalizes Shu’s arguments!* . For this, we have to adopt the machinery of
so-called generalized restricted Lie algebras. In general, the graded Cartan type Lie algebras
L = W(m;n)(generalized Jacobson-Witt algebras) are not restricted unless n = 1. So, the Kac-
Weisfeiler’s method of classifying the irreducible modules through p-character functions doesn’t
work. To elude such inconvenience the second author introduced the notion of the generalized
restricted Lie algebras and related representation methods® . And generalized restricted x-
reduced module category coincides with the Y-reduced module category of its primitive p-
envelope, where Y is the trivial extension of x in the primitive p-envelopel®6! .

Thus, the significance of I associated with an arbitrary y can be recovered, where I is an
index subset of {1,2,---,m} (in this note we will denote it by I(x)). Especially, associated

with I, L = W(m;n) admits a grading structure L = > Ly, ; and thereby all generalized
g=—1
x-reduced representations admit an I-gradation.

The first main result in this paper is: when Y is regular semisimple( to see Definition 3.1),
the irreducible generalized y-reduced modules of L = W(m;n) are all determined by those of
the grade-0 component Ly = Ly ; associated with their I-gradations. And any irreducible
W (m;n)-module in this way is isomorphic to the induced module of an irreducible generalized
x-reduced Lo, ;-module. The conclusion of Guang-yu Shen is generalized (see Section 2). Note
that in aid of language of “height” of generalized p-character, Guangyu Shen’s graded module
category is within the y-reduced representation category with the height of x smaller than 1.
In the present paper, our work is on the x-reduced category with the generalized p-character y
be regular semi-simple whose height may be much bigger than 1, for example when I = {m},
and then I = {1,2,--- ,m — 1},the corresponding semi-simple character x is of the height
plitiini 41,

Furthermore, we can generalize the representation theory corresponding to the “loop al-
gebra” constructed by gl(m) tensoring divided power algebra to the case of W(m;n) 4. Then
we finally reduce the irreducible representations of Lg to the irreducible representation of Lj.

Thus we obtain the second main result in this paper: when yx is regular semisimple, the
irreducible generalized x-reduced Ly ;-modules of W(m;n) coincide with the induced repre-
sentations of the corresponding irreducible representations of Ly = S; ® W) eA(I) @ b(I).

It’s worthy of mention that Guang-yu Shen extensively and deeply studied irreducible

graded modules of Lie algebras of type L = W (m;n)[789]

, as well as for types S, and H.
Those irreducible modules are determined by the irreducible ones of the grade-0 component
Loy = gl(m). Especially, when this Ljg-irreducible module Vj is not the exceptional weight
restricted module, the graded irreducible module of L = W (m;n) is the mixed products of the
divided power algebra 2(m;n) and V5. Our results may be regarded as the generalization of
Shen’s related results.

The authors thank Yufeng Yao for his pointing out the missing terms of grading structure

of L associated to I.



503 Zybyb, 5 T X Jacobson-Witt {83 W (m;n) 1) I(x)-AHER 53

1 Notations and Aj-gradations of £

Throughout K will be an algebraically closed field of characteristic p > 2.
1.1 Notations

Let J = {1,2,---,m} be an index set and « be a function on J over Z. Denote
A(m) = {ala:J—=2Z,0<a(i) <p™—1,Vie J} Wecan write (a(1),a(2), -, a(m)) =
(1,09, ;) for a. Let I be a subset of J and I = {iy < iz < --- < 4;}, then
A(I) = {a(I) | @« € A(m)}, where o(l) means (o, 4, - ,q;). In order to emphasize
the index subset I of J, we sometimes write oy for the elements of A(I).

Set L =W (m;n) = > A(m;n)D;. Recall that L =W (m;n) = > KD;+ > > Ka*D;
~ -

i= i=1 i=1|a[>0

2 Li—1) + Lo. (Lo,[p]) is a restricted subalgebra of L with the standard basis elements like
m

De{z*D;| > 0;>0,0<a; <p™ —1,0=1,2,--- ,m}. We have known that (L, s, ¢;) is a
i=1

generalized restricted Lie algebra with s = (n1,n2,--+ ,nm,1,1,---,1) and s : D; — 0,D
DB By Schur’s Lemma, it’s easily shown that an arbitrary given simple L-module (V,p) is

subject to a linear function y on L9 which satisfies

p(D)” = p(DP) = X(D)” -1dy, ¥ D€ Ly,

" 1.1
p(D)P " =x(Dy)! " -1dy, i=1,2,---,m. (1.1)

A representation (resp. module) of L satisfying (1.1) is called a generalized reduced

representation (resp. module), or x-reduced representation (x-reduced module).
1.2 Aj-Gradations of L

Let £ ={ the standard basis of L presented above }{J{ D1, -, Dy} be the standard basis
of L. Define deg : £ — Z™ by

dega®Dj = (a1, , 05 — 1, ,apm).
Denote
AL)={deg(D) | D€ &}, Ar={a(l)]|acA(L)},
where T is an index subset of J = {1,2,---,m}. Then there is a Aj-gradation of L:
L= La, La=K-span{D € £ | degD(I) = a}.
aENT

For A;, we can define an order ;. Set
L+(I) = EBaI>IO La;, L_(I) = @a,<10 La;, LO(I) =Ly,

where L 2 K-span{z®D; | (degz®D;)(I) = 0}. Then L = L= (I) + L°(I) + L*(I).

For Lj, we have the following lemma by direct verification.

Lemma 1.1 Set [ := {1,2,---,m} \ I, then L; = L§ & LY, where L =
K-span{z®i*<iD; | a; € A(I), i € I'} is an abelian ideal of Ly, and LY = K-span{z®i Dy, | a; €
A(f ), k€ I } can be regarded as a simple generalized Witt algebra W(f ) corresponding to I.
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1.3 About L
Now let .
L=L+ Z Z ICDl[.p]di C Der 2(m;n),
i=1d;=1

(@ with n; > 1), then (L, [p]) is a restricted Lie subalgebra of Der(m;n). For any simple

L-module (V,p) there are following equations:
(D) —p(DP)y =x(D)? - 1dy, VD e L. (1.2)
Where Y is a character of £ which is a trivial extension of x € L*, i.e, satisfying Y|L = x and

X(D)=x(D), VDEeL,
YDPy =0, 1<d<ni—1.

A representation (V,p) satisfying (1.2) is called a X- reduced representation of L.
1.4 A;-Gradations of £

Set
L) = L*(I),
’ﬂifl i
LI = L+S 2L+ ¥ kP,
i€l d;=1
s S e plel
Lr = L[+Sf=L[+Z Z /CDk ,
kel dp=1

where I = {1,2,--- ,m}\I. Then £ = £~ (I)® L; & L*(I). All three subalgebras are restricted
Lie algebras.

The following proposition is clear.

Proposition 1.1 For any ¥ € L*, there exists the smallest index set I(x) such that
X(LE(I)) = 0. (I(x) will be mostly denoted by I for simplicity whenever the context is clear.)

2 The simplicity of induced modules of L = W (m;n)

Fix a x € L*. Then there is the smallest index set I such that Y(£*(I)) = 0. Let

Lgg=Li+ X X Ka*rt=Dj,
a;eA(l) i(#9)el
Lgr= Y X XKt Di+ 3 3 3 KaiteiDy
a;eA(I) ﬁffjﬂ iel a;eA(I) ﬂ‘{fIlA:(é) kel

for ¢ = —1 and ¢ > 0. We have a Z-gradation of L : L = @¢>_1L[g,7- Set Lgr = > Ly, for
k2q
q = —1. Then L, is a filtration of L. Thus we have L = L|_1); © Ljo},; © L1,;. Now let

L1 = Lig,
S el
Lo = Lo +S;=Lor+ > X Dy,
kel dik=1
n;—1 d;
Liyng = Ligr+Sr=Li_qgr+> > Dz[p] ~

i€l d;=1
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Then £ = L{_1),1® Ljo},1 ®L1,1. All three are restricted subalgebras and £_y) s is also Abelian.
A simple Lo} ;-module V' is naturally a simple Lo} ;-module via the action: E(D,[Cp ]dk)

= 5(Dy)P™ — (D)™ - 1dy,k € I. Notice that Y(Dy) = 0 for k € I, and then p(DIP™) =

ﬁ(Dk)pdk. If V is a simple Lo ;-module with character y, then V' can be extended to a simple

Ly r-module via a trivial £; ;- action. Hence we have the induction functor Indﬁw from the

ux(Lio),r)-module category uy(Ljo),r)-Mod to the ux(L)-module category uy(L)-Mod:
Idz, (V) = ux(L)®uy (£ ) V-

On the other hand, for a ug(£)-module W, set W1 = {w € W | L1 ;-w = 0}. Since Lo 1
normalizes £1,;, W57 is an L{g) ;-module. Thus we have the fixed-point functor & = (—)%s
from wuy(L£)-Mod to uy(Ljo),r)-Mod.

Proposition 2.1 Set 7; = ) (p™ —1)e;. Suppose x(G;) # 0 for a certaini € I and G; =
il
x™it¢iD;. Then the functor Indéoy , is one-to-one correspondence between the isomorphism
classes of simple Lo}, ;-modules and simple £-modules with the same character x.

Proof Set J = Indfo‘ ,- Parallel to the arguments in restricted cases, we easily know
that J is left adjoint to K. What we need to do is to prove that both functors J and R send
the simple objects to the simple ones. For this, we need to prove that for any w € W = J(V),
we have ug(L) - w = W, where V is an arbitrary given simple ux (Lo r)-module.

Notice that W = ux(L_1),;) ® V' as vector spaces. For any nonzero vector w € W, we can

w=Y_ Y FE°®uvap,

acTi beTl

where Fa = prpa@) . Fz(ll), EP = EPWEPP EPU) the F, s are standard basis clements

2

express it as

5
of Li_yy s like Fyy = 21 Dy, i € I; the E,’s are elements like Dj[.p} ,Jjel,1<d; <n; —1,n; >

1. Ty and Ty are two subsets of the multiple number set {(z1,z2, -+ ,2;,) | 0 < 2; < p™~1}
and {(z1,22, -+ ,21,) | 0 < z; < p"i~ '} respectively for 1 = dimL;_y) 7 and Iy = ) (n; — 1).
i€l

If we 1®V, it is naturally true that w = ug(L) - w because V is simple. So we only need
to consider the case w ¢ 1 ® V, for which the proof will be divided into two cases as follows.

Casel w¢1®V and a#0. Let Fy = 241D, ﬁl =gTimteata D, ¢ Ly 1, this is
because [ﬁl,Dj[P]dj] =0foralljel,1<d;<n;—1,n; >1

Case 2 w¢1®V and a=0. Then there is a b # 0 and v, # 0 such that

w = ZEb@)vb. (%)

beTs

J1

d
Without loss of generality we may suppose F; = D][.f 7" ith b(1) # 0 for a certain b € Ty

such that d;, is the smallest one among all the d as long as £, = D;i]d with ¢4 # 0 for a certain
]

c € Ty appearing in the sum expression of w (), and simultaneously such that j; = 4 if Dz[p

appears there, as a factor of a certain summand. Thus we can rewrite w as follows.

w = E?Elrl + Efl_lﬁl(n_n + -+ E By + B,
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where R l
Elq = Z Eb|22 ®vp,q=10,1,2,--- 7T1(<p)7

beTy
b(1)=q

b3 = (b(2),b(3),-- , b(l2)).

By the assumption, Elrl # 0.
~ &
Set By = a™itP "t enteiD, € £ ;. Then for all DJ[-Z;

d
] appearing in the sum expression (x)

= d _Gi7 lfd:daj :j7
B D - =1
0, otherwise.
which implies the trivial action of El on Elq forq=0,1,2,--- ,r;. Furthermore,
- k k -
E,-EF = Z(—m( )Ef‘q(adEl)qu
q
q=0

= EFE, —kEFG,.
Note that [G;, E,] = 0 for ¢ > 2. From the above, we first have
El . EYIEHI = E;lﬁl . Elrl — TlEfl_lGiEhl = —TlEiﬁl_lGiEMl 7& 0.

This is due to the fact Gfﬁln = X(Gi)pﬁln % 0, along with the fact GiEh,l is in
ux(®}2,KE;) @ V. Then we have

B w= E?%Em«lq) + E{‘172E1(r172) + -+ E1Eqy + Eno,

= na = ~
such that F14,¢=0,1,2,--- ,r; —lareall in ux()_ KE;)®V and E(, _1) = —11GiE1,, # 0.

j=2
Hence E; - w # 0. The above argument can be repeated. Thus, we have E7* - w # 0 and there
is no factor E; appearing in any nonzero component of the sum expression of Ef - w, similar

to (x). Iterating the above process, we will have
0£E™ - EN" - welaV.

where the meaning of Eq (g=2,3,---,s) is similar to that of El. This implies the simplicity
of Indﬁovl (V).

Conversely, suppose W is an arbitrary simple ug(£)-module. If (W) contains a simple
submodule W', by the above argument J(W’) is a simple ug(£)-module. Hence J(W') = W
and Ro J(W') =2 K(W). Furthermore, the above argument shows that for any w € J(W')\W’,
there is an F} € Lirora E, € L4 1 such that Fi-w #0or Ey-w # 0, Hence Ro J(W') = W".
This implies that W’ coincides with &(W). Hence R(W) is a simple uy(Ljg),r)-module.

Thus, the adjunction morphisms J o & +— Idy_(£)-Moa and Ko J +— Iduy([l[o],l)_Mod
are both isomorphisms for simple objects. The proposition is proved.

Remark In the case when I = {1,2,---,m}, L = L1 = L) where L is the
canonical grade-0 component of L, arising from the gradation of the divided power algebrall%.

The corresponding results have been known!?11.
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3 The representations corresponding to loop algebras

Set L = W(m;n). For the divided power algebra 2 = 2(s;n) and a restricted Lie algebra
(g, [p]), we can define a loop algebra O(g) = A ® g with Lie product:

[*® X,2° Y] = (0‘ Z 6)35“5 ®[X,Y].
Then O(g) is still a restricted Lie algebra with

0, if  #0,

3.1
1@ XP ifa=0. 3.1

(z% ® X)IP = {

When g is centerless, there is a unique [p]-mapping for O(g). In fact, in this case O(g) is
also centerless!*.

In the rest of this paper, we only deal with gl(I) for I as in the preceding sections. Here
gl(I) is the classical Lie subalgebra of gl(m) corresponding to the index set I = {iy,42,---,i;} C
{1,2,--+ ,m}, which is isomorphic to gl(#I). Denote by Ql(f) the divided power subalgebra of
2(m) with generators 27 for all a; € A(I) ( when I = @, let naturally define (1) to be K).
In the sequel, we always suppose that all loop algebras O(g) are associated with the divided
power algebra 2(1). Set gl(I) = O(gl(I)), L5 = Lio),r- Then Li = S; & LY & gj, where

g= Y 3 ket

a;eA(l)bIel

~

Lemma 3.1 g; is Lie-isomorphic to the loop algebra gl(7).
Proof Set ¢ : z®1*¢iD; — 2% @ E;;, where Ej;; is the m x m matrix with (i, j)-entry
being 1 and with the others being 0. This is an isomorphism.
Hence we can identify g; with E[(I ) in the following discussion. In particular, g; is a
p-subalgebra of (L, [p]) with [p]-mapping satisfying
(zoiteiD;)lP) = a% Dy, ifaj=0andi=j,
0, otherwise.
This is admissible to the [p]-mapping as defined in (3.1) for gA[(I). Notice that for k € I,4,j € I,
1 < dk < ng — ]-7
(%1 Dy, 21 @ Eyj] = (PG )afiterer @ Ey,

[DLP]dk7$af ®Eij] _ xaf—pdkek ®Eij~

Then we obtain the following lemma.

Lemma 3.2 If ¢ is a subalgebra of QT[(I), then the loop algebra (1) ® ¢’ is normalized
by LY and S;.

Let ® be the root system of g = gl(I). For a € ®, let e,, € g be a nonzero root vector. We
can assume that those root vectors are normalized so that if h, = [en,€_o] then the system
{e+a, ho | satisfies [hg, etq] = +2e1,. We have the decomposition of root spaces, g = ®qcada,
Canonically, denote n* = @,ce+gq. Let b be the Borel subalgebra of g associated with ®*.
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Denote by = O(b) @ LY ® Sf,n?f = O(n*) Then by = S; ® L &ny = L; & ng. By
the arguments in section 3.1, (22 @ e,)P! = 0 for all a, and (22 ® hy )P = 0 for a # 0 and
all . Thus all elements of n%ﬂ act nilpotently on any Y-reduced modules of ng because of

Y(nE) = 0. In particular, for any simple module V of £;, V can act as a bg- module with the
0

trivial ng—action. Here we have an induced module:
IDdV = ’Uly(,c(j) ®uy(b()) V

Definition 3.1 Let ¥ € £*. We call Y regular semisimple if X(G,) # 0 for all a € ®*
and X(L*(I)) = 0, where G, = 2™ ® hy.

Lemma 3.3 Suppose ¥ € L* is regular semisimple. Then for any simple uy(L5)-module
M, M¥ is a simple B- submodule and the natural mapping Ind M~ — M is a ux(Lg)-module
isomorphism. Any simple uy(c,)-module is N-projective. Here the functor Ind is defined as
above. B = ug(bg) and N = u(O(n')). (Note: x(O(n™)) =0.)

Proposition 3.1 Suppose ¥ € L* is regular semisimple. Then uy(L;) and uxg(Lg) are
Morita equivalent. In particular, the modules IndV constitute the corresponding set for us(Lg)
when V' runs over a set of representatives of the isomorphism class of simple us(Lr)-modules.

The proof of this proposition is mainly from lemma 3.3 and its proofl*.

4 The main result

m n;—1 i
Let L =W(m;n), x € L*. L=L+ > > ICDZ[p}d . For any x¥ € L*, there exists the
i=1d;=1
smallest index set I() such that X(£*(I(x))) = 0 (Proposition 1.1). Associated with I, we

have the subalgebra L; of £: L; = S; @ W(I) @ L§, where L§ = (1) @ h(I), h(I) is the
canonical torus of W(I). Let B(I) = L; ® L1 (I). For any given simple £;-module V, V can
be regarded as a simple B(I)-module with the trivial £T(I)-action. Then we have the induced
module Indg(l)(V) = ux(L) ®uy(B(r)) V. Hence, we similarly have a functor IndﬁB(I) from
ug(Lr)-module category to ug(L)-module category.

Theorem 4.1 Suppose ¥ € L* is regular semisimple. Then the functor Indg( 1y is one-
to-one between the isomorphism classes of simple us(L;)-module and simple us(L£)-module.

Proof Note that B(I) =L;® LT (I)=b5® L17 C Los=Ly® L1,1-

mdZ (V) = ux(L) @ug(zo.n) (ux(Lor) @ug(n(ry V)
= UY(‘C) ®uy(£o,1) (’U’Y(‘Cﬁ) ®uy(ba) V)
= IndZ, ,(IndV).
The second equality holds because ux(Lo.r) @y, (p(r)) V is isomorphic to Ind V' as ux(Lg)-
modules, with the trivial £ r-action on both. The theorem is proved due to Proposition 2.1

and Proposition 3.1.
(M55 66 T0)



