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Abstract: This paper defined the (r, s)-differential operator of the algebra of Laurent poly-

nomials over the complex numbers field. Let Dr,s be the associative algebra generated by

{t±1} and the (r, s)-differential operator, which is called (r, s)-differential operators algebra.

In this paper, the derivation algebra of Dr,s and its Lie algebra D−
r,s were described and all

the non-trivial 2-cocycles were determined.

Key words: (r, s)-differential operator; Derivation; 2-cocycle.

CLC number: O152.5 Document code: A

(r, s)-���©©©���fff���êêê������fff999ÙÙÙ���þþþ���

� T 1, � [ 1, 4 À 2

(1. uÀ���Æ êÆX, þ° 200062; 2. �²��Æ� êÆX, úô �² 313000)

Á�: ½ÂEê� C þ� Laurent õ�ª�ê C[t, t−1] � (r, s)-�©�f ∂r,s. �ÑT�©�
f9 {t±1} )¤�(Ü�ê= (r, s)-�©�f�ê��|Ä, ¿3dÄ:þïÄ
 (r, s)-�©
�f�ê��f�ê9Ù�²��þ�.

'�c: (r, s)-�©�f; �f; �þ�

0 Introduction

Let C[t, t−1] be the algebra of Laurent polynomials over the complex number field C, and
D = Diff C[t, t−1] the associative algebra of all differential operators over C[t, t−1], its C-basis
being {tmD̃n |m ∈ Z, n ∈ Z+} with multiplication:

(taD̃b) · (tcD̃d) =
b∑

i=0

(
b

i

)
cita+cD̃b+d−i,

where Z+ is the set of all non-negative integers and D̃ = t∂, ∂ = d
dt .
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Let q be a complex number not 0 or 1, and define q-differential operator ∂q by

∂q(P ) =
P (qt) − P (t)

qt − t
, ∀P ∈ C[t, t−1].

Then ∂q(PQ) = ∂q(P )Q + τq(P )∂q(Q), ∀P,Q ∈ C[t, t−1], where τq is the automorphism of
C[t, t−1] satisfying τq(t) = qt, and ∂q is also called a τq-derivation. Clearly, {ti∂q | i ∈ Z} is a
C-basis of the vector space of all τq-derivations of C[t, t−1].

Let Dq be the associative algebra generated by t, t−1 and ∂q, so Dq is the q-differential
operators algebra of C[t, t−1].

In recent years, there have been many researches on the algebra of differential operators
and q-differential operators. Concerning their derivation algebras, automorphisms, 2-cocycles
and some representations, researches were undertaken by Frenkel et al. in [1](1995), Kac and
Radul in [2](1993), Kassel in [3](1992), Li in [4](1989), Li and Wilson in [5] (1998), Su in [6]
(1990), Zhao in [7] and [8](1993,1995), Hu in [9] (1999), Liu and Hu in [10](2004). For instance,
in [7], the derivation algebras of D and of its Lie algebra D− were determined. In [4], all non-
trivial 2-cocycles on D− were determined. In [10], the derivation algebras of Dq and of its Lie
algebra D−

q and all non-trivial 2-cocycles on D−
q were determined.

Let r, s ∈ C with r, s 6= 0, 1 and r2 6= s2. Define (r, s)-differential operator by

∂r,s(P ) =
P (rt) − P (st)

rt − st
, ∀P ∈ C[t, t−1].

then
∂r,s(PQ) = ∂r,s(P )ξ(Q) + ω(P )∂r,s(Q), ∀P,Q ∈ C[t, t−1],

where ω, ξ are two automorphisms of C[t, t−1] satisfying ω(t) = rt, ξ(t) = st, then ∂r,s is also
called (ω, ξ)-derivation. It can be easily verified that

∂r,s · t − rt · ∂r,s = ξ, ∂r,s · t − st · ∂r,s = ω.

By definition, the (r, s)-differential operators algebra Dr,s = Diffr,sC[t, t−1] is an associa-
tive algebra generated by t, t−1 and ∂r,s. With easy calculation, we can obtain

t∂r,s · ξ = ξ · t∂r,s.

Let D = ξ + (r − s)t∂r,s. Then D ∈ Dr,s and we can get the following lemma.
Lemma 0.1 In Dr,s, Dξ = ξD, ξt = stξ, Dt = rtD .
Lemma 0.2 { tmDnξq |m ∈ Z, n, q ∈ Z+} is a C-basis of Dr,s, where r, s satisfy rxsy 6=

1 (x, y ∈ Z, (x, y) 6= (0, 0)).
Proof For Dr,s is generated by t, t−1 and ∂r,s, and for ∂r,s · t − rt · ∂r,s = ξ, ξt = stξ,

t−1∂r,s − r∂r,st
−1 = s−1t−2ξ, ∂r,sξ = sξ∂r,s, it is very clear that { tm∂n

r,sξ
q |m ∈ Z, n, q ∈ Z+}

is a C-basis of Dr,s.
Because m ∈ Z, we can see that { tm(t∂r,s)nξq |m ∈ Z, n, q ∈ Z+} is also a C-basis of Dr,s.

For D = ξ + (r − s)t∂r,s and Dξ = ξD, Dt = rtD, then t∂r,s = (r − s)−1(D − ξ). As a result,
{ tm(D)nξq |m ∈ Z, n, q ∈ Z+} is a C-basis of Dr,s.

The main purpose of this paper is to determine all derivations and 2-cocycles of the
algebras of (r, s)-differential operators.
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The paper is organized as follows. In Section 1, we determine the derivation algebra of
associative algebra Dr,s. In Section 2, the derivation algebra of Lie algebra D−

r,s is described,
which is different from that of associative algebra of Dr,s. In Section 3, we calculate H2(D−

r,s, C)
under the assumption that rxsy 6= 1 (x, y ∈ Z, (x, y) 6= (0, 0) ).

Throughout this paper we always suppose that r, s satisfy rxsy 6= 1 (x, y ∈ Z, (x, y) 6=
(0, 0)).

1 Derivations of the algebra Dr,s

At first, we prove some properties of Dr,s under the assumption that rxsy 6= 1( x, y ∈
Z, (x, y) 6= (0, 0) ). For any nonempty set B ⊆ Dr,s, we define the centralizer of B in Dr,s as
ZDr,s(B).

Lemma 1.1 ZDr,s(t
p) = C[t, t−1](p 6= 0), ZDr,s(D) = C[D, ξ] = ZDr,s(ξ).

Proof It is clear that C[t, t−1] ⊆ ZDr,s(t
p).

For p 6= 0, let d =
∑

m∈Z
n,q∈Z+

d(m,n, q)tmDnξq ∈ ZDr,s(t
p), then

 ∑
m∈Z

n,q∈Z+

d(m,n, q)tmDnξq, tp

 =
∑
m∈Z

n,q∈Z+

((rnsq)p − 1)d(m,n, q)tm+pDnξq = 0,

which implies that d(m,n, q) = 0 for (n, q) 6= (0, 0), and then d =
∑

m∈Z
d(m, 0, 0)tm ∈ C[t, t−1].

Similarly, we have ZDr,s(D) = C[D, ξ] = ZDr,s(ξ).
Lemma 1.2 Dr,s has outer derivations σi(i = 1, 2, 3), satisfying

σ1(t) = t, σ1(D) = σ1(ξ) = 0, σ2(D) = D, σ2(t) = σ2(ξ) = 0, σ3(ξ) = ξ, σ3(D) = σ3(t) = 0.

Proof Define linear maps σ1(tmDnξq) = mtmDnξq, σ2(tmDnξq) = ntmDnξq,
σ3(tmDnξq) = qtmDnξq. Obviously σi ∈ Der (Dr,s)(i = 1, 2, 3).

If σ1 is an inner derivation, there exists y =
∑

m∈Z
n,q∈Z+

c(m,n, q)tmDnξq ∈ Dr,s, such that

σ1 = ad y. Then ad y(t) = (rnsq − 1)
∑

m∈Z
n,q∈Z+

c(m,n, q)tm+1Dnξq = t ∈ Dr,s, but it is impossible.

Similarly, σ2, σ3 are not inner derivations.
Lemma 1.3 For α ∈ Der (Dr,s), there exists x ∈ Dr,s such that α(t)−adx(t) ∈ C[t, t−1].
Proof For a given α ∈ Der (Dr,s), let α(t) =

∑
m∈Z

n,q∈Z+

c(m,n, q)tmDnξq with c(m,n, q) ∈ C.

Take x =
∑

n,q∈Z+
n+q 6=0,m∈Z

(rnsq − 1)−1c(m,n, q)tm−1Dnξq, then we have

α(t) − adx(t) =
∑
m∈Z

c(m, 0, 0)tm ∈ C[t, t−1].

Theorem 1 The derivation algebra of Dr,s is ad (Dr,s)
⊕ 3∑

i=1

Cσi.

Proof (i) For a given α0 ∈ Der (Dr,s), by Lemma 1.3, there exists an x ∈ Dr,s, such that
α0(t) − adx(t) ∈ C[t, t−1]. Denote α = α0 − adx, and we can assume that α(t) =

∑
m∈Z

amtm.

Write α(D) =
∑

m∈Z
n,q∈Z+

c(m,n, q)tmDnξq, α(ξ) =
∑

m∈Z
n,q∈Z+

e(m,n, q)tmDnξq, where

c(m,n, q), e(m,n, q) ∈ C. Acting α on both sides of Dt = rtD, we have

α(D)t + Dα(t) = rα(t)D + rtα(D). (1.1)
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Thus we get ∑
m∈Z

n,q∈Z+

(rnsq − r)c(m,n, q)tm+1Dnξq =
∑
m∈Z

(r − rm)amtmD, (1.2)

which implies that c(m,n, q) = 0 for n 6= 1 or q 6= 0, and rnsq − r = 0 for n = 1 and q = 0.
That is to say,

∑
m∈Z

(r − rm)amtmD = 0. Hence am = 0 for m 6= 1.

Similarly, acting α on both sides of ξt = stξ, we have e(m,n, q) = 0 for n 6= 0 or q 6= 1.
Thus, we obtain that

α(t) = a1t, α(D) =
∑
m∈Z

c(m)tmD, α(ξ) =
∑
m∈Z

e(m)tmξ.

(ii) Furthermore, using Dξ = ξD, we can get α(D)ξ + Dα(ξ) = α(ξ)D + ξα(D), that is∑
m∈Z

(c(m) + rme(m))tmDξ =
∑
m∈Z

(smc(m) + e(m))tmDξ,

then e(m) = 1 − sm

1 − rm c(m) for m 6= 0. Hence we have

α(D) =
∑

m∈Z,m 6=0

c(m)tmD + cD, α(ξ) =
∑

m∈Z,m 6=0

1 − sm

1 − rm
c(m)tmξ + eξ.

(iii) We can easily get ad tm(D) = (1 − rm)tmD and ad tm(ξ) = (1 − sm)tmξ for m 6= 0.

Take y =
∑

m∈Z,m 6=0

c(m)
1 − rm tm, and denote γ = α − ad y, then we have γ(t) = a1t, γ(D) = cD

and γ(ξ) = eξ. Since γ is a derivation, γ = a1σ1 + cσ2 + eσ3.
This means α0 = ad (x + y) + a1σ1 + cσ2 + eσ3. The proof is complete.

2 Derivations of the Lie algebra D−
r,s

Lie algebra D−
r,s of the associative algebra Dr,s is called the (r, s)-differential operators Lie

algebra. Clearly
Der (Dr,s) ⊆ Der (D−

r,s), ad (Dr,s) = ad (D−
r,s).

In this section, we will determine the derivation algebra of D−
r,s.

Lemma 2.1 The Lie algebra D−
r,s is generated by {tm, D, ξ | m ∈ Z}.

Proof Let A denote the Lie subalgebra of D−
r,s generated by {tm, D, ξ | m ∈ Z}. By

Lemma 1.2, we only need to prove that tmDnξq ∈ A(m ∈ Z, n, q ∈ Z+).
Clearly tm ∈ A(m ∈ Z). Suppose we have proved tmDnξq ∈ A(m 6= 0), then

[tmDnξq, D] = (1 − rm)tmDn+1ξq ∈ A and [tmDnξq, ξ] = (1 − sm)tmDnξq+1 ∈ A, then
we have tmDnξq ∈ A(m 6= 0).

Furthermore, for [tDnξq, t−1] = (1 − rnsq)Dnξq (n + q 6= 0), Dnξq ∈ A.
Lemma 2.2 Lie algebra D−

r,s has outer derivations ζi(i ∈ Z \ {0}) satisfying ζi(tj) =
δi,j , ζi(D) = ζi(ξ) = 0.

Proof Define linear maps ζi(i ∈ Z \ {0}) by D−
r,s as: ζi(tmDnξq) = δi,mδn+q,0.

ζi([tmDnξq, tm1Dn1ξq1 ]) = (rnm1sqm1 − rn1msq1m)δi,m+m1δn+n1+q+q1,0

= [ζi(tmDnξq), tm1Dn1ξq1 ] + [tmDnξq, ζi(tm1Dn1ξq1)]

= 0.

Thus ζi ∈ Der (D−
r,s).
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If ζi is not an outer derivation, then there exists yi ∈ D−
r,s such that ad yi = ζi. Thus

ad yi(D) = 0 and ad yi(tm) = 0(i 6= m). By lemma 1.1, we can conclude that yi ∈ C[t, t−1] ∩
C[D, ξ] = C and ad yi(ti) = 0, contradicting with ζi(ti) = 1. As a result, ζi(i ∈ Z \ {0}) are
outer derivations of Dr,s.

Lemma 2.3 For α ∈ Der (D−
r,s), there exists x ∈ D−

r,s such that α(t)−adx(t) ∈ C[t, t−1].
Proof The proof is similar to that of Lemma 1.3.

Theorem 2 Derivation algebra of D−
r,s is ad (Dr,s) ⊕

3∑
i=1

Cσi ⊕
∑

j∈Z\{0}
ζj .

Proof (i) Given any α0 ∈ Der (D−
r,s), owing to lemma 2.3, there exists x ∈ D−

r,s, such that
α0(t)−adx(t) ∈ C[t, t−1]. Set α = α0−adx. Since [t, tm] = 0, we can obtain α(tm) ∈ C[t, t−1],
thus α(t) =

∑
m∈Z

amtm, α(t−1) =
∑

m∈Z
bmtm. Write

α(D) =
∑
m∈Z

n,q∈Z+

c(m,n, q)tmDnξq, α(ξ) =
∑
m∈Z

n,q∈Z+

e(m,n, q)tmDnξq.

Acting α on [t,D] = (1 − r)tD and [t−1, tD] = (1 − r−1)D, respectively we have

α( [t,D] ) = [ α(t), D ] + [ t, α(0) ] = (1 − r)α(tD), (2.1)

α( [t−1, tD] ) = [ α(t−1), tD ] + [ t−1, α(tD) ] = (1 − r−1)α(D). (2.2)

It follows from (2.1) and (2.2) that

[α(t−1), tD ] +
[

t−1,
1

1 − r
α( [t,D] )

]
=

(
1 − 1

r

)
α(D). (2.3)

In (2.3),
[α(t−1), tD ] =

∑
m∈Z

bm[ tm, tD ] =
∑
m∈Z

bm(1 − rm)t(m+1)D,

[ t−1,
1

1 − r
α( [t,D] ) ] = [ t−1,

1
1 − r

( [ α(t), D ] + [ t, α(D) ] ) ]

=
1

1 − r
( [ t−1, [α(t), D ] ] + [ t−1, [ t, α(D) ] ] ),

Using equations above and (2.3), we obtain∑
m∈Z

n,q∈Z+

1
r(1 − r)

[r(r
n
2 s

q
2 − r

−n
2 s

−q
2 )2 − (1 − r)2]c(m,n, q)tmDnξq

=
∑
m∈Z

[
rm+1 − 1

r
am+1 + (1 − rm−1bm−1)]tmD. (2.4)

In (2.4), we have [r(r
n
2 s

q
2 − r

−n
2 s

−q
2 )2 − (1 − r)2]c(m,n, q) = 0, for n 6= 1 or q 6= 0.

Assume n, q ∈ Z+ satisfying [r(r
n
2 s

q
2 − r

−n
2 s

−q
2 )2 − (1 − r)2] = 0, then we have rnsq +

r−ns−q = r + r−1. It is easy to obtain that n = 1 and q = 0. As a result, c(m,n, q) = 0 for

n 6= 1 or q 6= 0, that is,
∑

m∈Z
[r

m+1 − 1
r am+1+(1−rm−1bm−1)]tmD = 0. Denote (m)r = 1 − rm

1 − r ,

and we finally get

α(D) =
∑
m∈Z

c(m)tmD, (m + 1)ram+1 = r(m − 1)rbm−1.
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Similar treatment to α(ξ), we obtain

α(ξ) =
∑
m∈Z

e(m)tmξ, (m + 1)sam+1 = s(m − 1)sbm−1, (m)s =
1 − sm

1 − s
.

(ii) Similar to the proof of part (ii) of Theorem 1, let α act on [D, ξ] = 0, and get
e(m) = 1 − sm

1 − rm c(m) for m 6= 0. Then we have

α(D) =
∑

m∈Z,m 6=0

c(m)tmD + cD, α(ξ) =
∑

m∈Z,m 6=0

1 − sm

1 − rm
c(m)tmξ + eξ.

(iii) Choose y = c(m)
1 − rm tm, then (α − ad y)(tm) = α(tm), (α − ad y)(D) = cD, (α −

ad y)(ξ) = eξ. Denote γ = α − ad y − a1σ1 − cσ2 − eσ3, we have γ(D) = γ(ξ) = 0, γ(t) = α(t)
and γ(t−1) = α(t−1).

Acting γ on [t,D] = (1 − r)tD, [t−1, D] = (1 − r−1)t−1D, [t,D2] = (1 − r2)tD2, and
[tD, t−1D] = (r−1 − r)D2, respectively we have

γ(tD) =
∑
m∈Z

(m)ramtmD, γ(t−1D) =
∑
m∈Z

r(m)rbmtmD, (2.5)

(r−1 − r)γ(D2) = [γ(tD), t−1D] + [tD, γ(t−1D)], (2.6)

(1 + r)[γ(tD), D] = [γ(t), D2] + [t, γ(D)2]. (2.7)

By (2.5) and (2.6), we have

γ(D2) =
r

1 − r2

(∑
m∈Z

(m)r

(
1
r
− rm

)
amtm−1D2 +

∑
m∈Z

r(m)r(r − rm)bmtm+1D2

)
,

In (2.6), we can calculate that

[γ(t), D2] =
∑
m∈Z

(1 − r2m)amtmD2,

[t, γ(D2)] =
∑
m∈Z

(m)r(1 − rm+1)amtmD2 +
∑
m∈Z

r(m − 2)r(r2 − rm−1)bm−2t
mD2

= (m)ram

∑
m∈Z

(1 − rm+1 + r2 − rm−1)(m)ramtmD2,

(1 + r)[γ(tD), D] = (1 + r)
∑
m∈Z

(1 − rm)(m)ramtmD2.

Using all the equations above and (2.7), we obtain that

(m)ram(1 + r)(1 − rm) = (m)ram[(1 + rm)(1 − r) + 1 + r2 − rm+1 − rm−1].

Simplifying the equation above, we have

(m)r(1 − rm−1)(r − 1)2am = 0,

which implies that am = 0(m 6= 0, 1), bm = 0(m 6= 0,−1) and a1 = b−1. Thus

γ(t) = a1t + a0, γ(t−1) = −a1t + b0.
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(iv) Denote β = γ − a1σ1 − a0ζ1 − b0ζ−1, then β(t) = β(t−1) = β(D) = β(ξ) = 0, and
β(tm) ∈ C[t, t−1]. For [t,D] = (1 − r)tD, [t−1, D] = (1 − r−1)t−1D, β(tD) = β(t−1D) = 0.
Then β([t2, D]) = (1 − r2)β(t2D) = (1 − r2)(1 − r)β([t, tD]) = 0. By lemma 2.1, we have
β(t2) ∈ C[t, t−1] ∩ C[D, ξ] = C. Similarly, β(t−2) ∈ C.

Suppose that we have proved β(tm) ∈ C and β(tmD) = 0. Owing to [t, tmD] =
(1 − r)tm+1D, β(tm+1D) = 0,and then we have β(tm+1) ∈ C since [β(tm+1), D] = (1 −
rm+1)β(tm+1D) = 0. Similarly, β(tm−1) ∈ C.

Let hm = β(tm) and η = β −
∑

i6=0,±1
i∈Z

hiζi, then η(tm) = η(D) = η(ξ) = 0. By lemma 2.1,

we have η = 0 . Finally,

α0 = ad (x + y) + a1σ1 + cσ2 + eσ3 + a0ζ1 + b0ζ−1 +
∑

i 6=0,1,−1

hiζi.

The proof is complete.

3 H2(D−
r,s, C)

Let L be a Lie algebra over C. Recall that a 2-cocycle on L is a bilinear C-valued form ψ

satisfying the following conditions:

(1) ψ(a, b) = −ψ(b, a),

(2) ψ([a, b], c) + ψ([b, c], a) + ψ([c, a], b) = 0 for all a, b, c ∈ L.

If f is a linear function on L, we define

αf (x, y) = f([x, y]),

for x, y ∈ L, then αf is a 2-cocycle. This 2-cocycle is called a trivial 2-cocycle. A 2-cocycle ϕ

is equivalent to a 2-cocycle ψ, if ϕ − ψ is trivial.
Given a 2-cocycle α on L, we can construct a central extension of L. If the Lie bracket on

L is [ , ], we define a new Lie bracket [ , ]0 on L ⊕ Cc as

[x + λc, y + µc]0 = [x, y] + α(x, y)c, ∀x, y ∈ L, λ, µ ∈ C.

It is well-known that L ⊕ Cc is a Lie algebra with this Lie bracket and every 1-dimentional
central extension of L can be obtained in this way. Denote this central extension of L by L(α).

Let γ be a trivial 2-cocycle induced by f ∈ L∗ and α a cocycle, then the mapping

x 7→ x + f(x)c, c 7→ c, ∀x ∈ L,

gives an isomorphism from L(α) to L(α + γ).
In [4] and [6], all non-trivial 2-cocycle on the algebras of differential operators were de-

termined. In [10], all non-trivial 2-cocycle of Dq also be determined. H2(D−
r,s, C) is different

from H2(D−, C), for the number of generators of Lie algebra D−
r,s is infinite. It is similar to

H2(D−
q , C), but the calculation is much more complicated. In this section, we will try to deter-

mine all the 2-cocycles on D−
r,s under the assumption that rxsy 6= 1(x, y ∈ Z, (x, y) 6= (0, 0)).

Let ψ be a 2-cocycle on D−
r,s. We define a linear function fψ on D−

r,s as

fψ(Dnξq) =
1

rnsq − 1
ψ(t−1Dnξq, t), n + q > 0,
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fψ(tmDnξq) =
{

(1 − rm)−1ψ(tmDn−1ξq, D), n > 0
(1 − sm)−1ψ(tmDnξq−1, ξ), q > 0

(m 6= 0).

It is easy to check that, for n > 0 and q > 0, we have

(1 − rm)−1ψ(tmDn−1ξq, D) = (1 − sm)−1ψ(tmDnξq−1, ξ),

that is, fψ is well-defined.
Denote θ = ψ − αfψ

, then we have

θ(tmDn−1ξq, D) = 0 (n > 0),
θ(tmDnξq−1, ξ) = 0 (q > 0),

θ(t−1Dnξq, t) = 0 (n + q > 0),
θ(tDnξq, t−1) = (1 − r−ns−q)/(1 − rnsq) θ(t−1Dnξq, t)

= 0 (n + q > 0).

(3.1)

Lemma 3.1 θ(tmDnξq, Dn1ξq1) = 0, for m 6= 0 and n + q > 0.
Proof For n + q > 0, we can assume that n > 0. Then we have:

θ(tmDnξq, Dn1ξq1) =
1

1 − rm
θ([tmDn−1ξq, D], Dn1ξq1)

=
−1

1 − rm
θ([Dn1ξq1 , tmDn−1ξq], D])

=
1 − rn1msq1m

1 − rm
θ(tmDn+n1−1ξq+q1 , D) = 0.

Lemma 3.2 θ(1, tmDnξq) = 0, for n + q > 0.
Proof θ(1, tmDnξq) = 1

1−r−ns−q θ(1, [t−1, tm+1Dnξq]) = 0.

Lemma 3.3 θ(tmDnξq, tm1Dn1ξq1) = 0, for m + m1 6= 0, n + q > 0 or n1 + q1 > 0.
Proof (i) For n + q > 1(n > 0,m 6= 0),

θ(tmDnξq, tm1Dn1ξq1) =
1

1 − rm
θ([tmDn−1ξq, D], tm1Dn1ξq1)

=
−1

1 − rm
(θ([D, tm1Dn1ξq1 ], tmDn−1ξq)

+ θ([tm1Dn1ξq1 , tmDn−1ξq], D))

= −1 − rm1

1 − rm
θ(tmDn−1ξq, tm1Dn1+1ξq1)

= (−1)n+q (1 − rm1)n

(1 − rm)n

(1 − sm1)q

(1 − sm)q
θ(tm, tm1Dn1+nξq1),

θ(tmDnξq, tm1Dn1ξq1) =
1

1 − rnmsqm
θ([tm, Dnξq], tm1Dn1ξq1)

=
1

1 − rnmsqm
(θ([Dnξq, tm1Dn1ξq1 ], tm)

+θ([tm1Dn1ξq1 , tm], Dnξq))

= −1 − rnm1sqm1

1 − rnmsqm
θ(tm, tm1Dn1+nξq1+q).

Then we have(
(−1)n+q (1 − rm1)n

(1 − rm)n

(1 − sm1)q

(1 − sm)q
+

1 − rnm1sqm1

1 − rnmsqm

)
θ(tm, tm1Dn1+nξq1+q) = 0.
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It is easy to obtain that (−1)n+q (1 − rm1)n

(1 − rm)n
(1 − sm1)q

(1 − sm)q + 1 − rnm1sqm1

1 − rnmsqm = 0 if and only if n+ q

is odd, m = m1 or n + q = 1 under the assumption that rxsy 6= 1(x, y ∈ Z, (x, y) 6= (0, 0)).
Consequently, θ(tmDnξq, tm1Dn1ξq1) = 0 for n + q > 1,m 6= 0,m 6= m1.

For m = m1, n + q > 1, choose some non-zero integer i with i 6= m, 2m, such that

θ(tmDnξq, tmDn1ξq1) =
1

1 − rnisqi
θ([ti, tm−iDnξq], tmDn1ξq1)

=
−1

1 − rnisqi
(θ([tm−iDnξq, tmDn1ξq1 ], ti) + θ([tmDn1ξq1 , ti], tm−iDnξq))

=
−1

1 − rnisqi
((rnm1sqm1 − rn(m−i)sq(m−i))θ(t2m−iDn+n1ξq+q1 , ti)

+(rn1isq1i − 1)θ(tm+iDn1ξq1 , tm−iDnξq)).

By lemma 3.1, we have θ(Dnξq, tm1Dn1ξq1) = 0 for n1 + q1 6= 0. If n1 + q1 = 0, choose
no-zero integer i 6= m1, then

θ(Dnξq, tm1) =
1

1 − rnisqi
θ([ti, t−iDnξq], tm1)

=
1

1 − rnisqi
θ([tm1 , t−iDnξq], ti) = 0.

As a result, we obtain θ(tmDnξq, tm1Dn1ξq1) = 0 for n + q > 1,m + m1 6= 0.
(ii) For n1 + q1 > 1 and m + m1 6= 0, the situation is similar to (i).
(iii) For n + q = n1 + q1 = 1,m + m1 6= 0, we can assume n = 1, q1 = 1, then

θ(tmD, tm1ξ) =
1

1 − rm
θ([tm, D], tm1ξ)

=
−1

1 − rm
(θ([D, tm1ξ], tm) + θ([tm1ξ, tm], D))

=
−1

1 − rm
((rm1 − 1)θ(tm1Dξ, tm) + (rm − 1)θ(tm+m1ξ,D))

= 0.

(iv) For n + q = 1, n1 + q1 = 0,

θ(tmDnξq, tm1) =
1

1 − (rnsq)m+m1
θ([t−m1Dnξq, tm+m1 ], tm1)

=
−1

1 − (rnsq)m+m1
θ([t−m1Dnξq, tm1 ], tm+m1))

=
1 − (rnsq)m+m1

1 − (rnsq)m+m1
θ(Dnξq, tm+m1) = 0,

Finally, if n + q > 0 or n1 + q1 > 0, then θ(tmDnξq, tm1Dn1ξq1) = 0, for m + m1 6= 0.
Lemma 3.4 θ(Dnξq, Dn1ξq1) = 0.
Proof For n + q = 0 or n1 + q1 = 0, we obtain θ(Dnξq, Dn1ξq1) = 0 by lemma 3.2.
For n + q > 0 and n1 + q1, we have

θ(t−1Dnξq, tDn1ξq1) =
1

1 − rn1sq1
θ(t−1Dnξq, [t,Dn1ξq1 ]) = − 1 − rnsq

1 − rn1sq1
θ(Dnξq, Dn1ξq1),

θ(t−1Dnξq, tDn1ξq1) =
1

1 − r−ns−q
θ([t−1, Dnξq], tDn1ξq1) = −1 − r−n1s−q1

1 − r−ns−q
θ(Dnξq, Dn1ξq1),
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then
(

1 − rnsq

1 − rn1sq1 − 1 − r−n1s−q1

1 − r−ns−q

)
θ(Dnξq, Dn1ξq1) = 0.

It is easy to conclude that 1 − rnsq

1 − rn1sq1 = 1 − r−n1s−q1

1 − r−ns−q if and only if n = n1 and q = q1.

As a result, for n 6= n1 or q 6= q1, we have θ(Dnξq, Dn1ξq1) = θ(t−1Dnξq, tDn1ξq1) = 0.
Lemma 3.5 For m 6= 0, n + q 6= 0 or n1 + q1 6= 0 , θ(t−mDnξq, tmDn1ξq1) = 0.
Proof For n1 + q1 = 0,

θ(t−mDnξq, tm) =
1

(rnsq)−1 − 1
θ([t−m+1Dnξq, t−1], tm) =

1 − (rnsq)m

1 − (rnsq)−1
θ(tDnξq, t−1) = 0.

For n + q 6= 0 or n1 + q1 6= 0,

θ(t−mDnξq, tmDn1ξq1) =
1

(rnsq)−1 − 1
θ([t−m+1Dnξq, t−1], tmDn1ξq1)

= (−1)m

(
1 − r−n1s−q1

1 − r−ns−q
)mθ(Dnξq, Dn1ξq1)

)
= 0.

Theorem 3 dimH2(D−
r,s, C) = ∞. Every 2-cocycle on D−

r,s is equivalent to one of the
following 2-cocycle,

θ(tmDnξq, tm1Dn1ξq1) =
{

am,m1 , if n = n1 = q = q1 = 0 and m 6= m1,

0, otherwise.

where am,m1 are arbitrary constants with am,m1 = −am1,m.
Proof We have θ(tmDnξq, tm1Dn1ξq1) = 0, for ∀m,m1 ∈ Z, n, n1, q, q1 ∈ Z+ (n+q, n1+

q1) 6= (0, 0) from the lemmas above. By the definition of 2-cocycle, we conclude that the values
of θ(tm, tm1) are independent.

So the proof of theorem is complete.
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