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Abstract: By using Fermat’s method of descent, this paper proved that Diophantine

equations x4 − y4 = z2 and x4 + 4y4 = z2 have no non-trivial solutions over Q(
√
−3), which

implies that the Fermat Equation also has no non-trivial solutions in this field for n = 4.
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0 Introduction

It is difficult to determine all solutions of a Diophantine equation in a ring of integers of
a number field. Now people restrict their attention to the rings of algebraic integers of some
quadratic fields, which are a little larger than the ring of rational integers. For example, from
the Hilbert theorem 169[1], we know that x4 + y4 = z2 has only solutions satisfying xyz = 0 in
Z[
√
−1]. Sándor Szabó [2] proved that in Z[

√
−2], x4 + y4 = z2 has only solutions satisfying

xyz = 0. In order to deal with a conjecture in the algebraic K-theory, Xu and Qin[3] found
out all solutions of x4 + y4 = (−1)σωµ

1 z2(σ = 0, 1, µ = 0, 1 and ω1 =
√
−2) in Z[

√
−2]. In [4],

Xu and Wang discussed several Diophantine equations in rings of integers of some imaginary
quadratic fields. In [5], Sándor Szabó investigated the Diophantine equation x4 − y4 = z2 in
three quadratic fields. However, because there exist third roots of unity in the ring of algebraic
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integers of quadratic field Q(
√
−3), the discussion is more difficult than that in the other rings.

This note will discuss the special case.
In this note, we determine all solutions of x4 − εy4 = z2 in the ring of algebraic integers of

Q(
√
−3), where ε = 1,−4, which also implies that the Fermat Equation xn + yn = zn has no

non-trivial solutions in this ring when n = 4. It is very interesting that the equation x4+y4 = z2

has non-trivial solutions in this ring, for example, (
√
−3, 2, 5) and (7, 20

√
−3, 1201). Noting that

if the equation x4 + y4 = z2 holds, then the equation (x4 − y4)4 + (2xyz)4 = (z4 + 4x4y4)2 also
holds. So we can obtain infinitely many solutions of x4 + y4 = z2 in this ring.

1 Diophantine Equations in Q(
√
−3)

In this section, we denote by ω the third root of unity −1+
√
−3

2 and by ω1 the another
−1−

√
−3

2 . So we have ω3 = ω3
1 = 1, ω = ω2

1 and ω1 = ω2. According to algebraic number theory
(see [6]), the ring of algebraic integers of Q(

√
−3) is Z[ω], and it is both a unique factorization

domain and a valuation ring. In this ring, 2 is inertia, and it is a prime number itself. Also
there are congruences as follows for ∀α ∈ Z[ω]:

α ≡ 0, 1, ω, 1 + ω(mod 2) (1.1)

α2 ≡ 0, 1, 1 + ω, ω(mod 2) (1.2)

α2 ≡ 0, 1, 3 + 3ω, ω(mod 4) (1.3)

−α2 ≡ 0, 3, 1 + ω, 3ω(mod 4) (1.4)

α4 ≡ 0, 1, ω, 3 + 3ω(mod 4) (1.5)

They can be checked out easily.
Theorem 1 There do not exist x, y, z ∈ Z[ω] satisfying x4 − y4 = z2 and xyz 6= 0.

Proof Suppose that there exist x, y, z ∈ Z[ω] satisfying x4 − y4 = z2 and xyz 6= 0.

Obviously, we can suppose that they are pairwise relatively prime. We claim:
(I) 2 does not divide x. Otherwise, there must be −y4 ≡ z2(mod 4). But from (1.5) and

(1.2) we have −y4 ≡ 0, 3, 3ω, 1 + ω(mod 4) and z2 ≡ 0, 1, ω, 3 + 3ω(mod 4). Comparing them,
we have −y4 ≡ z2 ≡ 0(mod 4) which contradicts the assumption of (y, z) = 1.

(II) 2 divides either y or z. Otherwise, from (1.3) and (1.5) there must be z2 + y4 ≡
2, 2ω, 2 + 2ω, 3ω, 1 + ω, 3(mod 4) and x4 ≡ 1, 3 + 3ω, ω(mod 4). Comparing them, we see that
x4 ≡ z2 + y4(mod 4) does not hold, nor does x4 − y4 = z2.

So there are two cases:
(1) If 2|y, then 2 divides neither x nor z. From x4 − y4 = z2, we have 4|x4 − z2 =

(x2 + z)(x2 − z). Because 2 is prime, there must be 2 divides either x2 + z or x2 − z. So 2
divides both x2 + z and x2 − z since x2 + z ≡ x2 − z(mod 2). Thus it follows that

x2 + z

2
,
x2 − z

2
∈ Z[ω] and (

x2 + z

2
,
x2 − z

2
) = 1.

Changing x4 − y4 = z2 into x2+z
2 · x2−z

2 = (y2

2 )2, we get x2 + z = 2εa2
1, x2 − z = 2ε−1b2

1, y2 =
2a1b1, where a1, b1 ∈ Z[ω], (a1, b1) = 1, and ε = 1, ω, ω−1,−1,−ω,−ω−1. Note that there are
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only the six units in this ring. So it comes that

x2 = εa2
1 + ε−1b2

1, y2 = 2a1b1, z = εa2
1 − ε−1b2

1.

Since y2 = 2a1b1 and 4|y2, we know that 2|a1 or 2|b1. Without loss of generality, suppose
that 2 divides a1 but not b1, thus 4|a2

1. Consequently, we claim that x2 = εa2
1 + ε−1b2

1 does
not hold if ε = −1,−ω,−ω−1. Otherwise, from x2 = εa2

1 + ε−1b2
1 and 2|a1, we have x2 ≡

−(ω
i

1b1)2(mod 4) with i = 0, 1,−1, so 4|x2 and 4|b2
1 in virtue of (1.3) and (1.4), which is a

contradiction since (x, b1) = 1. Thus using ω = ω2
1 , ω1 = ω2 and a simple substitution, we can

suppose that

x2 = a2 + b2, y2 = 2ab, z = a2 − b2.

Changing x2 = a2 + b2 into x+b
2 · x−b

2 = (a
2 )2, we have

x = εc2 + ε−1d2, a = 2cd, b = εc2 − ε−1d2,

where c, d ∈ Z[ω], (c, d) = 1 and ε = 1, ω, ω−1,−1,−ω,−ω−1. (Noting that x+b
2 , x−b

2 ∈ Z[ω]
and (x+b

2 , x−b
2 ) = 1 from 4|x2 − b2 and x+ b ≡ x − b(mod 2).) It is obvious that c, d, εc2 − ε−1d2

are pairwise relatively prime. Putting a = 2cd, b = εc2 − ε−1d2 into y = 2ab, we get

y2 = 4cd(εc2 − ε−1d2).

From ω = ω2
1 , ω1 = ω2 and the equation above, we conclude that c, d, εc2 − ε−1d2 are squares

up to a sign. So choosing p, t, q properly, we have two cases:

c = ±p2, d = ±t2, εc2 − ε−1d2 = q2 and c = ±p2, d = ±t2, εc2 − ε−1d2 = −q2.

Case 1 Putting c = ±p2 and d = ±t2 into εc2 − ε−1d2, we have εp4 − ε−1t4 = q2. If
ε = 1, ω, or ω−1, then p4 − t4 = q2, ωp4 − ω−1t4 = q2 or ω−1p4 − ωt4 = q2, that is,

p4 − t4 = q2, (ωp)4 − (ω−1t)4 = q2 or (ω−1p)4 − (ωt)4 = q2.

Obviously, 2 does not divide q since 2 does not divide b. So according to claim II, 2 divides t.
Thus, we find three solutions (p, t, q), (ωp, ω−1t, q) and (ω−1p, ωt, q), where p and t are factors
of y. If we suppose that the valuation of y at the prime 2 is the least in the beginning, then
Fermat’s method of descent will lead to a contradiction.

If ε = −1, −ω or −ω−1, then we have t4−p4 = q2, ωt4−ω−1p4 = q2 or ω−1t4−ωp4 =
q2. As similar as the above, Fermat’s method of descent will lead to a contradiction.

Case 2 As done in case 1.

(2) If 2|z, then 2 divides neither x nor y. From x4 − y4 = z2, we have 4|x4 − y4 =
(x2 + y2)(x2 − y2). Because 2 is prime, there must be 2 divides either x2 + z or x2 − z. So 2
divides both x2 + z and x2 − z since x2 + z ≡ x2 + z(mod 2). Thus it follows that

x2 + y2

2
,
x2 − y2

2
∈ Z[ω] and (

x2 + y2

2
,
x2 − y2

2
) = 1.
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As in (1), changing x4 − y4 = z2 into x2+y2

2 · x2−y2

2 = ( z
2 )2, we get

x2 = εa2 + ε−1b2, y2 = εa2 − ε−1b2, z = 2ab,

where a, b ∈ Z[ω], (a, b) = 1, and ε = 1, ω, ω−1,−1,−ω or − ω−1.
Now multiplying x2 = εa2 + ε−1b2 with y2 = εa2 − ε−1b2 , we have (xy)2 = ε2a4 − ε−2b4,

that is, (εxy)2 = (εa)4 − b4. So we return to (1) since 2 divides neither x nor y. By similar
discussion, we know this equation has only trivial solutions. If xy = 0, the theorem obviously
holds; if a = 0, or b = 0, we have that z = 0 since z = 2ab in this case.

By (1) and (2), the proof is completed.
Corollary 1 There do not exist x, y, z ∈ Z[ω] satisfying x4 + 4y4 = z2 and xyz 6= 0.

Proof Suppose that there exist x, y, z ∈ Z[ω] satisfying x4 + 4y4 = z2 and xyz 6= 0.

Obviously, we can suppose that they are pairwise relatively prime.
Changing x4 + 4y4 = z2 into z4 − (2xy)4 = (x4 − 4y4)2, we know that (z, 2xy, x4 − 4y4)

satisfies the equation x4 − y4 = z2, which is in contradiction with theorem 1.
Corollary 2 In Z[ω], the non-trivial relatively prime solutions of equation x4 +y4 = 2z2

is merely (±ε,±ε,±ε2), where ε = 1, ω, ω−1,−1,−ω,−ω−1. And the equation x4 + y4 = −2z2

has no relatively prime solutions.
Proof Suppose that there exist x, y, z ∈ Z[ω] satisfying x4 + y4 = ±2z2 and xyz 6= 0.

Obviously, we can suppose that they are pairwise relatively prime.
Changing x4 + y4 = ±2z2 into

(
x4 − y4

2
)2 = z4 − (xy)4,

we have that xy = 0, z = 0 or x4−y4 = 0 according to theorem 1 (Note that x4−y4 ≡ x4+y4 ≡
0(mod2) ). If xy = 0 or z = 0, the corollary is true; if x4 − y4 = 0, then x = ±ε, y = ±ε since
(x, y) = 1. By checking directly, we see that the Diophantine equation x4 + y4 = z2 has only
solutions (±ε,±ε,±ε2), where ε = 1, ω, ω−1,−1,−ω,−ω−1. And the equation x4 + y4 = −2z2

has no relatively prime solutions. So the results are required.
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