Article ID：1000－5641（2009）01－0094－10

Derivations and 2－cocycles of the algebra of (r, s)－differential operators

CHEN Ru ${ }^{1}$ ，LIN Lei ${ }^{1}$ ，LIU Dong ${ }^{2}$
（1．Department of Mathematics，East China Normal University，Shanghai 200062，China；
2．Department of Mathematics，Huzhou Teachers College，Huzhou Zhejiang 313000，China）

Abstract

This paper defined the (r, s)－differential operator of the algebra of Laurent poly－ nomials over the complex numbers field．Let $\mathcal{D}_{r, s}$ be the associative algebra generated by $\left\{t^{ \pm 1}\right\}$ and the（ r, s ）－differential operator，which is called (r, s)－differential operators algebra． In this paper，the derivation algebra of $\mathcal{D}_{r, s}$ and its Lie algebra $\mathcal{D}_{r, s}^{-}$were described and all the non－trivial 2－cocycles were determined．

Key words：(r, s)－differential operator；Derivation；2－cocycle．
CLC number：O152．5 Document code：A

(r, s)－微分算子代数的导子及其二上圈

陈 茹 ${ }^{1}$ ，林 磊 ${ }^{1}$ ，刘 东 ${ }^{2}$
（1．华东师范大学 数学系，上海 200062；2．湖州师范学院 数学系，浙江 湖州 313000）

Abstract

摘要：定义复数域 \mathbb{C} 上的 Laurent 多项式代数 $\mathbb{C}\left[t, t^{-1}\right]$ 的 (r, s)－微分算子 $\partial_{r, s}$ ．给出该微分算子及 $\left\{t^{ \pm 1}\right\}$ 生成的结合代数即 (r, s)－微分算子代数的一组基，并在此基础上研究了 (r, s)－微分算子代数的导子代数及其非平凡二上圈。 关键词：(r, s) 微分算子；导子；二上圈

0 Introduction

Let $\mathbb{C}\left[t, t^{-1}\right]$ be the algebra of Laurent polynomials over the complex number field \mathbb{C} ，and $\mathcal{D}=$ Diff $\mathbb{C}\left[t, t^{-1}\right]$ the associative algebra of all differential operators over $\mathbb{C}\left[t, t^{-1}\right]$ ，its \mathbb{C}－basis being $\left\{t^{m} \tilde{D}^{n} \mid m \in \mathbb{Z}, n \in \mathbb{Z}^{+}\right\}$with multiplication：

$$
\left(t^{a} \tilde{D}^{b}\right) \cdot\left(t^{c} \tilde{D}^{d}\right)=\sum_{i=0}^{b}\binom{b}{i} c^{i} t^{a+c} \tilde{D}^{b+d-i}
$$

where \mathbb{Z}^{+}is the set of all non－negative integers and $\tilde{D}=t \partial, \partial=\frac{\mathrm{d}}{\mathrm{dt}}$ ．

[^0]Let q be a complex number not 0 or 1 ，and define q－differential operator ∂_{q} by

$$
\partial_{q}(P)=\frac{P(q t)-P(t)}{q t-t}, \quad \forall P \in \mathbb{C}\left[t, t^{-1}\right]
$$

Then $\partial_{q}(P Q)=\partial_{q}(P) Q+\tau_{q}(P) \partial_{q}(Q), \forall P, Q \in \mathbb{C}\left[t, t^{-1}\right]$ ，where τ_{q} is the automorphism of $\mathbb{C}\left[t, t^{-1}\right]$ satisfying $\tau_{q}(t)=q t$ ，and ∂_{q} is also called a τ_{q}－derivation．Clearly，$\left\{t^{i} \partial_{q} \mid i \in \mathbb{Z}\right\}$ is a \mathbb{C}－basis of the vector space of all τ_{q}－derivations of $\mathbb{C}\left[t, t^{-1}\right]$ ．

Let \mathcal{D}_{q} be the associative algebra generated by t, t^{-1} and ∂_{q} ，so \mathcal{D}_{q} is the q－differential operators algebra of $\mathbb{C}\left[t, t^{-1}\right]$ ．

In recent years，there have been many researches on the algebra of differential operators and q－differential operators．Concerning their derivation algebras，automorphisms，2－cocycles and some representations，researches were undertaken by Frenkel et al．in［1］（1995），Kac and Radul in［2］（1993），Kassel in［3］（1992），Li in［4］（1989），Li and Wilson in［5］（1998），Su in［6］ （1990），Zhao in［7］and［8］（1993，1995），Hu in［9］（1999），Liu and Hu in［10］（2004）．For instance， in［7］，the derivation algebras of \mathcal{D} and of its Lie algebra \mathcal{D}^{-}were determined．In［4］，all non－ trivial 2－cocycles on \mathcal{D}^{-}were determined．In［10］，the derivation algebras of \mathcal{D}_{q} and of its Lie algebra \mathcal{D}_{q}^{-}and all non－trivial 2－cocycles on \mathcal{D}_{q}^{-}were determined．

Let $r, s \in \mathbb{C}$ with $r, s \neq 0,1$ and $r^{2} \neq s^{2}$ ．Define (r, s)－differential operator by

$$
\partial_{r, s}(P)=\frac{P(r t)-P(s t)}{r t-s t}, \quad \forall P \in \mathbb{C}\left[t, t^{-1}\right]
$$

then

$$
\partial_{r, s}(P Q)=\partial_{r, s}(P) \xi(Q)+\omega(P) \partial_{r, s}(Q), \quad \forall P, Q \in \mathbb{C}\left[t, t^{-1}\right]
$$

where ω, ξ are two automorphisms of $\mathbb{C}\left[t, t^{-1}\right]$ satisfying $\omega(t)=r t, \xi(t)=s t$ ，then $\partial_{r, s}$ is also called (ω, ξ)－derivation．It can be easily verified that

$$
\partial_{r, s} \cdot t-r t \cdot \partial_{r, s}=\xi, \quad \partial_{r, s} \cdot t-s t \cdot \partial_{r, s}=\omega
$$

By definition，the (r, s)－differential operators algebra $\mathcal{D}_{r, s}=\operatorname{Diff} r, s \mathbb{C}\left[t, t^{-1}\right]$ is an associa－ tive algebra generated by t, t^{-1} and $\partial_{r, s}$ ．With easy calculation，we can obtain

$$
t \partial_{r, s} \cdot \xi=\xi \cdot t \partial_{r, s}
$$

Let $D=\xi+(r-s) t \partial_{r, s}$ ．Then $D \in \mathcal{D}_{r, s}$ and we can get the following lemma．
Lemma 0．1 In $\mathcal{D}_{r, s}, D \xi=\xi D, \xi t=s t \xi, D t=r t D$ ．
Lemma $0.2\left\{t^{m} D^{n} \xi^{q} \mid m \in \mathbb{Z}, n, q \in \mathbb{Z}^{+}\right\}$is a \mathbb{C}－basis of $\mathcal{D}_{r, s}$ ，where r ，s satisfy $r^{x} s^{y} \neq$ $1(x, y \in \mathbb{Z},(x, y) \neq(0,0))$ ．

Proof For $\mathcal{D}_{r, s}$ is generated by t, t^{-1} and $\partial_{r, s}$ ，and for $\partial_{r, s} \cdot t-r t \cdot \partial_{r, s}=\xi, \xi t=s t \xi$ ， $t^{-1} \partial_{r, s}-r \partial_{r, s} t^{-1}=s^{-1} t^{-2} \xi, \partial_{r, s} \xi=s \xi \partial_{r, s}$, it is very clear that $\left\{t^{m} \partial_{r, s}^{n} \xi^{q} \mid m \in \mathbb{Z}, n, q \in \mathbb{Z}^{+}\right\}$ is a \mathbb{C}－basis of $\mathcal{D}_{r, s}$ ．

Because $m \in \mathbb{Z}$ ，we can see that $\left\{t^{m}\left(t \partial_{r, s}\right)^{n} \xi^{q} \mid m \in \mathbb{Z}, n, q \in \mathbb{Z}^{+}\right\}$is also a \mathbb{C}－basis of $\mathcal{D}_{r, s}$ ． For $D=\xi+(r-s) t \partial_{r, s}$ and $D \xi=\xi D, D t=r t D$ ，then $t \partial_{r, s}=(r-s)^{-1}(D-\xi)$ ．As a result， $\left\{t^{m}(D)^{n} \xi^{q} \mid m \in \mathbb{Z}, n, q \in \mathbb{Z}^{+}\right\}$is a \mathbb{C}－basis of $\mathcal{D}_{r, s}$ ．

The main purpose of this paper is to determine all derivations and 2－cocycles of the algebras of (r, s)－differential operators．

The paper is organized as follows．In Section 1，we determine the derivation algebra of associative algebra $\mathcal{D}_{r, s}$ ．In Section 2，the derivation algebra of Lie algebra $\mathcal{D}_{r, s}^{-}$is described， which is different from that of associative algebra of $\mathcal{D}_{r, s}$ ．In Section 3，we calculate $H^{2}\left(\mathcal{D}_{r, s}^{-}, \mathbb{C}\right)$ under the assumption that $r^{x} s^{y} \neq 1(x, y \in \mathbb{Z},(x, y) \neq(0,0))$ ．

Throughout this paper we always suppose that r, s satisfy $r^{x} s^{y} \neq 1(x, y \in \mathbb{Z},(x, y) \neq$ $(0,0))$ ．

1 Derivations of the algebra $\mathcal{D}_{r, s}$

At first，we prove some properties of $\mathcal{D}_{r, s}$ under the assumption that $r^{x} s^{y} \neq 1(x, y \in$ $\mathbb{Z}, \quad(x, y) \neq(0,0))$ ．For any nonempty set $B \subseteq \mathcal{D}_{r, s}$ ，we define the centralizer of B in $\mathcal{D}_{r, s}$ as $Z_{\mathcal{D}_{r, s}}(B)$ ．

Lemma $1.1 \quad Z_{\mathcal{D}_{r, s}}\left(t^{p}\right)=\mathbb{C}\left[t, t^{-1}\right](p \neq 0), Z_{\mathcal{D}_{r, s}}(D)=\mathbb{C}[D, \xi]=Z_{\mathcal{D}_{r, s}}(\xi)$.
Proof It is clear that $\mathbb{C}\left[t, t^{-1}\right] \subseteq Z_{\mathcal{D}_{r, s}}\left(t^{p}\right)$ ．
For $p \neq 0$ ，let $d=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} d(m, n, q) t^{m} D^{n} \xi^{q} \in Z_{\mathcal{D}_{r, s}}\left(t^{p}\right)$ ，then

$$
\left[\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} d(m, n, q) t^{m} D^{n} \xi^{q}, t^{p}\right]=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}}\left(\left(r^{n} s^{q}\right)^{p}-1\right) d(m, n, q) t^{m+p} D^{n} \xi^{q}=0,
$$

which implies that $d(m, n, q)=0$ for $(n, q) \neq(0,0)$ ，and then $d=\sum_{m \in \mathbb{Z}} d(m, 0,0) t^{m} \in \mathbb{C}\left[t, t^{-1}\right]$ ．
Similarly，we have $Z_{\mathcal{D}_{r, s}}(D)=\mathbb{C}[D, \xi]=Z_{\mathcal{D}_{r, s}}(\xi)$ ．
Lemma $1.2 \quad \mathcal{D}_{r, s}$ has outer derivations $\sigma_{i}(i=1,2,3)$ ，satisfying $\sigma_{1}(t)=t, \sigma_{1}(D)=\sigma_{1}(\xi)=0, \sigma_{2}(D)=D, \quad \sigma_{2}(t)=\sigma_{2}(\xi)=0, \quad \sigma_{3}(\xi)=\xi, \sigma_{3}(D)=\sigma_{3}(t)=0$.

Proof Define linear maps $\sigma_{1}\left(t^{m} D^{n} \xi^{q}\right)=m t^{m} D^{n} \xi^{q}, \sigma_{2}\left(t^{m} D^{n} \xi^{q}\right)=n t^{m} D^{n} \xi^{q}$ ， $\sigma_{3}\left(t^{m} D^{n} \xi^{q}\right)=q t^{m} D^{n} \xi^{q}$ ．Obviously $\sigma_{i} \in \operatorname{Der}\left(\mathcal{D}_{r, s}\right)(i=1,2,3)$ ．

If σ_{1} is an inner derivation，there exists $y=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} c(m, n, q) t^{m} D^{n} \xi^{q} \in \mathcal{D}_{r, s}$ ，such that $\sigma_{1}=\operatorname{ad} y$ ．Then $\operatorname{ad} y(t)=\left(r^{n} s^{q}-1\right) \sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} c(m, n, q) t^{m+1} D^{n} \xi^{q}=t \in \mathcal{D}_{r, s}$ ，but it is impossible．

Similarly，σ_{2}, σ_{3} are not inner derivations．
Lemma 1．3 For $\alpha \in \operatorname{Der}\left(\mathcal{D}_{r, s}\right)$ ，there exists $x \in \mathcal{D}_{r, s}$ such that $\alpha(t)-\operatorname{ad} x(t) \in \mathbb{C}\left[t, t^{-1}\right]$ ．
Proof For a given $\alpha \in \operatorname{Der}\left(\mathcal{D}_{r, s}\right)$ ，let $\alpha(t)=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} c(m, n, q) t^{m} D^{n} \xi^{q}$ with $c(m, n, q) \in \mathbb{C}$ ．
Take $x=\sum_{\substack{n, q \in \mathbb{Z}^{+} \\ n+q \neq 0, m \in \mathbb{Z}}}\left(r^{n} s^{q}-1\right)^{-1} c(m, n, q) t^{m-1} D^{n} \xi^{q}$ ，then we have

$$
\alpha(t)-\operatorname{ad} x(t)=\sum_{m \in \mathbb{Z}} c(m, 0,0) t^{m} \in \mathbb{C}\left[t, t^{-1}\right] .
$$

Theorem 1 The derivation algebra of $\mathcal{D}_{r, s}$ is $\operatorname{ad}\left(\mathcal{D}_{r, s}\right) \oplus \sum_{i=1}^{3} \mathbb{C} \sigma_{i}$ ．
Proof（i）For a given $\alpha_{0} \in \operatorname{Der}\left(\mathcal{D}_{r, s}\right)$ ，by Lemma 1．3，there exists an $x \in \mathcal{D}_{r, s}$ ，such that $\alpha_{0}(t)-\operatorname{ad} x(t) \in \mathbb{C}\left[t, t^{-1}\right]$ ．Denote $\alpha=\alpha_{0}-\operatorname{ad} x$ ，and we can assume that $\alpha(t)=\sum_{m \in \mathbb{Z}} a_{m} t^{m}$ ．

Write $\alpha(D)=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} c(m, n, q) t^{m} D^{n} \xi^{q}, \alpha(\xi)=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} e(m, n, q) t^{m} D^{n} \xi^{q}$ ，where $c(m, n, q), e(m, n, q) \in \mathbb{C}$ ．Acting α on both sides of $D t=r t D$ ，we have

$$
\begin{equation*}
\alpha(D) t+D \alpha(t)=r \alpha(t) D+r t \alpha(D) \tag{1.1}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}}\left(r^{n} s^{q}-r\right) c(m, n, q) t^{m+1} D^{n} \xi^{q}=\sum_{m \in \mathbb{Z}}\left(r-r^{m}\right) a_{m} t^{m} D \tag{1.2}
\end{equation*}
$$

which implies that $c(m, n, q)=0$ for $n \neq 1$ or $q \neq 0$ ，and $r^{n} s^{q}-r=0$ for $n=1$ and $q=0$ ． That is to say，$\sum_{m \in \mathbb{Z}}\left(r-r^{m}\right) a_{m} t^{m} D=0$ ．Hence $a_{m}=0$ for $m \neq 1$ ．

Similarly，acting α on both sides of $\xi t=s t \xi$ ，we have $e(m, n, q)=0$ for $n \neq 0$ or $q \neq 1$ ． Thus，we obtain that

$$
\alpha(t)=a_{1} t, \quad \alpha(D)=\sum_{m \in \mathbb{Z}} c(m) t^{m} D, \quad \alpha(\xi)=\sum_{m \in \mathbb{Z}} e(m) t^{m} \xi
$$

（ii）Furthermore，using $D \xi=\xi D$ ，we can get $\alpha(D) \xi+D \alpha(\xi)=\alpha(\xi) D+\xi \alpha(D)$ ，that is

$$
\sum_{m \in \mathbb{Z}}\left(c(m)+r^{m} e(m)\right) t^{m} D \xi=\sum_{m \in \mathbb{Z}}\left(s^{m} c(m)+e(m)\right) t^{m} D \xi
$$

then $e(m)=\frac{1-s^{m}}{1-r^{m}} c(m)$ for $m \neq 0$ ．Hence we have

$$
\alpha(D)=\sum_{m \in \mathbb{Z}, m \neq 0} c(m) t^{m} D+c D, \quad \alpha(\xi)=\sum_{m \in \mathbb{Z}, m \neq 0} \frac{1-s^{m}}{1-r^{m}} c(m) t^{m} \xi+e \xi
$$

（iii）We can easily get ad $t^{m}(D)=\left(1-r^{m}\right) t^{m} D$ and $\operatorname{ad} t^{m}(\xi)=\left(1-s^{m}\right) t^{m} \xi$ for $m \neq 0$ ． Take $y=\sum_{m \in \mathbb{Z}, m \neq 0} \frac{c(m)}{1-r^{m}} t^{m}$ ，and denote $\gamma=\alpha-\operatorname{ad} y$ ，then we have $\gamma(t)=a_{1} t, \gamma(D)=c D$ and $\gamma(\xi)=e \xi$ ．Since γ is a derivation，$\gamma=a_{1} \sigma_{1}+c \sigma_{2}+e \sigma_{3}$ ．

This means $\alpha_{0}=\operatorname{ad}(x+y)+a_{1} \sigma_{1}+c \sigma_{2}+e \sigma_{3}$ ．The proof is complete．

2 Derivations of the Lie algebra $\mathcal{D}_{r, s}^{-}$

Lie algebra $\mathcal{D}_{r, s}^{-}$of the associative algebra $\mathcal{D}_{r, s}$ is called the (r, s)－differential operators Lie algebra．Clearly

$$
\operatorname{Der}\left(\mathcal{D}_{r, s}\right) \subseteq \operatorname{Der}\left(\mathcal{D}_{r, s}^{-}\right), \quad \operatorname{ad}\left(\mathcal{D}_{r, s}\right)=\operatorname{ad}\left(\mathcal{D}_{r, s}^{-}\right)
$$

In this section，we will determine the derivation algebra of $\mathcal{D}_{r, s}^{-}$．
Lemma 2．1 The Lie algebra $\mathcal{D}_{r, s}^{-}$is generated by $\left\{t^{m}, D, \xi \mid m \in \mathbb{Z}\right\}$ ．
Proof Let \mathcal{A} denote the Lie subalgebra of $\mathcal{D}_{r, s}^{-}$generated by $\left\{t^{m}, D, \xi \mid m \in \mathbb{Z}\right\}$ ．By Lemma 1．2，we only need to prove that $t^{m} D^{n} \xi^{q} \in \mathcal{A}\left(m \in \mathbb{Z}, n, q \in \mathbb{Z}^{+}\right)$．

Clearly $t^{m} \in \mathcal{A}(m \in \mathbb{Z})$ ．Suppose we have proved $t^{m} D^{n} \xi^{q} \in \mathcal{A}(m \neq 0)$ ，then $\left[t^{m} D^{n} \xi^{q}, D\right]=\left(1-r^{m}\right) t^{m} D^{n+1} \xi^{q} \in \mathcal{A}$ and $\left[t^{m} D^{n} \xi^{q}, \xi\right]=\left(1-s^{m}\right) t^{m} D^{n} \xi^{q+1} \in \mathcal{A}$ ，then we have $t^{m} D^{n} \xi^{q} \in \mathcal{A}(m \neq 0)$ ．

Furthermore，for $\left[t D^{n} \xi^{q}, t^{-1}\right]=\left(1-r^{n} s^{q}\right) D^{n} \xi^{q}(n+q \neq 0), D^{n} \xi^{q} \in \mathcal{A}$ ．
Lemma 2．2 Lie algebra $\mathcal{D}_{r, s}^{-}$has outer derivations $\zeta_{i}(i \in \mathbb{Z} \backslash\{0\})$ satisfying $\zeta_{i}\left(t^{j}\right)=$ $\delta_{i, j}, \zeta_{i}(D)=\zeta_{i}(\xi)=0$.

Proof Define linear maps $\zeta_{i}(i \in \mathbb{Z} \backslash\{0\})$ by $\mathcal{D}_{r, s}^{-}$as：$\zeta_{i}\left(t^{m} D^{n} \xi^{q}\right)=\delta_{i, m} \delta_{n+q, 0}$.

$$
\begin{aligned}
\zeta_{i}\left(\left[t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right]\right) & =\left(r^{n m_{1}} s^{q m_{1}}-r^{n_{1} m} s^{q_{1} m}\right) \delta_{i, m+m_{1}} \delta_{n+n_{1}+q+q_{1}, 0} \\
& =\left[\zeta_{i}\left(t^{m} D^{n} \xi^{q}\right), t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right]+\left[t^{m} D^{n} \xi^{q}, \zeta_{i}\left(t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)\right] \\
& =0 .
\end{aligned}
$$

Thus $\zeta_{i} \in \operatorname{Der}\left(\mathcal{D}_{r, s}^{-}\right)$．

If ζ_{i} is not an outer derivation，then there exists $y_{i} \in \mathcal{D}_{r, s}^{-}$such that ad $y_{i}=\zeta_{i}$ ．Thus $\operatorname{ad} y_{i}(D)=0$ and $\operatorname{ad} y_{i}\left(t^{m}\right)=0(i \neq m)$ ．By lemma 1．1，we can conclude that $y_{i} \in \mathbb{C}\left[t, t^{-1}\right] \cap$ $\mathbb{C}[D, \xi]=\mathbb{C}$ and $\operatorname{ad} y_{i}\left(t^{i}\right)=0$ ，contradicting with $\zeta_{i}\left(t^{i}\right)=1$ ．As a result，$\zeta_{i}(i \in \mathbb{Z} \backslash\{0\})$ are outer derivations of $\mathcal{D}_{r, s}$ ．

Lemma 2．3 For $\alpha \in \operatorname{Der}\left(\mathcal{D}_{r, s}^{-}\right)$，there exists $x \in \mathcal{D}_{r, s}^{-}$such that $\alpha(t)-\operatorname{ad} x(t) \in \mathbb{C}\left[t, t^{-1}\right]$ ．
Proof The proof is similar to that of Lemma 1．3．
Theorem 2 Derivation algebra of $\mathcal{D}_{r, s}^{-}$is $\operatorname{ad}\left(\mathcal{D}_{r, s}\right) \oplus \sum_{i=1}^{3} \mathbb{C} \sigma_{i} \oplus \sum_{j \in \mathbb{Z} \backslash\{0\}} \zeta_{j}$ ．
Proof（i）Given any $\alpha_{0} \in \operatorname{Der}\left(\mathcal{D}_{r, s}^{-}\right)$，owing to lemma 2．3，there exists $x \in \mathcal{D}_{r, s}^{-}$，such that $\alpha_{0}(t)-\operatorname{ad} x(t) \in \mathbb{C}\left[t, t^{-1}\right]$ ．Set $\alpha=\alpha_{0}-\operatorname{ad} x$ ．Since $\left[t, t^{m}\right]=0$ ，we can obtain $\alpha\left(t^{m}\right) \in \mathbb{C}\left[t, t^{-1}\right]$ ， thus $\alpha(t)=\sum_{m \in \mathbb{Z}} a_{m} t^{m}, \alpha\left(t^{-1}\right)=\sum_{m \in \mathbb{Z}} b_{m} t^{m}$ ．Write

$$
\alpha(D)=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} c(m, n, q) t^{m} D^{n} \xi^{q}, \alpha(\xi)=\sum_{\substack{m \in \mathbb{Z} \\ n, q \in \mathbb{Z}^{+}}} e(m, n, q) t^{m} D^{n} \xi^{q} .
$$

Acting α on $[t, D]=(1-r) t D$ and $\left[t^{-1}, t D\right]=\left(1-r^{-1}\right) D$ ，respectively we have

$$
\begin{gather*}
\alpha([t, D])=[\alpha(t), D]+[t, \alpha(0)]=(1-r) \alpha(t D), \tag{2.1}\\
\alpha\left(\left[t^{-1}, t D\right]\right)=\left[\alpha\left(t^{-1}\right), t D\right]+\left[t^{-1}, \alpha(t D)\right]=\left(1-r^{-1}\right) \alpha(D) . \tag{2.2}
\end{gather*}
$$

It follows from（2．1）and（2．2）that

$$
\begin{equation*}
\left[\alpha\left(t^{-1}\right), t D\right]+\left[t^{-1}, \frac{1}{1-r} \alpha([t, D])\right]=\left(1-\frac{1}{r}\right) \alpha(D) \tag{2.3}
\end{equation*}
$$

In（2．3），

$$
\begin{aligned}
& {\left[\alpha\left(t^{-1}\right), t D\right]=\sum_{m \in \mathbb{Z}} b_{m}\left[t^{m}, t D\right]=\sum_{m \in \mathbb{Z}} b_{m}\left(1-r^{m}\right) t^{(m+1)} D } \\
& {\left[t^{-1}, \frac{1}{1-r} \alpha([t, D])\right] }=\left[t^{-1}, \frac{1}{1-r}([\alpha(t), D]+[t, \alpha(D)])\right] \\
&=\frac{1}{1-r}\left(\left[t^{-1},[\alpha(t), D]\right]+\left[t^{-1},[t, \alpha(D)]\right]\right)
\end{aligned}
$$

Using equations above and（2．3），we obtain

$$
\begin{gather*}
\sum_{\substack{m \in \mathbb{Z} \\
n, q \in \mathbb{Z}^{+}}} \frac{1}{r(1-r)}\left[r\left(r^{\frac{n}{2}} s^{\frac{q}{2}}-r^{\frac{-n}{2}} s^{\frac{-q}{2}}\right)^{2}-(1-r)^{2}\right] c(m, n, q) t^{m} D^{n} \xi^{q} \\
\quad=\sum_{m \in \mathbb{Z}}\left[\frac{r^{m+1}-1}{r} a_{m+1}+\left(1-r^{m-1} b_{m-1}\right)\right] t^{m} D \tag{2.4}
\end{gather*}
$$

In（2．4），we have $\left[r\left(r^{\frac{n}{2}} s^{\frac{q}{2}}-r^{\frac{-n}{2}} s^{\frac{-q}{2}}\right)^{2}-(1-r)^{2}\right] c(m, n, q)=0$ ，for $n \neq 1$ or $q \neq 0$ ．
Assume $n, q \in \mathbb{Z}^{+}$satisfying $\left[r\left(r^{\frac{n}{2}} s^{\frac{q}{2}}-r^{\frac{-n}{2}} s^{\frac{-q}{2}}\right)^{2}-(1-r)^{2}\right]=0$ ，then we have $r^{n} s^{q}+$ $r^{-n} s^{-q}=r+r^{-1}$ ．It is easy to obtain that $n=1$ and $q=0$ ．As a result，$c(m, n, q)=0$ for $n \neq 1$ or $q \neq 0$ ，that is，$\sum_{m \in \mathbb{Z}}\left[\frac{r^{m+1}-1}{r} a_{m+1}+\left(1-r^{m-1} b_{m-1}\right)\right] t^{m} D=0$ ．Denote $(m)_{r}=\frac{1-r^{m}}{1-r}$, and we finally get

$$
\alpha(D)=\sum_{m \in \mathbb{Z}} c(m) t^{m} D, \quad(m+1)_{r} a_{m+1}=r(m-1)_{r} b_{m-1}
$$

Similar treatment to $\alpha(\xi)$ ，we obtain

$$
\alpha(\xi)=\sum_{m \in \mathbb{Z}} e(m) t^{m} \xi, \quad(m+1)_{s} a_{m+1}=s(m-1)_{s} b_{m-1}, \quad(m)_{s}=\frac{1-s^{m}}{1-s} .
$$

（ii）Similar to the proof of part（ii）of Theorem 1，let α act on $[D, \xi]=0$ ，and get $e(m)=\frac{1-s^{m}}{1-r^{m}} c(m)$ for $m \neq 0$ ．Then we have

$$
\alpha(D)=\sum_{m \in \mathbb{Z}, m \neq 0} c(m) t^{m} D+c D, \quad \alpha(\xi)=\sum_{m \in \mathbb{Z}, m \neq 0} \frac{1-s^{m}}{1-r^{m}} c(m) t^{m} \xi+e \xi
$$

（iii）Choose $y=\frac{c(m)}{1-r^{m}} t^{m}$ ，then $(\alpha-\operatorname{ad} y)\left(t^{m}\right)=\alpha\left(t^{m}\right),(\alpha-\operatorname{ad} y)(D)=c D,(\alpha-$ $\operatorname{ad} y)(\xi)=e \xi$ ．Denote $\gamma=\alpha-\operatorname{ad} y-a_{1} \sigma_{1}-c \sigma_{2}-e \sigma_{3}$ ，we have $\gamma(D)=\gamma(\xi)=0, \gamma(t)=\alpha(t)$ and $\gamma\left(t^{-1}\right)=\alpha\left(t^{-1}\right)$ ．

Acting γ on $[t, D]=(1-r) t D,\left[t^{-1}, D\right]=\left(1-r^{-1}\right) t^{-1} D,\left[t, D^{2}\right]=\left(1-r^{2}\right) t D^{2}$ ，and $\left[t D, t^{-1} D\right]=\left(r^{-1}-r\right) D^{2}$ ，respectively we have

$$
\begin{gather*}
\gamma(t D)=\sum_{m \in \mathbb{Z}}(m)_{r} a_{m} t^{m} D, \quad \gamma\left(t^{-1} D\right)=\sum_{m \in \mathbb{Z}} r(m)_{r} b_{m} t^{m} D \tag{2.5}\\
\left(r^{-1}-r\right) \gamma\left(D^{2}\right)=\left[\gamma(t D), t^{-1} D\right]+\left[t D, \gamma\left(t^{-1} D\right)\right] \tag{2.6}\\
(1+r)[\gamma(t D), D]=\left[\gamma(t), D^{2}\right]+\left[t, \gamma(D)^{2}\right] \tag{2.7}
\end{gather*}
$$

By（2．5）and（2．6），we have

$$
\gamma\left(D^{2}\right)=\frac{r}{1-r^{2}}\left(\sum_{m \in \mathbb{Z}}(m)_{r}\left(\frac{1}{r}-r^{m}\right) a_{m} t^{m-1} D^{2}+\sum_{m \in \mathbb{Z}} r(m)_{r}\left(r-r^{m}\right) b_{m} t^{m+1} D^{2}\right)
$$

In（2．6），we can calculate that

$$
\begin{gathered}
{\left[\gamma(t), D^{2}\right]=\sum_{m \in \mathbb{Z}}\left(1-r^{2 m}\right) a_{m} t^{m} D^{2},} \\
{\left[t, \gamma\left(D^{2}\right)\right]=\sum_{m \in \mathbb{Z}}(m)_{r}\left(1-r^{m+1}\right) a_{m} t^{m} D^{2}+\sum_{m \in \mathbb{Z}} r(m-2)_{r}\left(r^{2}-r^{m-1}\right) b_{m-2} t^{m} D^{2}} \\
= \\
(m)_{r} a_{m} \sum_{m \in \mathbb{Z}}\left(1-r^{m+1}+r^{2}-r^{m-1}\right)(m)_{r} a_{m} t^{m} D^{2}, \\
\\
\\
(1+r)[\gamma(t D), D]=(1+r) \sum_{m \in \mathbb{Z}}\left(1-r^{m}\right)(m)_{r} a_{m} t^{m} D^{2} .
\end{gathered}
$$

Using all the equations above and（2．7），we obtain that

$$
(m)_{r} a_{m}(1+r)\left(1-r^{m}\right)=(m)_{r} a_{m}\left[\left(1+r^{m}\right)(1-r)+1+r^{2}-r^{m+1}-r^{m-1}\right]
$$

Simplifying the equation above，we have

$$
(m)_{r}\left(1-r^{m-1}\right)(r-1)^{2} a_{m}=0
$$

which implies that $a_{m}=0(m \neq 0,1), b_{m}=0(m \neq 0,-1)$ and $a_{1}=b_{-1}$ ．Thus

$$
\gamma(t)=a_{1} t+a_{0}, \quad \gamma\left(t^{-1}\right)=-a_{1} t+b_{0}
$$

（iv）Denote $\beta=\gamma-a_{1} \sigma_{1}-a_{0} \zeta_{1}-b_{0} \zeta_{-1}$ ，then $\beta(t)=\beta\left(t^{-1}\right)=\beta(D)=\beta(\xi)=0$ ，and $\beta\left(t^{m}\right) \in \mathbb{C}\left[t, t^{-1}\right]$ ．For $[t, D]=(1-r) t D,\left[t^{-1}, D\right]=\left(1-r^{-1}\right) t^{-1} D, \beta(t D)=\beta\left(t^{-1} D\right)=0$ ． Then $\beta\left(\left[t^{2}, D\right]\right)=\left(1-r^{2}\right) \beta\left(t^{2} D\right)=\left(1-r^{2}\right)(1-r) \beta([t, t D])=0$ ．By lemma 2．1，we have $\beta\left(t^{2}\right) \in \mathbb{C}\left[t, t^{-1}\right] \cap \mathbb{C}[D, \xi]=\mathbb{C}$ ．Similarly，$\beta\left(t^{-2}\right) \in \mathbb{C}$ ．

Suppose that we have proved $\beta\left(t^{m}\right) \in \mathbb{C}$ and $\beta\left(t^{m} D\right)=0$ ．Owing to $\left[t, t^{m} D\right]=$ $(1-r) t^{m+1} D, \beta\left(t^{m+1} D\right)=0$ ，and then we have $\beta\left(t^{m+1}\right) \in \mathbb{C}$ since $\left[\beta\left(t^{m+1}\right), D\right]=(1-$ $\left.r^{m+1}\right) \beta\left(t^{m+1} D\right)=0$ ．Similarly，$\beta\left(t^{m-1}\right) \in \mathbb{C}$ ．

Let $h_{m}=\beta\left(t^{m}\right)$ and $\eta=\beta-\sum_{\substack{i \neq 0, \pm 1 \\ i \in \mathbb{Z}}} h_{i} \zeta_{i}$ ，then $\eta\left(t^{m}\right)=\eta(D)=\eta(\xi)=0$. By lemma 2．1， we have $\eta=0$ ．Finally，

$$
\alpha_{0}=\operatorname{ad}(x+y)+a_{1} \sigma_{1}+c \sigma_{2}+e \sigma_{3}+a_{0} \zeta_{1}+b_{0} \zeta_{-1}+\sum_{i \neq 0,1,-1} h_{i} \zeta_{i}
$$

The proof is complete．

$3 \quad H^{2}\left(\mathcal{D}_{r, s}^{-}, \mathbb{C}\right)$

Let L be a Lie algebra over \mathbb{C} ．Recall that a 2－cocycle on L is a bilinear \mathbb{C}－valued form ψ satisfying the following conditions：
（1）$\psi(a, b)=-\psi(b, a)$ ，
（2）$\psi([a, b], c)+\psi([b, c], a)+\psi([c, a], b)=0 \quad$ for all $a, b, c \in L$ ．
If f is a linear function on L ，we define

$$
\alpha_{f}(x, y)=f([x, y]),
$$

for $x, y \in L$ ，then α_{f} is a 2－cocycle．This 2－cocycle is called a trivial 2－cocycle．A 2－cocycle φ is equivalent to a 2 －cocycle ψ ，if $\varphi-\psi$ is trivial．

Given a 2－cocycle α on L ，we can construct a central extension of L ．If the Lie bracket on L is［，］，we define a new Lie bracket［，$]_{0}$ on $L \oplus \mathbb{C} c$ as

$$
[x+\lambda c, y+\mu c]_{0}=[x, y]+\alpha(x, y) c, \quad \forall x, y \in L, \lambda, \mu \in \mathbb{C} .
$$

It is well－known that $L \oplus \mathbb{C} c$ is a Lie algebra with this Lie bracket and every 1－dimentional central extension of L can be obtained in this way．Denote this central extension of L by $L(\alpha)$ ．

Let γ be a trivial 2－cocycle induced by $f \in L^{*}$ and α a cocycle，then the mapping

$$
x \mapsto x+f(x) c, \quad c \mapsto c, \quad \forall x \in L
$$

gives an isomorphism from $L(\alpha)$ to $L(\alpha+\gamma)$ ．
In［4］and［6］，all non－trivial 2－cocycle on the algebras of differential operators were de－ termined．In［10］，all non－trivial 2－cocycle of \mathcal{D}_{q} also be determined．$H^{2}\left(\mathcal{D}_{r, s}^{-}, \mathbb{C}\right)$ is different from $H^{2}\left(\mathcal{D}^{-}, \mathbb{C}\right)$ ，for the number of generators of Lie algebra $\mathcal{D}_{r, s}^{-}$is infinite．It is similar to $H^{2}\left(\mathcal{D}_{q}^{-}, \mathbb{C}\right)$ ，but the calculation is much more complicated．In this section，we will try to deter－ mine all the 2－cocycles on $\mathcal{D}_{r, s}^{-}$under the assumption that $r^{x} s^{y} \neq 1(x, y \in \mathbb{Z},(x, y) \neq(0,0))$ ．

Let ψ be a 2 －cocycle on $\mathcal{D}_{r, s}^{-}$．We define a linear function f_{ψ} on $\mathcal{D}_{r, s}^{-}$as

$$
f_{\psi}\left(D^{n} \xi^{q}\right)=\frac{1}{r^{n} s^{q}-1} \psi\left(t^{-1} D^{n} \xi^{q}, t\right), \quad n+q>0
$$

$$
f_{\psi}\left(t^{m} D^{n} \xi^{q}\right)=\left\{\begin{array}{cc}
\left(1-r^{m}\right)^{-1} \psi\left(t^{m} D^{n-1} \xi^{q}, D\right), & n>0 \\
\left(1-s^{m}\right)^{-1} \psi\left(t^{m} D^{n} \xi^{q-1}, \xi\right), & q>0
\end{array}(m \neq 0)\right.
$$

It is easy to check that，for $n>0$ and $q>0$ ，we have

$$
\left(1-r^{m}\right)^{-1} \psi\left(t^{m} D^{n-1} \xi^{q}, D\right)=\left(1-s^{m}\right)^{-1} \psi\left(t^{m} D^{n} \xi^{q-1}, \xi\right)
$$

that is，f_{ψ} is well－defined．
Denote $\theta=\psi-\alpha_{f_{\psi}}$ ，then we have

$$
\begin{align*}
\theta\left(t^{m} D^{n-1} \xi^{q}, D\right) & =0 \quad(n>0) \\
\theta\left(t^{m} D^{n} \xi^{q-1}, \xi\right) & =0 \quad(q>0) \\
\theta\left(t^{-1} D^{n} \xi^{q}, t\right) & =0 \quad(n+q>0) \tag{3.1}\\
\theta\left(t D^{n} \xi^{q}, t^{-1}\right) & =\left(1-r^{-n} s^{-q}\right) /\left(1-r^{n} s^{q}\right) \theta\left(t^{-1} D^{n} \xi^{q}, t\right) \\
& =0 \quad(n+q>0)
\end{align*}
$$

Lemma 3．1 $\theta\left(t^{m} D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right)=0$ ，for $m \neq 0$ and $n+q>0$ ．
Proof For $n+q>0$ ，we can assume that $n>0$ ．Then we have：

$$
\begin{aligned}
\theta\left(t^{m} D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right) & =\frac{1}{1-r^{m}} \theta\left(\left[t^{m} D^{n-1} \xi^{q}, D\right], D^{n_{1}} \xi^{q_{1}}\right) \\
& \left.=\frac{-1}{1-r^{m}} \theta\left(\left[D^{n_{1}} \xi^{q_{1}}, t^{m} D^{n-1} \xi^{q}\right], D\right]\right) \\
& =\frac{1-r^{n_{1} m} s^{q_{1} m}}{1-r^{m}} \theta\left(t^{m} D^{n+n_{1}-1} \xi^{q+q_{1}}, D\right)=0
\end{aligned}
$$

Lemma $3.2 \theta\left(1, t^{m} D^{n} \xi^{q}\right)=0$ ，for $n+q>0$ ．
Proof $\theta\left(1, t^{m} D^{n} \xi^{q}\right)=\frac{1}{1-r^{-n} s^{-q}} \theta\left(1,\left[t^{-1}, t^{m+1} D^{n} \xi^{q}\right]\right)=0$ ．
Lemma $3.3 \theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)=0$ ，for $m+m_{1} \neq 0, n+q>0$ or $n_{1}+q_{1}>0$ ．
Proof（i）For $n+q>1(n>0, m \neq 0)$ ，

$$
\begin{aligned}
\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)= & \frac{1}{1-r^{m}} \theta\left(\left[t^{m} D^{n-1} \xi^{q}, D\right], t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right) \\
= & \frac{-1}{1-r^{m}}\left(\theta\left(\left[D, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right], t^{m} D^{n-1} \xi^{q}\right)\right. \\
& \left.+\theta\left(\left[t^{m_{1}} D^{n_{1}} \xi^{q_{1}}, t^{m} D^{n-1} \xi^{q}\right], D\right)\right) \\
= & -\frac{1-r^{m_{1}}}{1-r^{m}} \theta\left(t^{m} D^{n-1} \xi^{q}, t^{m_{1}} D^{n_{1}+1} \xi^{q_{1}}\right) \\
= & (-1)^{n+q} \frac{\left(1-r^{m_{1}}\right)^{n}}{\left(1-r^{m}\right)^{n}} \frac{\left(1-s^{m_{1}}\right)^{q}}{\left(1-s^{m}\right)^{q}} \theta\left(t^{m}, t^{m_{1}} D^{n_{1}+n} \xi^{q_{1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)= & \frac{1}{1-r^{n m} s^{q m}} \theta\left(\left[t^{m}, D^{n} \xi^{q}\right], t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right) \\
= & \frac{1}{1-r^{n m} s^{q m}}\left(\theta\left(\left[D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right], t^{m}\right)\right. \\
& \left.+\theta\left(\left[t^{m_{1}} D^{n_{1}} \xi^{q_{1}}, t^{m}\right], D^{n} \xi^{q}\right)\right) \\
= & -\frac{1-r^{n m_{1}} s^{q m_{1}}}{1-r^{n m} s^{q m}} \theta\left(t^{m}, t^{m_{1}} D^{n_{1}+n} \xi^{q_{1}+q}\right)
\end{aligned}
$$

Then we have

$$
\left((-1)^{n+q} \frac{\left(1-r^{m_{1}}\right)^{n}}{\left(1-r^{m}\right)^{n}} \frac{\left(1-s^{m_{1}}\right)^{q}}{\left(1-s^{m}\right)^{q}}+\frac{1-r^{n m_{1}} s^{q m_{1}}}{1-r^{n m} s^{q m}}\right) \theta\left(t^{m}, t^{m_{1}} D^{n_{1}+n} \xi^{q_{1}+q}\right)=0
$$

It is easy to obtain that $(-1)^{n+q} \frac{\left(1-r^{m_{1}}\right)^{n}}{\left(1-r^{m}\right)^{n}} \frac{\left(1-s^{m_{1}}\right)^{q}}{\left(1-s^{m}\right)^{q}}+\frac{1-r^{n m_{1}} s^{q m_{1}}}{1-r^{n m} s^{q m}}=0$ if and only if $n+q$ is odd，$m=m_{1}$ or $n+q=1$ under the assumption that $r^{x} s^{y} \neq 1(x, y \in \mathbb{Z},(x, y) \neq(0,0))$ ． Consequently，$\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)=0$ for $n+q>1, m \neq 0, m \neq m_{1}$ ．

For $m=m_{1}, n+q>1$ ，choose some non－zero integer i with $i \neq m, 2 m$ ，such that

$$
\begin{aligned}
& \theta\left(t^{m} D^{n} \xi^{q}, t^{m} D^{n_{1}} \xi^{q_{1}}\right)=\frac{1}{1-r^{n i} s^{q i}} \theta\left(\left[t^{i}, t^{m-i} D^{n} \xi^{q}\right], t^{m} D^{n_{1}} \xi^{q_{1}}\right) \\
= & \frac{-1}{1-r^{n i} s^{q i}}\left(\theta\left(\left[t^{m-i} D^{n} \xi^{q}, t^{m} D^{n_{1}} \xi^{q_{1}}\right], t^{i}\right)+\theta\left(\left[t^{m} D^{n_{1}} \xi^{q_{1}}, t^{i}\right], t^{m-i} D^{n} \xi^{q}\right)\right) \\
= & \frac{-1}{1-r^{n i} s^{q i}}\left(\left(r^{n m_{1}} s^{q m_{1}}-r^{n(m-i)} s^{q(m-i)}\right) \theta\left(t^{2 m-i} D^{n+n_{1}} \xi^{q+q_{1}}, t^{i}\right)\right. \\
& \left.+\left(r^{n_{1} i} s^{q_{1} i}-1\right) \theta\left(t^{m+i} D^{n_{1}} \xi^{q_{1}}, t^{m-i} D^{n} \xi^{q}\right)\right) .
\end{aligned}
$$

By lemma 3．1，we have $\theta\left(D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)=0$ for $n_{1}+q_{1} \neq 0$ ．If $n_{1}+q_{1}=0$ ，choose no－zero integer $i \neq m_{1}$ ，then

$$
\begin{aligned}
\theta\left(D^{n} \xi^{q}, t^{m_{1}}\right) & =\frac{1}{1-r^{n i} s^{q i}} \theta\left(\left[t^{i}, t^{-i} D^{n} \xi^{q}\right], t^{m_{1}}\right) \\
& =\frac{1}{1-r^{n i} s^{q i}} \theta\left(\left[t^{m_{1}}, t^{-i} D^{n} \xi^{q}\right], t^{i}\right)=0 .
\end{aligned}
$$

As a result，we obtain $\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)=0$ for $n+q>1, m+m_{1} \neq 0$ ．
（ii）For $n_{1}+q_{1}>1$ and $m+m_{1} \neq 0$ ，the situation is similar to（i）．
（iii）For $n+q=n_{1}+q_{1}=1, m+m_{1} \neq 0$ ，we can assume $n=1, q_{1}=1$ ，then

$$
\begin{aligned}
\theta\left(t^{m} D, t^{m_{1}} \xi\right) & =\frac{1}{1-r^{m}} \theta\left(\left[t^{m}, D\right], t^{m_{1}} \xi\right) \\
& =\frac{-1}{1-r^{m}}\left(\theta\left(\left[D, t^{m_{1}} \xi\right], t^{m}\right)+\theta\left(\left[t^{m_{1}} \xi, t^{m}\right], D\right)\right) \\
& =\frac{-1}{1-r^{m}}\left(\left(r^{m_{1}}-1\right) \theta\left(t^{m_{1}} D \xi, t^{m}\right)+\left(r^{m}-1\right) \theta\left(t^{m+m_{1}} \xi, D\right)\right) \\
& =0
\end{aligned}
$$

（iv）For $n+q=1, n_{1}+q_{1}=0$ ，

$$
\begin{aligned}
\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}}\right) & =\frac{1}{1-\left(r^{n} s^{q}\right)^{m+m_{1}}} \theta\left(\left[t^{-m_{1}} D^{n} \xi^{q}, t^{m+m_{1}}\right], t^{m_{1}}\right) \\
& \left.=\frac{-1}{1-\left(r^{n} s^{q}\right)^{m+m_{1}}} \theta\left(\left[t^{-m_{1}} D^{n} \xi^{q}, t^{m_{1}}\right], t^{m+m_{1}}\right)\right) \\
& =\frac{1-\left(r^{n} s^{q}\right)^{m+m_{1}}}{1-\left(r^{n} s^{q}\right)^{m+m_{1}}} \theta\left(D^{n} \xi^{q}, t^{m+m_{1}}\right)=0,
\end{aligned}
$$

Finally，if $n+q>0$ or $n_{1}+q_{1}>0$ ，then $\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)=0$ ，for $m+m_{1} \neq 0$ ．
Lemma 3．4 $\theta\left(D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right)=0$ ．
Proof For $n+q=0$ or $n_{1}+q_{1}=0$ ，we obtain $\theta\left(D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right)=0$ by lemma 3．2．
For $n+q>0$ and $n_{1}+q_{1}$ ，we have

$$
\begin{gathered}
\theta\left(t^{-1} D^{n} \xi^{q}, t D^{n_{1}} \xi^{q_{1}}\right)=\frac{1}{1-r^{n_{1}} s^{q_{1}}} \theta\left(t^{-1} D^{n} \xi^{q},\left[t, D^{n_{1}} \xi^{q_{1}}\right]\right)=-\frac{1-r^{n} s^{q}}{1-r^{n_{1}} s^{q_{1}}} \theta\left(D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right) \\
\theta\left(t^{-1} D^{n} \xi^{q}, t D^{n_{1}} \xi^{q_{1}}\right)=\frac{1}{1-r^{-n} s^{-q}} \theta\left(\left[t^{-1}, D^{n} \xi^{q}\right], t D^{n_{1}} \xi^{q_{1}}\right)=-\frac{1-r^{-n_{1}} s^{-q_{1}}}{1-r^{-n} s^{-q}} \theta\left(D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right)
\end{gathered}
$$

then $\left(\frac{1-r^{n} s^{q}}{1-r^{n_{1}} s^{q_{1}}}-\frac{1-r^{-n_{1}} s^{-q_{1}}}{1-r^{-n} s^{-q}}\right) \theta\left(D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right)=0$.
It is easy to conclude that $\frac{1-r^{n} s^{q}}{1-r^{n_{1}} s^{q_{1}}}=\frac{1-r^{-n_{1}} s^{-q_{1}}}{1-r^{-n} s^{-q}}$ if and only if $n=n_{1}$ and $q=q_{1}$ ． As a result，for $n \neq n_{1}$ or $q \neq q_{1}$ ，we have $\theta\left(D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right)=\theta\left(t^{-1} D^{n} \xi^{q}, t D^{n_{1}} \xi^{q_{1}}\right)=0$ ．

Lemma 3．5 For $m \neq 0, n+q \neq 0$ or $n_{1}+q_{1} \neq 0, \theta\left(t^{-m} D^{n} \xi^{q}, t^{m} D^{n_{1}} \xi^{q_{1}}\right)=0$ ．
Proof For $n_{1}+q_{1}=0$ ，

$$
\theta\left(t^{-m} D^{n} \xi^{q}, t^{m}\right)=\frac{1}{\left(r^{n} s^{q}\right)^{-1}-1} \theta\left(\left[t^{-m+1} D^{n} \xi^{q}, t^{-1}\right], t^{m}\right)=\frac{1-\left(r^{n} s^{q}\right)^{m}}{1-\left(r^{n} s^{q}\right)^{-1}} \theta\left(t D^{n} \xi^{q}, t^{-1}\right)=0
$$

For $n+q \neq 0$ or $n_{1}+q_{1} \neq 0$,

$$
\begin{aligned}
\theta\left(t^{-m} D^{n} \xi^{q}, t^{m} D^{n_{1}} \xi^{q_{1}}\right) & =\frac{1}{\left(r^{n} s^{q}\right)^{-1}-1} \theta\left(\left[t^{-m+1} D^{n} \xi^{q}, t^{-1}\right], t^{m} D^{n_{1}} \xi^{q_{1}}\right) \\
& \left.=(-1)^{m}\left(\frac{1-r^{-n_{1}} s^{-q_{1}}}{1-r^{-n} s^{-q}}\right)^{m} \theta\left(D^{n} \xi^{q}, D^{n_{1}} \xi^{q_{1}}\right)\right) \\
& =0
\end{aligned}
$$

Theorem $3 \operatorname{dim} H^{2}\left(\mathcal{D}_{r, s}^{-}, \mathbb{C}\right)=\infty$ ．Every 2－cocycle on $\mathcal{D}_{r, s}^{-}$is equivalent to one of the following 2－cocycle，

$$
\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)=\left\{\begin{array}{cl}
a_{m, m_{1}}, & \text { if } n=n_{1}=q=q_{1}=0 \text { and } m \neq m_{1} \\
0, & \text { otherwise }
\end{array}\right.
$$

where $a_{m, m_{1}}$ are arbitrary constants with $a_{m, m_{1}}=-a_{m_{1}, m}$ ．
Proof We have $\theta\left(t^{m} D^{n} \xi^{q}, t^{m_{1}} D^{n_{1}} \xi^{q_{1}}\right)=0$ ，for $\forall m, m_{1} \in \mathbb{Z}, n, n_{1}, q, q_{1} \in \mathbb{Z}^{+}\left(n+q, n_{1}+\right.$ $\left.q_{1}\right) \neq(0,0)$ from the lemmas above．By the definition of 2 －cocycle，we conclude that the values of $\theta\left(t^{m}, t^{m_{1}}\right)$ are independent．

So the proof of theorem is complete．

［ References ］

［1］FRENKEL E，KAC V G，RADUL A，et al． $\mathcal{W}_{1+\infty}$ and $\mathcal{W}\left(g l_{N}\right)$ with central charge［J］．N Comm Math Phys， 1995，170：337－357．
［2］KAC V G，RADUL A．Quasifinite highest weight modules over the Lie algebra of differential operators on the circle［J］．Comm Math Phys，1993，157：429－457．
［3］KASSEL C．Cyclic homology of differential operators，the Virasoro algebra and a q－analogue［J］．Comm Math Phys，1992，164：343－356．
［4］LI W．2－cocyles on the algebra of differential operators［J］．J Algebra，1989，122：64－80．
［5］LI W L，WILSON R L．Central extensions of some Lie algebras［J］．Proc AMS，1998，126（9）：2569－2577．
［6］SU Y．2－cocycles on the Lie algebras of all differential operators several indeterminants［J］．Northeastern Math J，1990，6（3）：365－368．
［7］ZHAO K．Lie algebras of derivations of algebras of differential operators［J］．Chin Sci Bull，1993， 38 （10）：793－798．
［8］ZHAO K．Automorphism of the algebras of q－differential operators［J］．Acta Math Sinica，1995，16（2）：93－98．
［9］HU N．q－Witt algebras，q－Lie algebras，q－holomorph structure and representations［J］．Algebra Colloq，1999，6（1）： 51－70．
［10］LIU D，HU N．Derivation algebras and 2－Cocyles of the algebras of q－differential operators［J］．Comm Algebra， 2004，32（11）：4387－4413．

[^0]: 收稿日期：2008－04
 基金项目：教育部长江学者创新团队（10671027）；国家自然科学基金（10671027，10701019）；浙江省自然科学基金（Y607136）
 第一作者：陈茹，女，博士研究生．E－mail：chenru01＠126．com．

