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Abstract: Firstly, the errors were assumed to be uniformly dependent in normal-normal

cases and the Bayes premiums were derived in this model which show that it is the ex-

act credibility. Secondly, the Bühlmann’s credibility models with uniform dependence were

built, and the corresponding credibility estimators were derived. In addition, the models

were extended to Bühlmann-Straub credibility in which the natural weights among con-

tracts were introduced. However, the credibility estimators of individual premium under

Bühlmann-Straub model have only the generalized form of ”credibility”.
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0 Introduction

Credibility theory is a common approach to calculate insurance premium based on the
policyholder’s past experience and the experience of the entire group of policyholders. This

ÂvFÏ: 2009-02

Ä7�8: uÀ���Æ`DÆ¬Ä7.

1��ö: §|¬,I, 3�Æ¬), ù�, ïÄ���°�êÆ!ÚOÆ. E-mail:

wlmjxnu@ecnu.cn



1 5 Ï §|¬§�µØ���'�&Ý�. 119

method is widely used in commercial property of liability insurance, group health, and life
insurance. The popular formulas in credibility theory take premium as weighted sum of the
average experience of the policyholder and the average of the entire collection of policyholders.
These formulas are easy to understand and simple to apply due to their linear properties.

In credibility theory, let Xi denote total claim amount of a policyholder in the ith policy
period. The distribution of Xi depends on the risk parameter Θ, which is a random variable with
the prior distribution π(θ). If Θ = θ is given, Xi, i = 1, 2, · · ·n are independent of each other
with the same distribution function f(x, θ). The purpose of credibility theory is to calculate a
premium for the (n + 1)th period of a policyholder, given the policyholder’s claim experience
in the first n periods. If we constrain the estimator to be a linear function of the claim data,
the estimator is a well known credibility formula

µ̂(Θ) = ZX + (1 − Z)µ,

where Z = n
n+κ is called as credibility factor, and κ = σ2

τ2 is the ratio of the expected value of
conditional variance to the variance of conditional mean. In addition, X = 1

n

∑n
i=1 Xi is the

sample mean, and µ is the collective mean.

However, the assumption of conditionally independent claim amounts is not practical in
most cases. Certain conditional dependence over time has been recognized as more appro-
priate to fit the practice in some circumstances. For example, Bolance etc[1] estimated and
tested autoregressive specifications for dynamic random effects in a frequency risk model and
derived credibility predictors; Purcaru and Denuit[2,3] studied a type of dependence induced
by the introduction of common latent variables in the annual numbers of claims reported by
policyholders and revealed how the dependence structure affects the credibility estimate in the
Poisson claim frequency models; Frees, Young and Luo[4,5] showed how to produce credibility
predictors for linear longitudinal and panel data models, and more recently, Frees and Wang
[6] considered a generalized linear model framework for modeling marginal claims distributions,
which allowed dependence characterized by the Student-t copula to model the dependence over
time for a class of risks.

In some cases, however, it has been recognized that there exist many important insurance
applications where the dependence over risks are common, thus the risks are uniformly depen-
dent. Examples include house insurance for which geographic proximity of the insureds may
result in exposures to common catastrophes, and motor vehicle insurance where one accident
may involve several insureds. See, also Yeo etc[7], L Wen. etc[8], among others. The uniform
dependence is also introduced by Nikolai etc[9] in actuarial science, who considered the joint
PGF of the uniform correlation claims and derived some desired properties.

Inspired by these papers, the assumption of conditionally independent claim amounts in
Bühlmann’s classical credibility model is replaced by a certain uniform conditional dependence
for the claim amounts. A formula for the credibility estimator can be got under this dependence
structure. Also a exact credibility is given under normal-normal case.

The rest of the paper is arranged as follows. In Section 1, models and assumptions are
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introduced and the Bayes estimator under normal-normal cases is derived. Section 2 derives the
credibility formulae for the Bühlmann’s models. The results are extended to the Bühlmann-
Straub model in Section 3. Some conclusions are made in Section 4.

1 The exact credibility in normal-normal case

In credibility theory or Bayes analysis, the individual risk can be regarded as a black box
that produces aggregate claim amounts Xi (i = 1, 2, · · ·n), where Xi denotes the claim amount
in year i.

On the basis of the observations in the previous periods, we want to determine the risk
premium for the aggregate claims in a future period, for example, Xn+1.. In order to do this,
we must make certain assumptions about the distribution function of the random variables Xi.
We generalize the assumptions given by Bühlmann[10], and consider some uniform dependence
which exists in error effects. Formally, the assumptions of the model are stated as below.

Assumption 1.1 X1, X2, · · · , Xn · · · are characterized by a risk parameter Θ, and Θ
itself is random variable with structure distribution π(θ);

Assumption 1.2 Given Θ, the Xi follows the linear model: Xi = µ(Θ) + εi, and the
errors are conditionally uniformly dependent, i.e, corr(εi, εj) = ρ, i 6= j and ρ < 1, where ”corr”
indicate correlation coefficient. In addition, we assume that E(εi|Θ) = 0, Var(εi|Θ) = σ2(Θ),
and E[µ(Θ)] = µ, Var[µ(Θ)] = τ2, E

[
σ2(Θ)

]
= σ2.

We further write X = 1
n

∑n
i=1 Xi for the average of the claim experience. Now we address

to find the credibility estimator of individual premium.

Definition 1.1 The individual premium of a risk with risk profile Θ is

P ind = E (Xn+1|Θ) := µ(Θ). (1.1)

The individual premium is also referred to as the risk premium in credibility theory.
However, in insurance practice, both Θ and µ(Θ) are unknown. Therefore we have to find an
estimator µ̂(Θ) for µ(Θ) as precisely as possible. The individual rating problem can then be
described as the determination of the quantity µ(Θ). One potential estimator is the collective
premium µ, i.e. the premium for the considered particular risk is estimated by the “average”
expected value over the whole collective. This estimator is appropriate when we are considering
a new risk, about which there is no pre-existing claim experience.

If we have observed the risk over a period of n years and if X = (X1, · · · , Xn)′ denotes
the vector of aggregate claim amounts associated with this period, then this information should
contribute to the estimation process. This brings us to the concept of experience rating. The
best experience premium depending on the individual claim experience vector X is called the
Bayes premium, which we will now define.

Definition 1.2 The Bayes premium (best experience premium) is defined by PBayes =
µ̃(Θ) := E (µ(Θ)|X).
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In statistics, we know that Bayes premium is the best estimator of µ(Θ) which minimize
the Bayes risk. In general case. However, the Bayes premium can not be solved explicitly. In
credibility theory, the case which Bayes premium is the linear forms of data sample is known
as exact credibility. In Bühlmann’s model, Jwell[11] proved that the exact credibility happen
when the conditional distribution of Xi is exponential and Θ is also distributed as natural
conjugate exponential family. In the following, we can derive the Bayes premium corresponding
to Assumptions 1.1 and 1.2 under the normal-normal case, and found that this case is also
exact credibility, which is shown in the following theorem.

Theorem 1.1 Conditionally, given Θ = θ, the Xi’s (i = 1, 2, · · ·n) are uniform depen-
dent and normally distributed, that is Xi ∼ N

(
Θ, σ2

)
, cov(Xi, Xj |Θ) = ρ, where i 6= j, and

ρ < 1. In addition, the parameter Θ itself is a random variable, with the normal distribution
N

(
µ, τ2

)
, then the Bayes estimator of Θ are given by

Θ̃ =
nτ2

nτ2 + (1 − ρ + nρ)σ2
X +

(1 − ρ + nρ)σ2

nτ2 + (1 − ρ + nρ)σ2
µ. (1.2)

Proof Conditionally, given Θ = θ, the distribution of random vector X is normal. The
mean vector and covariance matrix of X are

µ(θ) = E (X|θ) = θ1n, Σ(θ) = Cov(X,X|θ) = σ2


1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · · · · · · · ·
ρ ρ · · · 1

 := Σ. (1.3)

Notes that the matrix Σ(θ) above is independent of θ. Then the conditional density of X is

f (x1, x2, · · ·xn|θ) =
1(√

2π
)n |Σ| 12

exp
{
−1

2
(x1 − θ, · · · , xn − θ)Σ−1 (x1 − θ, · · · , xn − θ)′

}
By the well known formula in linear models,

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, (1.4)

where A,B,C and D are matrix with adaptable order (see in detail, Radhakrishna Rao[12] ),
the matrix inverse of Σ is given by

Σ−1 =
1
σ2

[ρ1n1′
n + (1 − ρ)In)]−1 =

1
σ2(1 − ρ)

(
In − ρ1n1T

n

1 − ρ + nρ

)
.

Then

(x1 − θ, · · · , xn − θ)Σ−1 (x1 − θ, · · · , xn − θ)′

=
1

σ2(1 − ρ)

 n∑
i=1

(xi − θ)2 −

(
n∑

i=1

(xi − θ)

)2
ρ

1 − ρ + nρ


=

1
σ2(1 − ρ)

(
n∑

i=1

x2
i −

ρn2

1 − ρ + nρ
X

2
+

n (1 − ρ)
1 − ρ + nρ

θ2 − 2nX (1 − ρ)
1 − ρ + nρ

θ

)
.
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Therefore, the joint density of random vector (X1, X2, · · ·Xn, Θ) can be derived as

f = f(x1, · · · , xn, θ) = π (θ) f(x1, · · · , xn|θ)

∝ 1√
2πτ

exp

{
− (θ − µ)2

2τ2

}
1(√

2π
)n |Σ| 12

exp
{
−1

2
(x1 − θ, · · · , xn − θ)Σ−1 (x1 − θ, · · · , xn − θ)′

}
∝ exp

{
µθ − 1

2θ2

2τ2
− 1

2σ2(1 − ρ)

(
n (1 − ρ)

1 − ρ + nρ
θ2 − 2nX (1 − ρ)

1 − ρ + nρ
θ

)}
∝ exp

{
σ2(1 − ρ) (1 − ρ + nρ) µ + nτ2(1 − ρ)X

τ2σ2(1 − ρ) (1 − ρ + nρ)
θ −

[
σ2(1 − ρ) (1 − ρ + nρ) + nτ2(1 − ρ)

]
τ2σ2(1 − ρ) (1 − ρ + nρ)

θ2

2

}
From this, we know that the posterior distribution of Θ is also normal, with the expectation

Θ̃ = E (Θ|X1, X2, · · · , Xn)

=
nτ2

nτ2 + (1 − ρ + nρ)σ2
X +

(1 − ρ + nρ)σ2

nτ2 + (1 − ρ + nρ)σ2
µ

which gives the result.
From this theorem, we see that the Bayes premium is the linear form of the samples.

We called this case exact credibility. See, for example, Bühlmann and Gisler[13]. In other
distribution assumption, the conclusions can not be derived. However, we can find the best
linear unbiased estimator for premium. That is, the estimators are limited to the linear function
of the sample, called the credibility estimators or credibility premium in credibility theory.

2 Bühlmann’s credibility models with error uniform
dependence

In this section, we address to consider the following credibility estimator of individual
premium under Assumptions of 1.1 and 1.2.

Firstly, note that assumption 1.2 implies Cov(Xi, Xj |Θ) = ρσ2(Θ) and Var(Xi|Θ) =
σ2(Θ). Our goals are to calculate a premium for the (n+1)th period, denoting by µ̂(Θ)

∗
, based

on the linear estimator class L(X, 1) :=
{

µ̂(Θ) = c0 +
∑n

i=1 ciXi, with c0, ci ∈ R
}

. That is,
we must solve the following optimalization problem.

Min
c0,ci

E

[
µ(Θ) − c0 −

n∑
i=1

ciXi

]2

(2.1)

In [13], the optimal estimator of µ(Θ) is defined as the orthogonal projection of µ(Θ) on linear
space L(X, 1), and was denoted by µ̂(Θ)

∗
= pro(µ(Θ)|L(X, 1)). The following lemma gives the

calculation formula of the credibility estimator, the proof can be referred to [8].
Lemma 2.1 The credibility estimator (predictor) of a random vector Y on L(X, 1) is

exactly the projection of Y on the linear space L(X, 1), and the following formula holds true.

Ŷ ∗ = E(Y ) + ΣY XΣ−1
XX (X − E (X)) . (2.2)
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where ΣY X = Cov (Y,X) is the covariance of Y and X, and ΣXX = Cov(X,X) indicates the
covariance of X = (X1, · · · , Xn)′.

Consequently, the credibility estimator µ̂(Θ)
∗

can be derived by calculation of following
formula:

µ̂(Θ)
∗

= E [µ (Θ)] + Σµ(Θ)XΣ−1
XX(X − EX) (2.3)

Theorem 2.1 Under Assumptions 1.1, 1.2 and the notation above, the optimal credi-

bility estimator of Xn+1 is given by

µ̂(Θ)
∗

= ZX + (1 − Z)µ, (2.4)

where Z = nτ2

nτ2+(1−ρ+nρ)σ2 is so-called credibility factor.
Proof One can obtain

E(µ(Θ)) = µ, Cov(µ(Θ), Xi) = E[Cov(µ(Θ), Xi|Θ)] + Cov(µ(Θ), E(Xi|Θ)) = τ2,

and

Cov(Xi, Xj) = E [Cov(Xi, Xj |Θ)] + Cov(E (Xi|Θ) , E (Xj |Θ)) =

{
ρσ2 + τ2, i 6= j,

σ2 + τ2, i = j,
(2.5)

which gives Σµ(Θ)X = Cov(µ(Θ), X) = τ21′
n and

ΣXX =

 ρσ2 + τ2 · · · ρσ2 + τ2

· · · · · · · · ·
ρσ2 + τ2 · · · ρσ2 + τ2

 =
(
ρσ2 + τ2

)
1n1′

n + (1 − ρ)σ2In (2.6)

By the formula (1.4) we have

Σ−1
XX =

((
ρσ2 + τ2

)
1n1T

n + (1 − ρ)σ2In)
)−1

=
1

(1 − ρ)σ2
In − 1

(1 − ρ)σ2
In1n

(
1

ρσ2 + τ2
+ 1′

n

1
(1 − ρ)σ2

In1n

)−1

1T
n

1
(1 − ρ)σ2

In

=
1

(1 − ρ)σ2

(
In − ρσ2 + τ2

(1 − ρ)σ2 + n(ρσ2 + τ2)
1n1′

n

)
.

Therefore, the credibility estimator of of Xn+1 is

µ̂(Θ)
∗

= E (µ(Θ)) + Σµ(Θ)XΣ−1
XX(X − EX)

= µ + τ21T
n

1
(1 − ρ)σ2

(
In − ρσ2 + τ2

(1 − ρ)σ2 + n(ρσ2 + τ2)
1n1T

n

)
(X − µ1n, )

= µ +
τ2

(1 − ρ)σ2 + n(ρσ2 + τ2)

n∑
i=1

(Xi − µ)

= µ +
nτ2

(1 − ρ)σ2 + n(ρσ2 + τ2)
(
X − µ

)
= ZX + (1 − Z)µ.
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Comparing the credibility estimator in Theorem 2.1 with the classical Bühlmann credibil-
ity, our results can be regarded as a generalization of Bühlmann’s model. From the expression
of credibility in Theorem 2.1, if we assume that ρ = 0, then (2.4) is reduced to Bühlmann’s
model. Furthermore, we also find that the (2.4) is the same as exact credibility given by (1.2)
in Section 1.

3 Credibility estimator with natural weights

The credibility model with weights was developed by Bühlmann and Straub[14] and is
known as the Bühlmann-Straub model. There have been broad applications of this model in
insurance practice and thus it has been one of the building blocks of credibility theory. In this
section, we extend the Bühlmann model with uniform dependence in error effects to the case
of Bühlmann-Straub model. The assumptions are stated as follows.

Assumption 3.1 X1, X2, · · · , Xn · · · are characterized by a risk parameter Θ, and Θ
itself is random variable with structure distribution π(θ);

Assumption 3.2 Given Θ, the Xi follows the linear model: Xi = µ(Θ) + εi, and the
errors are conditionally uniformly dependent, i.e, corr(εi, εj) = ρ, i 6= j and ρ < 1.

Assumption 3.3 The conditional moments are given by E(εi|Θ) = 0, Var(εi|Θ) =
σ2(Θ)

wi
, i = 1, 2, · · · , n + 1, where wi are known weights.
We also denote E [µ(Θ)] = µ, E

[
σ2(Θ)

]
= σ2, Var(µ(Θ)) = τ2. Note that Assumption 3.2

imply Cov(Xi, Xj |Θ) = ρσ2(Θ)√
wiwj

. Then we derive the following conclusion.
Theorem 3.1 Under Assumptions 3.1-3.3, the credibility estimator of µ(Θ), denoting

µ̂(Θ)
∗
, is

µ̂(Θ)
∗

= Z1X
W

− Z2X
Wa

+ (1 − Z1 + Z2) µ, (3.1)

where
Z1 =

Wτ2

(1 + Λτ2) (1 − ρ)σ2
, Z2 =

τ2ρW 2
a

(1 − ρ + nρ) (1 + Λτ2) (1 − ρ)σ2
(3.2)

are called generalized credibility factors, and

W =
n∑

i=1

wi, Wa =
n∑

i=1

√
wi, Λ =

(1 − ρ + nρ) W − ρW 2
a

(1 − ρ + nρ) (1 − ρ)σ2
.

In addition,

X
W

=
1
W

n∑
i=1

wiXi, X
Wa

=
1

Wa

n∑
i=1

√
wiXi

are the weighted means of the samples by weights wi and
√

wi respectively.
Proof From the assumptions of 3.1-3.3, one can write

E (µ(Θ)) = µ, Cov(µ(Θ), Xi) = τ2 (3.3)

and

Cov(Xi, Xj) = E [Cov(Xi, Xj |Θ)] + Cov(E (Xi|Θ) , E (Xj |Θ)) =

{
ρσ2

√
wiwj

+ τ2, i 6= j

σ2

wi
+ τ2, i = j

.

(3.4)
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So we have

Σµ(Θ)X = Cov(µ(Θ), X) = τ21′
n (3.5)

and

ΣXX =


σ2

w1
+ τ2 ρσ2

√
w1w2

+ τ2 · · · ρσ2
√

w1wn
+ τ2

ρσ2
√

w2w1
+ τ2 σ2

w2
+ τ2 · · · ρσ2

√
w2wn

+ τ2

· · · · · · · · · · · ·
ρσ2

√
wnw1

+ τ2 ρσ2
√

wnw2
+ τ2 · · · σ2

w1
+ τ2


= τ21n1T

n + ρσ2
(

1√
w1

· · · 1√
wn

)′ (
1√
w1

· · · 1√
wn

)
+ (1 − ρ)σ2diag

(
1
w1

, · · · ,
1

wn

)
.

We denote

E = ρσ2
(

1√
w1

· · · 1√
wn

)′ (
1√
w1

· · · 1√
wn

)
+ (1 − ρ)σ2diag

(
1
w1

, · · · ,
1

wn

)
.

By the formula (1.4) and some matrix calculation, we get

E−1 =
((

ρσ2 + τ2
)
1n1T

n + (1 − ρ)σ2In)
)−1

=
1

(1 − ρ)σ2
In − 1

(1 − ρ)σ2
In1n

(
1

ρσ2 + τ2
+ 1′

n

1
(1 − ρ)σ2

In1n

)−1

1T
n

1
(1 − ρ)σ2

In

=
1

(1 − ρ)σ2

[
diag (w1, · · · , wn) − ρ

1 − ρ + nρ

( √
w1 · · · √

wn

)′ ( √
w1 · · · √

wn

)]
.

So we can write

Σ−1
XX =

(
τ21n1′

n + E
)−1

= E−1 − E−11n

(
1
τ2

+ 1T
nE−11n

)−1

1′
nE−1. (3.6)

Note that

1T
nE−1 =

1
(1 − ρ)σ2

[(
w1 · · · wn

)
− ρWa

1 − ρ + nρ

( √
w1 · · · √

wn

)]
(3.7)

and

1T
nE−11n =

(1 − ρ + nρ) W − ρW 2
a

(1 − ρ + nρ) (1 − ρ)σ2
:= Λ. (3.8)
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Inserting (3.3), (3.5)−(3.7) into (2.3), then the credibility estimator of µ(Θ) is given by

µ̂(Θ)
∗

= E(µ(Θ)) + Σµ(Θ)XΣ−1
XX(X − EX)

= µ + τ21T
n

[
E−1 − E−11n

(
1
τ2

+ 1T
nE−11n

)−1

1T
nE−1

]
(X − µ1n)

= µ + τ2

(
1T

nE−1 − Λτ2

1 + Λτ2
1T

nE−1

)
(X − µ1n)

= µ +
τ2

1 + Λτ2
1T

nE−1 (X − µ1n)

= µ +
τ2

(1 + Λτ2) (1 − ρ)σ2

[
n∑

i=1

wi (Xi − µ) − ρWa

1 − ρ + nρ

n∑
i=1

√
wi (Xi − µ)

]

= µ +
Wτ2

(1 + Λτ2) (1 − ρ)σ2

(
X

W
− µ

)
− τ2ρW 2

a

(1 − ρ + nρ) (1 + Λτ2) (1 − ρ)σ2

(
X

Wa

− µ

)
= Z1X

W
− Z2X

Wa

+ (1 − Z1 + Z2) µ

The proof is completed.
Seeing from the (3.1), the credibility estimator of µ(Θ) is not the strict weight form any

longer. However, we can think this form the general credibility since the credibility weight
factors still satisfy Z1 −Z2+ (1 − Z1 + Z2) = 1. The general credibility with natural weights is
the generalization of Bühlmann credibility in Section 2, i.e., if we take all wi = 1, then (3.1) is
degenerated to (2.4).

4 Conclusion

In this paper, the exact credibility is derived when the error effects are uniformly dependent
under normal-normal case. In the second, the Bühlmann credibility model is investigated, and
find that the credibility estimator is the same as exact credibility formula under normal-normal
case. The model is also extended to Bühlmann-Straub case. However, as is shown in section 3,
the credibility estimator of individual premium under Bühlmann-Straub model have only the
generalized form of ”credibility”.
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