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0 Introduction

Since Charles H. Dow first introduced the Dow theory in the late 1800s, technical analysis
has been extensively used in stock markets. Technical analysis tries to forecast the prices of
financial securities by observing the pattern that the security has followed in the past. There
are numerous methods within technical analysis, which are essentially independent from each
other. Among the most important technical analysis tools in the stock market are Bollinger
bands, RSI, ROC. The efficiency of these indexes is ‘proved’ by the observed relative frequency
of the occurrence of the corresponding behaviors of stock prices. In other words, the traders use
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the daily (hourly, weekly, etc.) stock prices as samples of certain statistics and use the observed
relative frequency to show the validity of these indexes. However, these samples are just the
discrete observations of a realized path of a stochastic process, which are not independent, so
the classical sample survey theory, especially the law of large numbers, does not apply to. But
Liu et al.[1] and Zhu[2] found that some important technical analysis indexes are stationary
process or the transformation of theirs. Liu et al.[1] discussed the Bollinger bands for Black-
Scholes model as real stock market. They introduced the statistics Un

t calculated according to
the formulation of the Bollinger bands, which is stationary and {U (n)

t+kn}k=1,2,··· are mutually
independent for each fixed t > 0. Zhu[2] extended the above results to another index RSI for
Black-Scholes model. Since we know that the frequency of the occurrence of stationary process
can be computed, so those results have laid the theoretical foundation for statistical application
of the technical analysis of stock prices.

Let St be observed stock price. Let us introduce the definitions of these technical analysis
indexes as follows:

(1) Bollinger bands definition

Middle Bollinger Band = n-day weighted (or simple) moving average.
Upper Bollinger Band = Middle Bollinger Band +2 × n-day standard deviation.
Lower Bollinger Band = Middle Bollinger Band −2 × n-day standard deviation.

where n is the number of periods you select.Usally we take n = 12 or 20.

Denote by

S
(n)

t =
1
n

n−1∑
i=0

St−i, Ŝ
(n)
t =

1∑n
i=1 i

n−1∑
i=0

(n − i)St−i,

and

σ
(n)
t =

√√√√ 1
n − 1

n−1∑
i=0

(St−i − S
(n)

t )2.

The curves γ−
t = Ŝ12

t − 2σt and γ+
t = Ŝ12

t + 2σt are called the lower and the upper Bollinger
bands, respectively. Bollinger[3] introduced this pair of bands to provide a relative definition
of high and low for a stock price in the early 1980s. By definition the stock price is “high” at
the upper band and “low” at the lower band. The closer the prices move to the upper band,
the more overbought the market, and the closer the prices move to the lower band, the more
oversold the market.

(2) RSI (Relative Strength Index) definition

If we denote

∆St = St+1 − St, ∆S+
t = (St+1 − St) ∨ 0,

then n-day RSI is defined as

V
(n)
t = 100 ×

∑n
i=1 ∆S+

t−i∑n
i=1 |∆St−i|

(∀t > n),
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where n is the number of periods you select.

RSI was proposed by Welles Wilder Jr. in 1978. The condition of market is reflected by
calculating the correlative value of the strength in buys and sells in a period of time. In a
normal market, the price can be stabilized only when the both sides of the business strength
obtain the balance. RSI takes its values in [0, 100]. In general, RSI value maintains above 50
for a strong trend market, and is lower than 50 for a weak trend market. RSI may be used in
judging the ultra-buy and ultra-sell in market. Take 9-day RSI as an example, RSI above 80
may be regarded as the ultra-buy area, and below 20 may regarded as the ultra-sell area. It is
an early warning signal of the price possibly reverse when the market enters the ultra-buy area
or the ultra-sell area. Investors always pay closely attention on the market when this signal
appears.

(3) ROC (Rate of Change Index) definition

ROC = 100 × ( closing price - closing price of n-day before) / closing price of n-day before.
That is, n-day ROC is defined as

W
(n)
t = 100 × St − St−n

St−n
(∀t > n),

where n is the number of periods you select. Usually we take n = 12. The ROC must estab-
lish the antenna and the grounding also. But unlike other ultra-buy or ultra-sell indexes, its
antennas and grounds are indefinite. When ROC undulates in /normal scope0, it is time to
sell out while ROC rises to the first ultra-buy line (5) and it time to buy in while ROC drops
to the first ultra-sell line (−5). After ROC breaking through the first ultra-buy line upward,
the rising trend mostly ends when it reaches the second ultra-buy line (10). And the dropping
trend mostly ends when ROC reaches the second ultra- sell line (−10) after it breaks through
the first ultra-sell line downward.

It is well-known that discrete-time models was typically used in empirical financial liter-
ature. In this paper, we aim at discussing the technical analysis indexes Bollinger bands, RSI
and ROC for discrete-time SARV model introduced by Andersen[4] as real stock market . We
consider log return process rt = log St − log St−1. Define the information set Ft of daily returns
to be {rt, rt−1, · · · , r1} . In the following we assume that the log return rt is generated as
follows,

rt = µ(σt) + εt (0.1)

Here, we consider a log AR(1) version of the stochastic autoregressive volatility model intro-
duced by Andersen[4]:

εt = σtzt, lnσt = ω + β lnσt−1 + (γ + α lnσt−1)ut, (0.2)

where{zt} and {ut} are mutually independent i.i.d. random variables with zero means and unit
variances, α + β > 0, and α + γ > 0.

In Section 1, the stationarity of the corresponding statistics of the technical analysis
indexes Bollinger bands, RSI and ROC for SARV model as real stock market are proved under



1 1 Ï �RÀ, �µ'u SARV �.Eâ©Û�I��AÚOþ�5� 47

the given conditions. In Section 2, we show that the law of large numbers of these statistics
hold under the above conditions and give the rate of convergence.

1 Stationarity

For model (0.2), the following result is due to Carrasco and Chen([5], Proposition 15).
Proposition 1.1 Assume that (i) {ut} is a sequence of i.i.d. real-valued random vari-

ables, independent of σ0, with E(ut) = 0 and E(u2
t ) = 1; the probability distribution of ut has

a continuous density (with respect to Lebesgue measure on real line), and its density p (.) is
positive on (−∞,+∞). (ii) |β| < 1 and there is an integer s > 1 such that

E|ut|s < ∞, E|β + αut|s < 1.

Then (1) E[| lnσt|s] < ∞. (2) If {σt} is initialized from its stationary distribution, then the
term {σt} is strictly stationary and exponential β-mixing.

Let St be observed stock price by the model (0.1) and (0.2), then

St = S0 exp

{
t∑

k=1

(µ(σk) + εk)

}
. (1.1)

Denote

g(t, i, j) = exp

{
t−j∑

k=t−i

(µ(σk) + εk)

}
. (1.2)

Then we have the following:
Theorem 1.2 Suppose f be a measurable function: Rn → R. Let Λ(n)

t = f(g(t, n −
1, 0), · · · , g(t, n−1, n−1)). Under the conditions of Proposition 1.1, if σ0 is initialized from the
invariant measure, then the process {Λ(n)

t }t>n is stationary.
Proof From the expression of (1.2), we can see clearly that g(t, i, j)06j6i6n−1 is just

a function of (σk, zk)k=t−n+1,··· ,t . By Proposition 1.1, we know σt be independent of zt and
σt have stationary distribution for all t > 0 . So (σk, zk)k=t−n+1,··· ,t is a two-dimensional
stationary process. Then we have for any m > 0,

(g(t, n − 1, 0), · · · , g(t, n − 1, n − 1))(=)(g(t + m,n − 1, 0), · · · , g(t + m,n − 1, n − 1)).

where X(=)Y denote X and Y have the same distribution. So

{Λt}t>n(=){Λt+m}t>n

and the proof is complete.
Remark 1.3 Using the above conclusion, we can draw a series of stationary processes

from SARV model so long as the desired conditions are satisfied. This fact can be applied to
the technical analysis indexes explained before. The conclusions list in the following corollaries.

Corollary 1.4 Let St be the stock price generated by (0.1) and (0.2). Denote by

U
(n)
t =

St − Ŝ
(n)
t

σ
(n)
t

, (∀t > n). (1.3)
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Under the conditions of Proposition 1.1, if σ0 is initialized from the invariant measure, then
the process {U (n)

t }t>n is stationary.
Proof We can obtain immediately by using (1.2):

St = St−ng(t, n − 1, 0),

Ŝ
(n)
t = St−n

1∑n
i=1 i

n−1∑
i=0

(n − i)g(t, n − 1, i),

S
(n)

t = St−n
1
n

n−1∑
i=0

g(t, n − 1, i),

and

(n − 1)[
σ

(n)
t

St−n
]2 =

n−1∑
i=0

(g(t, n − 1, i) − 1
n

n−1∑
i=0

g(t, n − 1, i))2.

So {U (n)
t }t>n is a function of (g(t, n − 1, 0), · · · , g(t, n − 1, n − 2)).So by Theorem 1.2 we have

U
(n)
t is stationary.

Corollary 1.5 Let St be the stock price generated by the model(0.1) and (0.2). Under
the conditions of Proposition 1.1, if σ0 is initialized from the invariant measure, then the process

V
(n)
t = 100 ×

∑n
i=1 ∆S+

t−i∑n
i=1 |∆St−i|

(∀t > n)

is stationary.
Proof We can obtain immediately by using (1.2):

St = St−ng(t, n − 1, 0), St−i = St−ng(t, n − 1, i).

Then

V
(n)
t = 100 ×

∑n
i=1(g(t, n − 1, i − 1) − g(t, n − 1, i)) ∨ 0∑n

i=1 |g(t, n − 1, i − 1) − g(t, n − 1, i)|
,

here we decree g(t, n − 1, n) = 1. Then it is clearly that V
(n)
t is a measurable function of

(g(t, n − 1, 0), · · · , g(t, n − 1, n − 1)). So by Theorem 1.2 we have V
(n)
t is stationary.

Similarly, we have the following corollary.
Corollary 1.6 Let St be the stock price generated by the model(0.1) and (0.2). Under

the conditions of Proposition 1.1, if σ0 is initialized from the invariant measure, then the process

W
(n)
t = 100 × St − St−n

St−n
(∀t > n)

is stationary.

2 Law of large numbers

Denote for i > n, K
(n)
Γ,i = I

[Λ
(n)
i ∈Γ]

,Γ ∈ B(R). Then from Theorem 1.2, E[K(n)
Γ,i ] = P [Λ(n)

i ∈

Γ] = P [Λ(n)
n ∈ Γ]. Let

V
(n)
N,Γ =

1
N + 1

N∑
i=0

K
(n)
Γ,n+i
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which is the observed frequency of the events [Λ(n)
n+i ∈ Γ] (i = 0, 1, ..., N). We have

Theorem 2.1 Under the conditions of Theorem 1.2, the law of large numbers holds:

E|V (n)
N,Γ − P [Λ(n)

n ∈ Γ]|2 6 C0

N + 1
,

where C0 is a constant.
Proof First we will show that the process Zt = (σt, zt) has β-mixing property. It is

clearly that Zt is a Markov chain on R+ × R with its Borel σ-field. Since {σt} is strictly
stationary and β-mixing with exponential decay.Moreover σt and zt is independent each other,
so we can denote PZ = Pσ

⊗
Pz as the stationary distribution of Zt, where Pσ is that of σt

and Pz is that of zt. Denote by P t
Z(z, .) the transition probabilities of the Markov chain (Zt).

Then we have, for z = (x, y) ∈ R+ × R, A1 ∈ B(R+), A2 ∈ B(R) and t > 0,

Pn
Z (z,A1 × A2) = P (σn ∈ A1, zn ∈ A2|σ0 = x, z0 = y)

= Pz(zn ∈ A2)P (σn ∈ A1|σ0 = x)

= Pz(zn ∈ A2)P (σn ∈ A1|σ0 = x)

= Pz(zn ∈ A2)Pn
σ (x,A1).

Hence ‖Pn
Z (z, .) − PZ(.)‖ 6 ‖Pn

σ (x, .) − Pσ(.)‖.
Then we can deduce that Zt is β-mixing with exponential decay by the β-mixing of {σt}.

So by Lu and Lin[6] we know Zt is also α-mixing with exponential decay. i.e., there exist
0 < ρ < 1 and c > 0 such that αZ(n) 6 cρn,∀n ∈ Z+.

From the proof of Theorem 1.2 we know that {Λ(n)
t }t>n is a function of Zk = (σk,

zk)k=t−n+1,··· ,t, then Λ(n)
t is strong mixing and αΛ(k) 6 αZ(k − n) for any k > n. We write

ξi = K
(n)
Γ,N+i. Then Dξi 6 1

4 for any i , cov(ξi, ξj) = P (Λ(n)
n+i ∈ Γ,Λ(n)

n+j) ∈ Γ) − P (Λ(n)
n+i ∈

Γ)P (Λ(n)
n+j) ∈ Γ). Then |cov(ξi, ξj)| 6 1

4 for any i, j and |cov(ξi, ξj)| 6 αΛ(|i−j|) 6 αZ(|i−j−n|)
when |i − j| > n. Hence we have

E|V (n)
N,Γ − P [Λ(n)

n ∈ Γ]|2 =
1

(N + 1)2
∑

06i,j6N

cov(ξi, ξj)

6 1
(N + 1)2

{ ∑
06i,j6N,|i−j|6n

|cov(ξi, ξj)| +
∑

06i,j6N,|i−j|>n

|cov(ξi, ξj)|
}

Moreover, ∑
06i,j6N,|i−j|6n

|cov(ξi, ξj)| 6 2(N + 1)(n + 1)
1
4

=
1
2
(N + 1)(n + 1),

∑
06i,j6N,|i−j|>n

|cov(ξi, ξj)| = 2
N∑

k=n+1

(N + 1 − k)|cov(ξ0, ξk)|

6 2
N∑

k=n+1

(N + 1 − k)αZ(k − n)

6 2
N−n∑
k=1

(N + 1 − k − n)αZ(k)
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6 2c

N−n∑
k=1

(N + 1 − n − k)ρk

= 2cρN+1−n
N−n∑
k=1

(N + 1 − n − k)ρ−(N+1−n−k)

= 2cρN+1−n
N−n∑
k=1

kρ−k

=
2c(N − n)
ρ−1 − 1

+
2c(1 − ρN−n)
(1 − ρ−1)2

.

We take C0 = 3max{ 1
2 (n + 1), 2c

ρ−1−1 , 2c
(1−ρ−1)2 }, then we have

E|V (n)
N,Γ − P [Λ(n)

n ∈ Γ]|2 6 C0

N + 1
.

Thus we complete the proof of Theorem 2.1.
Remark 2.2 From the above theorem, it is reasonable to use the stationary distribution

of Λ(n)
n to calculate the observed frequency V

(n)
N,Γ. Since U

(n)
t , V

(n)
t and W

(n)
t change between

a normal scope.The normal scope of U
(n)
t is [−2, 2]. V

(n)
t always changes between 20 and 80.

W
(n)
t also has indefinite antennas and grounds. For simplicity, we unify the lower value of the

normal scope be α and the upper value be β. As a application, we have the following corollaries.
Corollary 2.3 Denote for i > n, H

(n)
i = I

[|U(n)
i |>2]

. Let

J
(n)
N =

1
N + 1

N∑
i=0

H
(n)
n+i.

Under the conditions of Proposition 1.1, if σ0 is initialized from the invariant measure, then
there exist a constant C0 such that

E|J (n)
N − P [U (n)

n ∈ Γ]|2 6 C0

N + 1
.

Corollary 2.4 Denote for H
(n)
i = I

[V
(n)

i ∈Γ]
, where Γ = [0, 20]

⋃
[80, 100]. Let

J
(n)
N =

1
N + 1

N∑
i=0

H
(n)
n+i.

Under the conditions of Proposition 1.1, if σ0 is initialized from the invariant measure,then
there exist a constant C0 such that

E|J (n)
N − P [V (n)

n ∈ Γ]|2 6 C0

N + 1
.

Corollary 2.5 Denote for H
(n)
i = I

[W
(n)
i ∈Λ]

, where Λ = [−∞, α] ∪ [β,∞]. and (α, β) are
the indefinite antenna and ground of ROC. Let

(e=1 139 �)
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(þ�1 50 �)

J
(n)
N =

1
N + 1

N∑
i=0

H
(n)
n+i.

Under the conditions of Proposition 1.1, if σ0 is initialized from the invariant measure, then
there exist a constant C0 such that

E|J (n)
N − P [W (n)

n ∈ Λ]|2 6 C0

N + 1
.
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