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Derivations and 2-cocycles of the algebra
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Abstract: This paper defined the (r, s)-differential operator of the algebra of Laurent poly-
nomials over the complex numbers field. Let D, s be the associative algebra generated by
{t*1} and the (r, s)-differential operator, which is called (r, s)-differential operators algebra.
In this paper, the derivation algebra of D, s and its Lie algebra D,. , were described and all
the non-trivial 2-cocycles were determined.
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0 Introduction

Let C[t,t™!] be the algebra of Laurent polynomials over the complex number field C, and
D = Diff C[t,t~!] the associative algebra of all differential operators over C[t, 1], its C-basis
being {t™ D" |m € Z,n € Z*} with multiplication:

b
~ . b ) - )
(tan) . (tCDd) _ § : <z) Czta+cDb+dfz’
1=0

where Z1 is the set of all non-negative integers and D = td,d = %
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Let g be a complex number not 0 or 1, and define ¢-differential operator d, by

P(gt) — P(t)

aq(P): qt—t ’

VP e C[t,t™1].

Then 9,(PQ) = 9,(P)Q + 74(P)9,(Q), YP,Q € C[t,t~'], where 7, is the automorphism of
C[t,t71] satisfying 7,(t) = gt, and 9, is also called a 7,-derivation. Clearly, {t'9, | i € Z} is a
C-basis of the vector space of all 7,-derivations of C[t,¢!].

Let Dy be the associative algebra generated by t,t~1 and Jq, 50 Dy is the g-differential
operators algebra of C[t, ¢~ 1].

In recent years, there have been many researches on the algebra of differential operators
and g¢-differential operators. Concerning their derivation algebras, automorphisms, 2-cocycles
and some representations, researches were undertaken by Frenkel et al. in [1](1995), Kac and
Radul in [2](1993), Kassel in [3](1992), Li in [4](1989), Li and Wilson in [5] (1998), Su in [6]
(1990), Zhao in [7] and [8](1993,1995), Hu in [9] (1999), Liu and Hu in [10](2004). For instance,
in [7], the derivation algebras of D and of its Lie algebra D~ were determined. In [4], all non-
trivial 2-cocycles on D~ were determined. In [10], the derivation algebras of D, and of its Lie
algebra D and all non-trivial 2-cocycles on D, were determined.

Let 7,5 € C with r, s # 0,1 and r? # s2. Define (r, s)-differential operator by
P(rt) — P(st)

rt — st

Or.s(P) = . YPeC[tt .

then
0, s(PQ) = 0, 5(P)E(Q) + w(P)d,5(Q), VP,Q € C[t,t],

where w, ¢ are two automorphisms of C[t, t71] satisfying w(t) = rt,£(t) = st, then 9, is also

called (w, &)-derivation. It can be easily verified that
Ors t—1t-0rs=¢& Ors-t—st-0ps=uw.

By definition, the (r, s)-differential operators algebra D, ; = Diff, ;C[t,t7!] is an associa-

tive algebra generated by ¢,¢t~! and 9, ;. With easy calculation, we can obtain
t0r s € =& - tOrs.

Let D =&+ (r — s)tdys. Then D € D, s and we can get the following lemma.

Lemma 0.1 In D, , DE =D, &t = stg, Dt =rtD .

Lemma 0.2 {t™D"¢?|m € Z,n,q € Z*} is a C-basis of D, 5, where r, s satisfy r”s¥ #
1(z,y € Z, (w,y) # (0,0)).

Proof For D, ; is generated by t,t~1 and Ors, and for Or s -t —rt- 0,5 = &, &6 = stE,
t710p s — 1Oyt = 5T HTE, Op & = 5E0,.s, it is very clear that {t™0] £ m € Z,n,q € LT}
is a C-basis of D, ;.

Because m € Z, we can see that {t™(t0, )" |m € Z,n,q € Z*} is also a C-basis of D, ;.
For D = £+ (r — 8)td,s and DE = €D, Dt = rtD, then td, s = (r — s)~ (D — £). As a result,
{t™(D)"&9|m € Z,n,q € Z"} is a C-basis of D, ;.

The main purpose of this paper is to determine all derivations and 2-cocycles of the
algebras of (r, s)-differential operators.
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The paper is organized as follows. In Section 1, we determine the derivation algebra of
associative algebra D, 5. In Section 2, the derivation algebra of Lie algebra D, ; is described,
which is different from that of associative algebra of D, 5. In Section 3, we calculate H Q(D; 5 C)
under the assumption that r*s¥ # 1 (z,y € Z, (x,y) # (0,0) ).

Throughout this paper we always suppose that r,s satisfy r*s¥ # 1(z,y € Z, (z,y) #

(0,0)).
1  Derivations of the algebra D,

At first, we prove some properties of D, s under the assumption that r®s¥ # 1(z,y €
Z, (z,y)# (0,0)). For any nonempty set B C D, ,, we define the centralizer of B in D, ; as
Zp, . (B).

Lemma 1.1 Zp,  (t*) =C[t,t](p #0), Zp, (D) =C[D,&] = Zp, _(§).

Proof It is clear that C[t,t™'] C Zp, ,(t7).

Forp#0,let d= 3> d(m,n,q)t"D"? € Zp, (tP), then

meZ
n.q€Z+

S dlmn, gDt | = 3T (0P — d(m,n, )P DE = 0,
mEZL mEZL
'n.,qEZ* n,qEZ+
which implies that d(m,n,q) = 0 for (n,q) # (0,0), and then d = > d(m,0,0)t™ € C[t,t71].
meZ
Similarly, we have Zp,_ (D) = C[D,&] = Zp, ,(£).
Lemma 1.2 D, , has outer derivations o;(i = 1,2, 3), satisfying
o1(t) =t,01(D) =01(§) =0,02(D) =D, o3(t) =02(§) =0, 03(&) =¢&,03(D) =03(t) =0.

Proof Define linear maps oq(t™D"E9) = mt™D"E?, o9(t"™D"E7) = nt™D"EY,
o3(t™D"ET) = gt™D™E4. Obviously o; € Der (D, 5)(i = 1,2, 3).

If o1 is an inner derivation, there exists y = > c¢(m,n,q)t"D"¢9 € D, ,, such that
nragzt
o1 =ady. Then ady(t) = (r"s?—1) > c(m,n,q)t™ T D"E4 =t € D, 4, but it is impossible.
meEZL
n,qezt

Similarly, o2, o3 are not inner derivations.
Lemma 1.3 For o € Der (D, ), there exists z € D, s such that «(t) —ad z(t) € C[t,t71].
Proof Foragiven o € Der (D,5),let a(t) = > c(m,n,q)t™D"E? with ¢(m,n,q) € C.

meEZL

n,qezt
Take z = Y.  (r"s?—1)"te(m,n,q)t™ 1D"E4, then we have
n,qEZ+
n+q#0,me%

a(t) —adz(t) = > c(m,0,0)t™ € C[t,t™"].

mEZ

3
Theorem 1 The derivation algebra of D, , is ad (D, ) P > Co;.
i=1

Proof (i) For a given o € Der (D, ), by Lemma 1.3, there exists an = € D, 5, such that
ao(t) —adz(t) € C[t,t!]. Denote o = ap — ad x, and we can assume that a(t) = > a,t™.

meZ
Write a(D) = > c(m,n, @)t D", a(é) = > e(m,n,q)t"™D"E9, where
mEZ mEeEZL
n,qezt n,qezt

e(m,n,q),e(m,n,q) € C. Acting a on both sides of Dt = rtD, we have
a(D)t+ Da(t) = ra(t)D + rta(D). (1.1)
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Thus we get
Z (r"s? —r)c(m,n, q)t™ T D¢l = Z (r—r"™an,t™D, (1.2)
mezL meZ
n,qezt

which implies that ¢(m,n,q) =0 for n # 1 or ¢ # 0, and "s? —r = 0 for n = 1 and ¢ = 0.

That is to say, Y. (r — r"™)a,t™D = 0. Hence a,, =0 for m # 1.
mEZ
Similarly, acting a on both sides of &t = st&, we have e(m,n,q) = 0 for n # 0 or ¢ # 1.

Thus, we obtain that

a(t) =a1t, «(D)= Z c(m)t™D, «(f) = Z e(m)t™E.

meZ mEZ

(ii) Furthermore, using D& = €D, we can get a(D)¢ + Da(§) = a(£)D + Ea(D), that is

> (elm) +1e(m))t"DE =Y (s"e(m) + e(m))t™ DE,

meZ meZ
then e(m) = % — iz c(m) for m # 0. Hence we have

a(D) = Z c(m)t™D +cD, «(§) = Z 1= i: c(m)t™E + e€.

MEZ,m#0 mEZmA0
(iii) We can easily get adt™(D) = (1 — r™)t"™D and adt™(§) = (1 — s™)t™¢& for m # 0.

Take y = > 1c(m)m t™, and denote v = o — ady, then we have v(t) = a1t, v(D) = ¢D
meZm#0 - T
and y(§) = e£. Since v is a derivation, v = a1 + cos + eo3.

This means ag = ad (z + y) + a101 + coa + eos. The proof is complete.

2  Derivations of the Lie algebra D,

Lie algebra D, ; of the associative algebra D, ; is called the (r, s)-differential operators Lie
algebra. Clearly
Der (D, s) € Der (D, ), ad (Dy.s) = ad (D, ).

In this section, we will determine the derivation algebra of D, .

Lemma 2.1 The Lie algebra D is generated by {t", D, ¢ | m € Z}.

Proof Let A denote the Lie subalgebra of D, generated by {t™,D,§ | m € Z}. By
Lemma 1.2, we only need to prove that t™ D" € A(m € Z,n,q € ZT).

Clearly t™ € A(m € Z). Suppose we have proved tmD"¢?7 € A(m # 0), then
[tmD"¢d D] = (1 — r™)tm D"t € A and [t D"¢,€] = (1 — s™)tmD"¢Itt € A, then
we have t"D"¢9 € A(m #0).

Furthermore, for [tD"¢9,¢t71] = (1 — r"s9)D"¢9 (n+ q # 0), D9 € A.

Lemma 2.2 Lie algebra D, has outer derivations (;(i € Z \ {0}) satisfying ¢;(t/) =
dij, Gi(D) = Gi(§) = 0.

Proof Define linear maps ¢;(i € Z \ {0}) by D, as: (;(t"D"E9) = §; mOn+q.,0-

T,

Gt DLt DM ET]) = (rT st ST 6 mtmy Onbng 41,0
= [GETD"EN) M DMET ] 4 [t D, G (T D™ ET)]
= 0.

Thus ¢; € Der (D, ;).
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If ¢; is not an outer derivation, then there exists y; € D, ¢ such that ady; = ¢;. Thus
ady;(D) = 0 and ady;(t™) = 0(i # m). By lemma 1.1, we can conclude that y; € C[t,t~1] N
C[D,¢] = C and ady;(t') = 0, contradicting with (;(t') = 1. As a result, ;(i € Z \ {0}) are
outer derivations of D;. .

Lemma 2.3 For a € Der (D, ), there exists & € D, such that o(t) —ad z(t) € C[t,t~].

Proof The proof is similar to that of Lemma 1.3.

3
Theorem 2 Derivation algebra of D is ad (D,.5) ® > Coy & >, (.
i=1 JEZ\{0}
Proof (i) Given any ag € Der (D} ), owing to lemma 2.3, there exists = € D, ,, such that

ag(t)—adx(t) € C[t,t71]. Set a = ap —ad . Since [t,t™] = 0, we can obtain a(t™) € C[t,t7!],
thus a(t) = 32 amt™, a(t™!) = 3 b,t™. Write

MEZL meZ
a(D) = Z c(m,n, )t D" (&) = Z e(m,n,q)t™ D",

Acting won [t, D] = (1 — 7)tD and [t~1,tD] = (1 — r~1) D, respectively we have

a([t,D]) =[at),D]+[t,a(0)] = (1 — r)a(tD), (2.1)
a([t7,tD]) = [a(t™),tD] + [t~ a(tD)] = (1 —r~Ha(D). (2.2)
It follows from (2.1) and (2.2) that
la(t1),tD] + [t‘l, liTa([t,D} )] - (1 - i) (D). (2.3)
In (2.3),
[a(t™),tD] =Y bp[t™ tD] =Y by (1 — ™)t D,
mEeEZ meZ
1 1
[t r—a(lt, D] = [t77, 7 ([a(®), D]+ [t,a(D)])]
= ([ o), DI+ [t [ a(D)]),

Using equations above and (2.3), we obtain

S L rEst o P E R (1 )Ple(m,n, gt DS

= rd=r)
n‘qEZ‘*'
rmtl 1 1
= Z [———amy1 + (1 =" b1t D. (2.4)
mez "

In (2.4), we have [r(r3s% —r= 52 )2 — (1 —r)?c(m,n,q) =0, for n # 1 or ¢ # 0.
Assume n,q € Z* satisfying [r(r3s? —r2 572°)% — (1 —r)?] = 0, then we have r"s9 +
r~"s79 =7 +r~L It is easy to obtain that n = 1 and ¢ = 0. As a result, ¢(m,n,q) = 0 for
3 m+1 _ — m _am
n # 1 or q # 0, that is, ngz[%am_;_ﬁr(lfr 1by—1)]t™D = 0. Denote (m), = %,

and we finally get

a(D) = Z c(m)t™D, (m+1)pamse1 = r(m —1)pbp—1.
meZ
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Similar treatment to a(§), we obtain

1—s™

1—5 "

O‘(f) = Z e(m)tmg, (m+ 1)sam+1 = S(m - 1)sbm—17 (m)s =
meZ

(ii) Similar to the proof of part (ii) of Theorem 1, let a act on [D,&] = 0, and get

e(m) = % — iz ¢(m) for m # 0. Then we have

a(D) = Z c(m)t™D+c¢D, «&) = Z 1 — i: c(m)t™E + e€.

MEZ,m#0 mELmA0

(iii) Choose y = 124, then (o — ady)(t") = a(t™), (@ — ady)(D) = cD, (a —
ady)(§) = e€. Denote vy = a — ady — a101 — coa — eos, we have y(D) = v(§) = 0, v(t) = a(t)
and y(t71) = a(t™1).

Acting v on [t,D] = (1 — r)tD,[t"},D] = (1 — r~Ht7'D,[t,D?] = (1 — r?)tD?, and
[tD,t7'D] = (r~! — r)D?, respectively we have

~(tD) = Z (m)ran,t™D, ~(t D)= Z r(m)pbmt™D, (2.5)
meZ meZ
(r~t = 7)y(D?) = y(tD),t "' D] + [tD,~(t ' D), (2.6)
(1+r)[(tD), D] = [y(t), D?] + [t,7(D)?]. (2.7)
By (2.5) and (2.6), we have
2 r 1 m—1 712 m m+1 2
v(D?) = T2 (Z(m)r (r —r’”) amt™  D* + Z r(m),(r — r™)b,, t"™ D ) ,
meEZ meZ

In (2.6), we can calculate that

[v(t), D?] = Z (1 —7*™)a,t™D?,

meZ
[t,v(D?)] = Z (m),(1 —r™Ha,, t™D? + Z r(m —2),.(r% — ™" b, _ot™D?
meZ meZ
= (Mm)ram Z (1 —rmtt 42 — =YY (m),a,, t™ D?,

mEZ

(L+r)(ED), D] = (L +7) Y (L= r"™)(m),amt™ D*.
mEeEZL

Using all the equations above and (2.7), we obtain that
(M)pam (1 +7)(1 = 7™) = (m)pam[(1 +r™) (1 —7) + 1472 —pmFTt _pm=1)
Simplifying the equation above, we have
(m),(1 —r™"H(r —1)2a,, =0,
which implies that a,, = 0(m # 0, 1), b,, = 0(m # 0, —1) and a; = b_;. Thus

() = art +ag, (') = —ayt + by.
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(iv) Denote 8 = v — a101 — agl1 — boC_1, then 3(t) = Bt~ ') = B(D) = (&) = 0, and
B(t™) € Clt,t71]. For [t,D] = (1 —r)tD,[t"*, D] = (1 —r~)t7'D, B(tD) = B(t D) = 0.
Then B([t?,D]) = (1 — r?)B(t*D) = (1 — r*)(1 — r)B([t,tD]) = 0. By lemma 2.1, we have
B(t?) € C[t,t~ Y] NC[D, &) = C. Similarly, 3(t=2) € C.

Suppose that we have proved (™) € C and S(t™D) = 0. Owing to [t,t™D] =
(1 — )™+t D, B(t™T1D) = 0,and then we have B3(t™*1) € C since [3(t™T1),D] = (1 —
rmtH 3™+ D) = 0. Similarly, 3(¢t™~1) € C.

Let hy, = B(t™) and n =5 — > hi(;, then n(t™) = n(D) = n(§) = 0. By lemma 2.1,

i#£0,+1

we have n = 0 . Finally,

ag =ad (z +y) + a101 + cop + eo3 + agly +bo1 + Y hili.
i#0,1,—1

The proof is complete.
9 _
3 HY(D;,.C)

Let L be a Lie algebra over C. Recall that a 2-cocycle on L is a bilinear C-valued form v
satisfying the following conditions:

(1) w(a’b) = _¢(b7a)a
(2) w([a7b]v C) + 1/)([1), 6]70') + 1[}([0, a]a b) =0 forall a,b,c€ L.

If f is a linear function on L, we define

af(x,y) = f([x,y]),

for z,y € L, then ay is a 2-cocycle. This 2-cocycle is called a trivial 2-cocycle. A 2-cocycle ¢
is equivalent to a 2-cocycle 1, if ¢ — 1) is trivial.

Given a 2-cocycle a on L, we can construct a central extension of L. If the Lie bracket on
L is [, ], we define a new Lie bracket [, o on L ® Cc as

[+ A,y + pclo = [2,y] + a(z,y)e,  Va,y € L, A\,peC.

It is well-known that L & Cc is a Lie algebra with this Lie bracket and every 1-dimentional
central extension of L can be obtained in this way. Denote this central extension of L by L(«).
Let v be a trivial 2-cocycle induced by f € L* and « a cocycle, then the mapping

z—xz+ f(x)e, crc, Yx €L,

gives an isomorphism from L(a) to L(a + ).

In [4] and [6], all non-trivial 2-cocycle on the algebras of differential operators were de-
termined. In [10], all non-trivial 2-cocycle of D, also be determined. H?*(D;,,C) is different
from H?(D~,C), for the number of generators of Lie algebra D, is infinite. It is similar to
H 2(Dq_, C), but the calculation is much more complicated. In this section, we will try to deter-
mine all the 2-cocycles on D, under the assumption that r*s¥ # 1(z,y € Z, (x,y) # (0,0)).

Let ¢ be a 2-cocycle on D, ;. We define a linear function f, on D, ; as

1
n¢q —1 Pyneq
fw(D & )—— gt 1 1’(/1(t D"¢ ,t), n+q>0,
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(1= ™) ~Lp(EmDn=1€9, D), >0
mmyneq\
fdﬂ(t D 5 )_ { (1—Sm)_1w(tmanq_17§), q>0 (m;éO)
It is easy to check that, for n > 0 and ¢ > 0, we have
(1 _ ’I“m)_l’(/J(tmDn_lgq, D) _ (1 _ Sm)—lw(tnangq—1,§)7
that is, fy is well-defined.
Denote 6 = ¢ — ay,, then we have
(tmD""1¢1 D) = 0 (n>0),
o(tmDrEtE) = 0 (¢>0),
g(t~1D"¢dt) = 0 (n+q>0), (3.1)
O(tD"gd =) = (1—r""s79)/(1 —1r"s?) O(t~1D"gd,t)
= 0 (n+¢>0).

Lemma 3.1 0(t™D"¢%, D™MEn) =0, for m # 0 and n+ g > 0.
Proof For n+ q > 0, we can assume that n > 0. Then we have:

O(t™ D ¢, DMER) = 1_1rm9([t’"D”’1§q,D],D’“E‘“)
- -1 ni¢eqr gm yn—1
= R 0(DmEm ¢ DmTie, D))

1 —rmmgnm

= ———— ("Dt D) = 0.

1—pm
Lemma 3.2 0(1,tmD"¢9) =0, for n+ ¢ > 0.
Proof 9(1,tmDn§q) = ﬁ 0(1, [t717tm+1Dn§q]) =0.

Lemma 3.3 O(t™D"¢2, ¢t D™EN) =0, form+my #0,n+¢>0o0rny +¢q >0.

Proof (i) For n+ ¢ > 1(n > 0,m # 0),

oDt M DMEn) = L g([fm D, D], i D)
_/,ﬂm
-1

= (O([D,t™ D™ gn], ¢ D" e

1—rm

+ 9([t'ml D gql , t7rLD”_1§q], D))
1—pm
= -5 =g prted, gm prmtien)
J— T-m
el (s
(I —rm)n (1—sm)a

1
1 — ynmgqm
1 n m n m
= W(H([D g, DMEN] ™)
+O([t" D" gt ], DET))
1 — pmigdm

- _ : T g(tm’tman1+n§q1+q)_
—rhmg

O D¢l D) O(t™, D ¢, 1™ D)

Then we have
(—1)nta (1 —pm)m (1 —sm2)d n 1 — pnmiggm
(1 —rm)m (1 —sm)e 1 —pnmgam

(e, ¢ D),

) e(tm7tm1Dn1+n£q1+q) =0.
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. . 1\ntq (1 _ Tm1)n (1 _ Sm1)q 1 — prmiggmi .
It is easy to obtain that (—1) =) (1= s + =g = 0 if and only if n+ ¢

is odd, m = my or n 4+ ¢ = 1 under the assumption that r*s¥ # 1(z,y € Z, (z,y) # (0,0)).
Consequently, 8(t™D"™E2 t™1 D™ EN) =0 for n+q > 1,m # 0,m # my.
For m = mq,n + ¢ > 1, choose some non-zero integer i with i # m, 2m, such that

0™ Dt £ D) = ([#, 17 D), e D)

1 — rnigqi
-1 , , , ,
BT D DM R ) 4 B DR 4] 1 D))
—Tres
_ : _71”; = ((rnml gdm1 _ rn(m—i)sq(m—i))9(t2m—iDn+n1§q+q1 , ti)
—Trs

+(rmisit — 1)g(tm T DM T DRET)),

By lemma 3.1, we have (D", t™ D™ 1) = 0 for ny +¢1 # 0. If ny + ¢1 = 0, choose
no-zero integer i # my, then

1 o
o(D"", ™) T pmigai (177D, 1™)
L g ipren, iy —o.
1 — rniggqi ’ ’

As a result, we obtain 8(t"D"E9,t™ DM M) =0 for n+q > 1,m+my #0.
(ii) For ny 4+ g1 > 1 and m + my # 0, the situation is similar to (i).
(iii) Forn+q¢=mn34+q =1,m+my #0, we can assume n = 1,q; = 1, then

oD, tmE) = ([, DL ™)
= (D™ ) + 0 1), D))
= (™ = DR DE ™) 4 (77— 1R ™E, D))

= 0.
(iv) Forn+4+q=1,n1 +q =0,

m n m 1 —m n m-rm m
o™ D" t™) = We([t LDET g )
-1
= —  Q([tTm™mpngd pma] gmtma
1— (rnsq)erml ([ E ’ ]’ ))

1 — (rs?)mtm
= ——— L (DI Ty =,
1 — (r"'sq)m+m1 ( 5 ) )
Finally, if n 4+ ¢ > 0 or ny + g1 > 0, then 8(¢™D"E%, t™1 D™ ¢9) = 0, for m + mq # 0.
Lemma 3.4 0(D"¢9, D™ ¢a) = 0.
Proof For n+¢q=0or n; + ¢ =0, we obtain §(D"&9, D™ £9) = 0 by lemma 3.2.
For n 4+ ¢ > 0 and ny + ¢1, we have

1—rns?
]_ — rnigdn

01~ D"Es, DM En) = 0t~ D"E, [t, DM ER) = — B(D"¢?, D),

]_ — rni1g491

1

1—p Mg n
1—r—nsq

1—r—ns—4

0t Dren,tDmEn) = ot~ D"e 1D En) = - o(D"E", DmEn),
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then ( L—rts?  1—p ™Ms™® ) f(D"EL, D™ EN) = 0.

1 _ Tnlsql 1 _ ,r,fnsfq

: 1—7"s? 1 —p Mg
It is easy to conclude that T s = [, ngd

As a result, for n # ny or ¢ # q1, we have (D"¢9, D™ EN) = O(t~ 1 D¢ tD™EN) = 0.
Lemma 3.5 Form #0,n+qg#0orn; +q #0, 0D, tmD™EN) = 0.
Proof For ny +q; =0,

if and only if n = n; and ¢ = ¢1.

0 —mDn q MmN __ 1 9 —m+1Dn q 1—1 my __ 1_(rnsq)m9 Dn q 1—1 _0
(t 5 ﬂt )_ (T"Sq)_l—l ([t fvt ]?t )_ 1—(7‘”8‘1)_1 (t g’t )_ .

Forn+q#0orny +q #0,

—m n m ni 1 1 —m n - m ni 1
o@Dt D™MET ) = me([t Dt T DM En)

(
— (_1)m <11__7‘;nnl§_zl)m0(Dn§q’Dn1€q1)>
0

s is equivalent to one of the

Theorem 3 dim H*(D;,,C) = co. Every 2-cocycle on D,
following 2-cocycle,

.f = = = =
f(mDnga, i Dmgn) = { am(,)mu ;tl?erwgle q=q =0andm#my,

where a, m, are arbitrary constants with @y, m, = —@my m-

Proof We have §(t™D"E4, ™ D™MENR) = 0, for Vm, my € Z, n,n1,q,q1 € ZT (n+q,n1+
q1) # (0,0) from the lemmas above. By the definition of 2-cocycle, we conclude that the values
of O(t™,¢t™) are independent.

So the proof of theorem is complete.
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