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Abstract. A new methodology is proposed to estimate and initial condition. The ensemble Kalman filter (EnKF), intro-
account for systematic model error in linear filtering as well duced byEvensen(1994), has gained particular popularity
as in nonlinear ensemble based filtering. Our results extendbr environmental state estimation thanks to its ease of imple-
the work of Dee and Todling2000 on constant bias errors mentation and its robustness against filter divergence. Nowa-
to time-varying model errors. In contrast to existing method- days, the number of data assimilation applications involving
ologies, the new filter can also deal with the case where ndhe EnKF is numerous, seEensen1994 Houtekamer and
dynamical model for the systematic error is available. In theMitchell, 2001 Reichle et al.2002 Evensen2003 and the
latter case, the applicability is limited by a matrix rank con- references therein.

dition which has to be satisfied in order for the filter to exist. ~ However, apart from stochastic model uncertainties, the

The performance of the filter developed in this paper isEnKF is based on a perfect model assumptions. It is thus not
limited by the availability and the accuracy of observations able to deal with deficiencies in the model, which may play a
and by the variance of the stochastic model error compo-major role in environmental forecastin@i(rell et al, 2001).
nent. The effect of these aspects on the estimation accuA number of authors have addressed this lack of the EnKF.
racy is investigated in several numerical experiments usindThe effect of systematic model errors on the estimation ac-
theLorenz(1996 model. Experimental results indicate that curacy is investigated inMitchell and Houtekamer2002
the availability of a dynamical model for the systematic er- and Reichle et al. 2009. In (Mitchell and Houtekamer
ror significantly reduces the variance of the model error esti-2002 Heemink et al.2001), an ad hoc method is used to ac-
mates, but has only minor effect on the estimates of the syseount for systematic errors by treating the errors like random
tem state. The filter is able to estimate additive model erroiwhite noise with prescribed error covariance matrix. Another
of any type, provided that the rank condition is satisfied andheuristic technique is covariance inflatigdnderson and An-
that the stochastic errors and measurement errors are signifilerson 1999, where the spread of the ensemble is artifi-
cantly smaller than the systematic errors. The results of thigially enlarged to make the filter more robust against model
study are encouraging. However, it remains to be seen howerrors. Although both methods are successfully used in prac-
the filter performs in more realistic applications. tice, they do not make use of the observations which con-
tain information about the model error. Furthermore, none of
both methods is able to yield estimates of the model error.

A commonly used method to estimate and deal with model
error in Kalman filtering, is to augment the state vector with
Error in environmental forecasting is mainly due to two the model error vector and then designaKaIman filter for the
causes: inaccurate initial conditions and deficiencies in thétugmented model. To reduce the computational load of the
model. Much of attention has focused on reducing the ef-2ugmented state filteFriedland(1969 proposed the two-
fect of the first cause. Several suboptimal filters have beerstage filter, where the estimation of the state and the model

developed to assimilate measurements into large-scale mo@'TOr are separated. An efficient suboptimal variation of the
els in order to come up with a more accurate estimate of thdwo-stage filter was first applied in the data assimilation com-
munity byDee and Da Silv§1998; Dee and Todlind2000

Correspondence tdS. Gillijns to estimate constant bias errors in numerical weather predic-
(steven.gillijns@esat.kuleuven.be) tion. The state augmentation method has been successfully

1 Introduction
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used for estimating systematic model error in ensemble basebased filtering in Sect. In Sect.5, we discuss the relation

data assimilation as well as in variational data assimilationbetween our filters, the state augmentation method and the

(Zupanskj 1997 Griffith and Nichols 2000 Martin et al, filter of Dee and Todlind2000. Finally, in Sect6, we con-

2002 Zupanski and Zupansk?00§. The method has the sider several numerical examples using the Lorenz model.

advantage of being very flexible and being able to incorpo-

rate different types of prior knowledge about the model er- )

ror into the assimilation procedure. However, the fact that a2 Problem formulation

model which describes the dynamical evolution of the error

must be available, limits the applicability of the method.
There are types of model error of which the dynamics are

not known, for example certain types of time-varying bias

errors, errors due to unresolved scales, discretization errorgyherex, eR" is the state vecton; cR’ is a known external

unmodeled dynamics and unknown disturbances. In thesgyrcing term and the operat®i(-) maps the state vector at
cases, the state augmentation method can not be used.  time instantk to time instant + 1. Assume that the model
Like (Dee and Da Silval998 Dee and Todling2000,  operatorF,(-) is subject to both additive stochastic model
this paper addresses the problem of additive model error essror and systematic model error. The stochastic component
timation and correction in data assimilation. Based on thejs denoted byw;<R” and is assumed zero-mean white with
optimal linear filters ofKitanidis (1987; Gillijns and De  cgvariance matriQ;=E[w;w] ]. Furthermore, assume that
Moor (2007, we develop a rigorous and efficient method to the errorneous equations Bf(-) are known. This type of
deal with systematic model error in linear filtering as well as prior knowledge about the systematic model error may be
in nonlinear ensemble based filtering. In case a dy”amicarepresented by a matri@,cR"*™, wherem is the number
model for the systematic error is available, our results extencyf independent errors. For example, a binary matrix can be
the work ofDee and Todlind200Q) to time-varying model  ysed, where the-th row contains a 1 if theé-th equation
error. More precisely, using the same approximation, we deyf the operatofF,(-) is errorneous. If thé-th and thej-th
velop a suboptimal but efficient filter where the estimation gquation of the operatd (-) are subject to the same error,
of the time-varying model error and the state are interconhen thei-th and thej-th row of G, contain a 1 in the same
nected. However, provided that a certain matrix rank condi-column. Under these assumptions on the stochastic and the
tion is satisfied, our method can also deal with the case whergystematic model errors, there exists a vedgeR™ such
no dynamical model for the systematic error is available.  that the state of the true system at time instant is given
The performance of the filter developed in this paper isby
limited by the availability and the accuracy of observations Xig1 = Fr(xr, up) + Gedy + wy, (2)
and by the variance of the stochastic model error component.
The effect of these aspects on the estimation accuracy is invherex; is the true system state at time instanthe vector
vestigated in several numerical experiments using.ttenz ~ @x, Which will be called themodel error vectoror simply
(199 model. Due to the limitations, the method can in prac- model error is in general a nonlinear function ef_; and
tice not be used to correct the entire state vector for all typeé’k—l’ that s,
of errors described above. However, it can be used to ob- di1 = Hi(d, xp). ©)

tain, possibly for a limited number of state variables, an ideay, previous work on data assimilation in the presence of sys-
about the additive effect of the model error affecting theseematic model errors, it was always assumed that the operator
state variables, which is espeually_useful if t_he dyrlarr)lcs_, OfHk(~) is known. In this paper, we will also consider the case
the error are unknown. These estimates might give '”S'ghbvherer(.) is unknown.
into the dynamics of the error, which might lead to a re- e assume that noisy measurementsR? are available,
finement of the simulation model or to the development of .o |ated to the system statg by
a “model error model” which can then be incorporated into
the assimilation procedure. Y& = Cexy + vi, (4)

This paper is outlined as follows. In the next section, we
formulate the problem considered in this paper in more dewhere v,€R”, assumed to be uncorrelated te, is a
tail. In Sect.3, we develop two linear filters which can deal zero-mean white random vector with covariance matrix
with systematic model error. The first filter is based on the szE[vkv,I]. The measurements are assumed not to be sub-
results ofKitanidis (1987; Gillijns and De Moor(2007) and  ject to systematic errors.
assumes that no dynamical model for the error is available. The first objective of this paper is to develop linear recur-
The second filter is obtained by incorporating prior knowl- sive filters which estimate both the model erdarand the
edge about the model error in the first filter and has a closesystem stater;, from the observationg; in case the opera-
connection to the result ddee and Todling2000. These  tor Fi(-) is linear. We will consider the cas¢, (-) known as
filters are extended to the framework of nonlinear ensemblenell as the caskl;(-) unknown. This objective is addressed

Consider the nonlinear discrete-time model

Xi+1 = Fe(xr, ug), 1)
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in Sect.3. The second objective of the paper is to extend thethat optimal estimates af;_1 can be obtained from the in-
linear filters to the framework of nonlinear ensemble basechovationyk—ckfz.

filtering. This objective is addressed in Sett.

3 Linear filtering in the presence of model error

In case the model operatét,(-) is linear, the dynamics of
the true system?) can be written as

Xiy1 = Arxy + Brug 4+ Grdy + wy. ®)
In Sect.3.1, we investigate what happensdf is neglected
and the Kalman filter is used to estimate the state vegtor
Next, in Sect3.2 we discuss the filters dfitanidis (1987);
Gillijns and De Moor(2007) which take the model error into
account and yield optimal estimatesxgf under the assump-
tion thatH(-) is unknown. Finally, in Sect3.3, we show
how the knowledge of the operatdy, (-) can be incorporated
in the filter of Gillijns and De Moor(2007).

3.1 The flaws of the Kalman filter

Assume that we neglect the model erey and apply the
Kalman filter to estimate the state of systebh (The result-
ing filter equations are then given by,

(6)
()
Wherexk denotes the estimate of given measurements up
to time instant—1 andx?2 2 denotes the estimate of given

measurements up to t|me insté&ntThe Kalman gairKy, is
given by

of sa
X, = Ar_1x_q + Broquy_a,

28 =2l + Kp( — Cexh),

Ky = PLCT(CiPLCT + Ry ™2, (8)
whereP! is updated by
Pl = Ar_1P? AT+ Qioa, 9)
P2 = (I — K4Cyp)PL. (10)

Let x?_, be unbiased, then it follows fron\iSXthatxf is

biased because the model error is neglected. Furthermore, it

follows from (7) that for the choice df; given by (8), also
the updated state estimat is biased. The optimal linear
analysis is thus not given by the Kalman filter update.

3.2 An extension of the Kalman filter

Kitanidis (1987 developed a filter for the syster)(which
can deal withH (-) unknown and actually is optimal only if
Hy () is unknown. His filter takes the form6)—(7) of the
Kalman filter. However, the optimal gain matrix is not given
by (8) but is obtained by minimizing the variance &} un-

der an unbiasedness condition. The result of Kitanidis wa:

extended in Gillijns and De Moor 2007, where a new de-

sign method for the filter was given and where it was shown

www.nonlin-processes-geophys.net/14/59/2007/

In this section, we summarize the equations of the filter
developed in Gillijns and De Moor 2007). The filter takes
the recursive from

= A 1®2 |+ Broiua, (11)
d?_; =My (yi — Cif). (12)
2 =3 4 Gd? |, (13)
2 =¥ + Ki(yr — Cix¥ (14)

where the estimation of the state vector and the model er-
ror vector are interconnected. As discussed in the previous
section, (1) yields a biased estimate of the system siate
Therefore, in the second stell; is determined such that
(12) yields a minimum-variance unbiased estimatelpf
based on the innovatioyvk—Ckﬂc. This estimate is used for
compensation in13), such thatt¥ is unbiased. In the fi-
nal stepKy is determined such that4) yields a minimum-
variance unbiased estimate of the system statéNote that
(14) takes the form of the analysis step of the Kalman filter.
Furthermore, note thal 8)—(14) can be rewritten as
28 =2l + Lo — Cixh), (15)

whereL ; is given by

Ly =Ki 4+ (I = Ky Cp)Gr_1My. (16)

As shown in Gillijns and De Mooy 2007), the gain matrix
Kk minimizing the variance of is not unique. One of the
optimal values foK takes the form of the Kalman gain,

Ky = PLCl(CiPiCT + R, (17)

where the covariance matrD{ is defined by
Pl = E[zF#T], (18)
= Ar-1P? AL + Qi1 (19)

with ! =x;—Gy_1d;_1—%!, and with P? the covariance
matrix of £2,
P2 = E[(x; — £ (xx — £D)T1. (20)

It follows from (11) and @)—(5) that there is a linear re-
lation between the innovatioyy, — Ck and the model error

di_1, given by
yi — Cikl = Exdy_1 + e, (21)
whereE;=C;G;_1 and whereg; is given by
er = Ciil + vy (22)

Slnce]E[xk] =0, ¢, is a zero-mean random variable with co-

Ssariance matrix

Ri = Elere] ] = CkPLC] + Ry. (23)
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It follows from (21) that a minimum-variance unbiased es- see Kailath et al, 2000. Note that 81) has a structure sim-
timate of dy_1 can be obtained from the innovation by ilar to the analysis step of the Kalman filter. Furthermore,
weighted least-squares estimation with weighting matrixnote that the inverse irB() also exists ifE; does not have

R,:l. The optimal value foM is thus given by full column rank. If prior information about the model error
is available, the existence conditiad®7f does not have to be
. -1 . ; iafind i : :
M, = (EZRk_lEk) EZRk—l’ (24) necessqnlx satisfied in order for th.e filter to ex!st. .
Substituting 12) by (31), we obtain the following filter,
ggd tg)e/ variance of the corresponding model error estimate )2;( — Ar_1R® |+ Brotupo1, (32)
k=1 - - A -
d?_y =dj_, + K — Cif| — Eid]_y), (33)
d 4 7a T
Pe1= E[gk_f - dlec;—l)(dk—l —di '), (@5) K¢ =P ETEPYET + CPIC] +ROTY (34)
= (EJR'Ep L (26)  ga _ 3 1 Gp4d? |, (35)
Note that the inverses i24) and @6) exist under the condi- £ = Xf" + K{(yx — Cix(), (36)
tion that KX =Pl (CiPiCT + Ry (37)
rankC¢Gg—1 = rankGy_1 = m. (27)  If conditions @9)—(30) hold, this filter is optimal in the

) ) N ] minimum-variance unbiased sense. Indeed, under these con-
Equation @7) gives the condition under which the model er- yitions the gain matrix37) minimizes the variance of36),
ror can be uniquely determined from the innovation. Notegee Appendi for an outline of the proof.

that this condition impliee>m and p>m.

The filter described in this section can thus deal with the
case whereH,(-) is unknown. Note that it can estimate
model errors of any type. However, its applicability is lim-
ited by the matrix rank conditior2f). Furthermore, as will

be discussed further in the paper, the variance of the model . . - .
error estimateX?) can be rather high. Consider the filter consisting 082)—(38). Note that for this

filter the optimality condition 29) obtains. However, it is
3.3 Incorporating prior knowledge about the model error  Straightforward to verify that the optimality conditio8@) is

not satisfied, so that the filter is suboptimal. As will be shown
If prior information about the model error is available, the in Sect5, this suboptimal filter has a strong connection to the
variance of the model error estimaté2( can be reduced. efficient filter developed bypee and Da Silvg199§; Dee
Consider the case where an unbiased estiaffate with co- ~ and Todling(2000.

variance matri>P‘;{'f1 is available. The least-squares problem
obtained by combining the information in the innovation and

ind'_,, is given by

Now, assume thatl;_»(-) is known and linear. Then the
optimal estimatel’_, is given by

4 Nonlinear filtering in the presence of model error

of In this section, we extend the filters discussed in the previous
[yk - Ckxk} — [Ek} dp1+ [ e ] . (28) section to the framework of large-scale nonlinear ensemble
di_q ' di_y based filtering. In Sect.1, we show that the EnKF suffers
. R from the same flaws as the Kalman filter. Next, in S,
whered!  =d! ,—d;_1is a zero-mean random vector with we develop an ensemble based version of the Kitanidis fil-

covariance matri;PL’f 1- Under the assumption that ter which can deal with additive model error of any type. In
Sect.4.3, we show how prior information can be incorpo-
Eld}_,v]1=0, (29)  rated into the latter filter. Finally, in Sect$.4 and4.5, we
St e Ty discuss computational aspects and limitations with respect to
Eld;_4(x;)'1=0, (B0)  applicability.

A

the least-squares soluti@i}_, of (28) which coincides with
the linear minimum-variance unbiased estimatd of;, can
be written as

4.1 The flaws of the ensemble Kalman filter

The EnKF can be seen as an ad hoc extension of the Kalman
. . 1 filter to large-scale nonlinear systems. It propagates an en-
a =d_,+PaES (EkPEC’ElEZ + Iik) semble ofy (g<«n) members{&!, i=1...q}, which capture

of a¢ the mean and the covariance of the current state estimate.
(k= Cixy —Exdi 1), (31)  Covariance information is thus propagated implicitly in the
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ensemble. The EnKF is widely used in data assimilation ap- Now, consider the cas#;#0 and assume that we apply
plications due to the ease of implementation, the low compu-the EnKF to estimate the system state. Like in the Kalman
tational cost and the low storage requirements. filter, the forecasted state estimaﬁ(eis then biased, even for
First, consider the modeR) with d;,=0. The algorithm  g— o0. Consequently, it follows from (46) and (47) that the
of the EnKF consists of two steps which are repeated recurupdated state estimaé is also biased.
sively.
The first step of the algorithm, the forecast step, projects?.2 The ensemble Kitanidis filter
the ¢ ensemble members ahead in time, from time instant

k—1tok. This step is given by An ensemble based filter which can deal vkth(-) unknown
' _ is obtained by extending the Kitanidis to the framework of
.22’ = Froa(E8 | we—n) + wh_ g, i=1...q, (39) ensemble based filtering. The resulting filter is called the
) 14, . ensemble Kitanidis filter (EnKiF) and consists of three steps.
g}( = - ngj, (40) In the first step, the ensemble memb&%l are projected
9= ahead in time. Like in the EnKF, this step comprigesins

ot . . of the numerical model and is given b39)—(40). Due to the
wheregk_denotes the estimate of the_ system state at time in model error, this step introduces a bias error in the forecasted
stantk given measurements up to time-1. The forecast ensemble membeeé’i

step thus compriseg runs of the numerical model, one run :

j In the second step, this bias error is accounted for by es-
for each of the; ensemble membeffjl. Toaccountforthe .. . b : : y
) -1 . timating the model error from the innovations and by using
stochastic model errog, random realizations;,_,;, sampled

R 3 : the resulting estimates for compensation. More precisely, an
from a distribution with mean zero and varianQg_1, are i

ensemble of model error estimatgg _,,i=1...q} is com-
added to the forecasted ensemble member3dn ( puted from the measurement and the forecasted ensemble
In the second step, the analysis step glemnsemble mem-

fi . . ; .
: ) fi=1...q}b bl a®). Toth
bers are updated with the observatipnthrough a proce- {g" tlh Ctl} )d%/_lis.mgzin .enserln © dvgrs_lto nady 9 |ts
dure which emulates the Kalman filter measurement updateaé'lT e matrbR, ~ in (24) is replaced by its approximation
Defining the error covariance mati, by (44), ] ) L
) ] ] Mi = (EfR:E) EIRC (48)
Pl = E[(xx — &) (xx — EDT]. (41) _
5 5 The ensemble membes$_, are then computed by
this step starts by approximatirig) C, and C,P\C] using

theg ensemble members, 8 =Mk —Cig' +0)), i=1...q, (49)
AT 1 N (gt~ gHicT i is gi
PICT = — Z ( L (Bt ) , (42) and the estimate of the model error is given by
i=1
- 1< .
_— 1 q ~f ~f i 8 1= - 81_ . 50
CPlCT = i > ((Ckg‘; )(CE" )T) , (43) 1Ty ; k-1 (50)

I
N

1

As will be shown further in the paper, random vectnigsvith
mean zero and variané®, have to be added to the observa-
tion y in (49) in order that the sample variance of the ensem-

where&!' =¢' —£!'. Next, the gain matriX is computed
using the formula for the Kalman gain,

R, = CkP;(CI + Ry, (44) blg of mpdgl error estimate; converges 2)(for ¢g— oo.
_ ——_ This is similar to the analysis step of the EnKF where per-
Ki =PLCIR ™, (45)  turbed observations have to be used in order that the variance

and the ensemble members are updated with the measurglc the updated ensemble members converges to the correct
ments P value Burgers et al.1998. Finally, the forecasted ensem-

ble memberif{" are updated WithS,i_1 using an ensemble
Mg R (- Cugf 0f). i=1..9 (46) Versionof(yd,
_o1dL g2 — g 4Gl ,,  i=1...q. (51)
=02 8 (47) co o

i=1 In the third step, the variance of the ensemble
where random realizations,, sampled from a distribution {g¢"",i=1...q} is reduced by emulatingLg) in the same

with mean zero and variand®,, have to be added to the Way as in the analysis step of the EnKF,

observations to account for the measurement nd@segers ] ) ~ ) _
* *
etal, 1999. EX =X + Ky (y;< — Ce"" + v;) . (52)
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whereK is given by @5). Finally, the updated estimate of correlations are avoided by assuming the correlation zero be-

the system state is given b¥74).

The random vectors;'{ in (52) may be the same as iA9).
Furthermore, if the same random vectors are ugtid), (51)
and 62) can be combined to

Mg 4L (n-Cil ). (83)

whereL is given by
Ly = Ky + (I — KiCr)Gr_1My. (54)
In case of a linear model operatBj(-), this filter con-

verges foly — oo to the filter ofGillijns and De Moor(2007),
see AppendiB for an outline of the proof.

yond the local cube. Similar techniques may be used to re-
duce the effect of spurious correlations in the EnKiF, where
not only the forecasted state ensemble, but also the ensemble
of model error estimates is affected by sampling errors.

The use of perturbed observations also introduces sam-
pling errors in the EnKF and thus also in the EnKiF. Since
the third step of the EnKiF is equivalent to the analysis step
of the EnKF, asquare root filteWhitaker and Hamill2002
Bishop et al. 2001 Anderson 2001, Tippett et al, 2003
can be employed to avoid the perturbed observationsdn (
Note that the ensemble of model error estimates also suffers
from sampling errors due to perturbed observations. A tech-
nigue similar to square root filtering, where the mean and the
variance of the model error estimate are computed separately,
might reduce the effect of sampling errors due to perturbed
observations.

4.3 Incorporating prior knowledge in the EnKiF

If a prior estimate of the model error is available, e.g. in4.5 Limitations with respect to applicability

the form of an operatoH(-), equations §2)-(38) can be

extended to the framework of ensemble based filtering byThe applicability of the EnKiF is hampered by the existence
making use of the analogy 08%)—(34) to the analysis step condition 7). For a constant bias error affecting all state
of the Kalman filter. As will be discussed in Seét.the  Variables in the same way, one measurement is in theory suf-
resulting filter has a close connection to the filter developedficient to estimate and account for the error. If all state vari-
by Dee and Da Silv§1998. Therefore, it will be called the ables are affected by independent errors, the method can not
DDS-EnKiF. be used to correct the entire state vector because this would

It follows from (32)—(38) that the DDS-EnKiF needs require thatvalues of all state variables are incorporated into
a prior estimatec?[l with known variance to be initial- the measurement. In this case, the EnKiF can be used to ob-
ized. However, if no prior estimate is available, but rank tain, possibly for a limited number of state variables, an idea
CoG_1=m, the DDS-EnKIF can be initialized by running about the additive effect of the model error affecting these
the EnKiF for one or a few steps. state variables, which is especially useful if the dynamics
of the error are unknown. The estimates of the model er-
ror might give insight into the dynamics of the errors, which
might lead to a refinement of the simulation model or might
Under the assumption th&t, andG;_1 are sparse, the ma- lead to the development of a “model error model” which can
trix E] R, 'ExeR”*" in (48) can be efficiently computed by ~then be incorporated into the assimilation procedure.
applying the matrix inversion lemma td4) (Tippett et al, The EnKiF and DDS-EnKiF are based on the assumption
2003, even if the number of measurements is very high.that observational errors are zero-mean white with known co-
However, the calculation of the model error vector requiresvariance. If measurements with systematic errors are assim-
the inverse oEZIi,:lEk to be computed, which is compu- ilated without preprocessing, the model error estimates and
tationally very demanding ifz is large. Consequently, the state estimates will be biased because the filter can not dis-
number of errors which can be accounted for by the EnKiFtinguish between systematic errors in the forecast model and
is limited by the available computational power. in the observations. Therefore, if possible, observational bias

It is well known that the use of a limited number of mustberemoved. Also, alimited subset of unbiased observa-
ensemble memberg«n) introduces sampling errors in tions may be used for the purpose of model error estimation
the forecasted ensemble of the EnKF due to spuriouslyDee and Da Silval998§.
large correlation estimates between greatly separated grid The EnKiF is also based on the assumption that measure-
points. Houtekamer and Mitchel(2001); Hamill et al.  ments are available at every assimilation time. If this is not
(2001 showed that the analysis can be improved by usingthe case, the EnKiF can still be used to estimate the model
covariance localizationa technique where the covariance error which is build up during the consecutive time instants
estimates obtained from the ensemble are multiplied by aat which no measurements are available.
distance-dependent correlation function. In liheal ensem- It follows from (26) that the variance of the model er-
ble Kalman filter(Ott et al, 2009, a method where the anal- ror estimate is determined by the variance of the measure-
ysis at each grid point is based on the forecasted ensemblment noise and by the variance of the forecasted state en-
members within a local cube of a few grid points, spurioussemble. In case the measurements are very noisy or the

4.4 Computational aspects
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spread of the forecasted ensemble is very large (e.g. due &6 Numerical examples
stochastic model error with high variance), the model error
estimates obtained with the EnKiF will be very noisy too. In this section, we consider three numerical examples. The
Consequently, the model error estimates obtained with thdirst example deals with bias errors, the second example with
EnKiF will be appropriate and accurate only if the stochas-non-smooth disturbances and the third example with errors
tic model error and the measurement error are significantlydue to unresolved scales.
smaller than the systematic model error.

The effect of these limitations on the accuracy of the state6.1  Bias errors
estimates and the model error estimates obtained with the

EnKiF and DDS-ENKIF is investigated in several numerical In a first experiment, we consider the example which was
studies in Secsh. also used inAnderson2007) for state estimation under con-

stant bias errors. Consider the nonlinear one-léveknz
(1996 model withN=40 andF=8 (the equations are given
5 Comparison to existing methods in Appendix C). This model is discretized using a fourth
) ) . order Runge-Kutta scheme with time st&p=0.005. The
A standard approach to deal with systematic model error in,e» siates of the system are taken as the trajectories ob-
Kalman filtering and data assimilation, is to augment theyineq with the Runge-Kutta scheme, where Gaussian white

state vector with a vector of model error variablaganskj  rocess noise is added to the discretized state variables. It is
1997 Griffith and Nichols 2000 Martin et al, 2002 Zu-  z5qumed that the exact valueis unknown. The model is

panski and Zupansk200§. This so-called method of state ;5 supject to a constant bias error. Noisy measurements of
augmentation is very flexible and can incorporate different,| siate variables are available.

types of prior information intq the problem. In its mostgen- g compare the assimilation results obtained with an aug-
eral form, the method can estimate model error which nonlin- . 4 EnKE based on the error model 1=d, to the re-

early interacts with the state vecto.r. Let the model be givenSuItS of the DDS-EnKIE based on the same error model and
by (1), then the method can deal with the case where the tru

1en 2 . %o the results of the EnKiF. In the (DDS)-EnKiF, the matrix
system is given byc;1=F(xk, ux, di), provided that the

; : ) G is chosen a&=1] , which reflects that all state variables
interaction between the model erdy and state vectory is

K q ided th del for the d ical evoluti are affected by the same error. The initial bias estimate in the
nown and provided that a modet for the dynamical evo ut'onaugmented EnKF wag=10. The DDS-EnKIiF is initialized

of dy is available, Wh'Ch IS in its mos_t general form given by by first running one step of the EnKiF so that no initial esti-
(3). Note that the filters presented in Setfare not able to mate of the bias is needed

estimate the model erra, in this general setting. However, Figure 1 compares the estimation results for 20 ensem-
they can be used to compensate and estimate the additive ef

. le members an@=10"°I, R=10"3I. Part (a) of the figure
fect of these types of errors on the state vector, provided tha hows the estimated values Bf The variance of the esti-
the errorneous model equations are known.

| f tant bi th thoeé and D mates obtained with the EnKiF is clearly much higher than
Sl n Ci;g 0_ Sons ag-r 'gﬁ erzrggs, e me” 0 el' adn Th'a for the other two methods. Incorporating prior knowledge
iva( . 9; Dee and Todling2000 is usua yappled. 1S g significantly reduces the variance of the bias estimate.
method is based on the two-stage Kalman filter introduce ote the rather slow convergence of the augmented EnKF
Siate fiter where the esimation of the state-and the modefPAred (0 the DDS-ENKIF where convergence is almost
. mmediate. Part (b) of the figure shows the estimated value
error have been separatebee and Todling2000 devel- ! art (b) IgUre Shows St vaues

. e . of the system state. Note that the high variance of the bias
oped a suboptimal, but efficient variation of the two-stage y g

filt h ! trast to the t t filter itself. inf estimates obtained with the EnKiF has no detrimental effect
ilter where, in contrast to the two-stage filter itself, infor- | " 0 ot ctate trajectory.

mation between the bias estimator and the state estimator is Table1 compares the mean square error (MSE) of the es-

exchanged in two directions. The latter filter has a strong,. . . .
4 . . ; timated F-values as function of the measurement noise vari-
connection to the suboptimal filters developed in Sex3. . .
and4.3 More precisely, our results extend the work of ance and th.e variance of the stoc_hastlc model error. The val-
. ’ ues shown in the table were obtained by averaging the MSE

Dee a.”d Todling2009 to time-varying moqel error. In- over 1000 consecutive steps, after a converging time of 1000
deed, in Sect3.3we used the same approximation se
steps. Results are shown for 20 ensemble members. The

and Todling(2000) to develop an efficient filter which has a model error estimates are more accurate wWRatecreases.

stru_ctu_re very S|mllar to that ddee and TOdIngOOQ' The The MSE of the model error estimates also decreases with
main difference is that our method estimates the model errob e )
with one step delay . However, ifQ is very small, the estlmatgs degrade due tc_)

' the fact that the spread of the ensemble is very small. This
may lead to filter divergence because the filter gives very low
confidence to the observations. We note filter divergence for
values ofQ smaller than 1081. Again, it should be noted that
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Fig. 1. Comparison between the assimilation results of an aug-
mented EnKF, the EnKiF and the DDS-EnKiF for the example deaI-Fig' 2. Comparison between the model error estimédsind the
ing with constant bias error¢a) The variance of the bias estimates ;4 estimatet) of the augmented EnKF, the EnKiF and the DDS-
obtained with the EnKiF is much higher than for the other two meth- £ «iE when the time between measurements equals Results

ods. (b) However, this has no detrimental effect on the estimated ;.o shown foQ = 1061, R = 1041 and 20 ensemble members.
state trajectory. Results are shown for 20 ensemble members and

Q=10"%,R=10"3I.
equals A¢. The second and the third step of the EnKiF can

Table 1. Comparison between the mean square error of the estithen be applied at only one out of three assimilation times.
mated F —values obtained with the EnKiF and the DDS-EnKiF as The estimated? ; obtained with the EnKiF thus represent

function of the measurement noise variaftand the variance of  the build-up of the systematic model error over three steps.
the stochastic model err@. Results are shown for 20 ensemble

Part (a) of Fig2 compares the estimated values of the model

members. error obtained with the augmented EnKF, the DDS-EnKiF
and the EnKiF. The estimates of the EnKiF shown in the fig-
Q R ure are obtained by dividimj,";‘fl by three. Part (b) of FigR
102 104 1061 10-8) shows the e;timgted values of the system state:-. Due to the
bias error which is not accounted for in the EnKiF, the state
102l DDS-EnKiF 21072 7103 910° 7103 estimate diverges from the true value during two consecutive
EnKiF 45 30 31 31 steps and then re-converges when measurements are assim-
104 DDS-EnkiF 41073 8104 1103 71074 ilated. This leads to the behavior seen in Fig.The non-
EnkiF 26 410t 310t 3107t availability of measurements at all assimilation times has mi-
1078 DDS-EnkiF 1102 4.10% 7104 7.10% nor effect on the augmented EnKF and the DDS-EnKIF, but
e EnKiF 234 310:2 7«10_2 6-10j is detrimental for the accuracy of the EnKiF.
1077 [E)ESI:E”K'F 214% 67'18_1 zig_z ;'18_3 The effect of systematic measurement error and incom-

plete measurements is investigated in F3y. This fig-
ure shows results for 10 ensemble membéxs, 10~ and
R=10"%l. The measurements are subject to systematic er-
rors which have a maximal value of 210~1. In addition,

the high variance of the model error estimates obtained withone out of five state variables is not measured. Part (a) of
the EnKiF has no detrimental effect on the state estimates. the figure compares the bias estimates obtained with an aug-
In real-life data assimilation applications, measurementamented EnKF, the EnKiF and the DDS-EnKIiF. Part (b) shows
may not be available at every assimilation time. FigRiex- the estimated value of state variabig, which is not mea-
plores what happens when the time between measuremenssired. The MSE of the estimated bias error obtained with the
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-4r ¥4 q . . . . . .
w s s w . s s w w dealing with constant bias errors, the estimates obtained with the
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EnKiF are rather noisy. However, the EnKiF is able to follow the
fast variations in the bias errors. Results are ShOWIQﬁIlO_sl,
R=10"%4 and 20 ensemble members.

Fig. 3. Effect of systematic measurement error and incomplete mea-

surements on the estimation accurada) Comparison between

the bias estimates obtained with an augmented EnKF, the EnKirthe results of the EnKiF. Results are presented for 20 ensem-

Simulation step

and the DDS-EnKiFb) Estimated trajectory of state variablgy, ble members and it is assumed that noisy measurements of
which is not measured. Results are showrQes10-°1, R=10~%| all state variables, excepbo, are available. The measure-
and 10 ensemble members. ment noise is Gaussian white with variarRe-103|. Fig-

ure 5a shows the true trajectory of state variabje and the
trajectory that would be obtained if no disturbance would be

_ . . 3 - . _
Sl?ulDrnger:t(éFt(l)nc]::rLela;_ezs ifrzogfg_oflz CsiZ;(;ftiléng:;seSremmeZnt present. The estimates of the EnKF and the EnKiF are also
. y hown. The EnKF looses the true trajectory at the time the

error. The systematic measurement error has thus only smal|. : . .
. ; isturbances strikes, but quickly re-converges when the dis-

detrimental effect on the accuracy of the state estimates. . -
turbance has disappeared. The performance of the EnKiF is

e e e 012! Shetr, tamostperfrs a 1o dstrbance s presen. i
known, such that the DDS-EnKiF and the augmented EnKI:ure 5b shows the trajectories for state variabjg which is

' . not affected by a disturbance, but not measured either. The
can not be used. Figuré shows the true value of the :
bias error and the estimate obtained with the EnKiF for>o ¢ conclusions apply here.
Q=10"%, R=10"* and 20 ensemble members. Like in the
example dealing with constant bias errors, the estimates o
tained with the EnKiF are rather noisy. However, the EnKiF

8-3 Errors due to unresolved scales

is able to follow the fast variations in the bias error. Finally, in the third example, we emulate errors due to unre-
solved scales. The true system is taken to be the two-level
6.2 Non-smooth disturbances Lorenz (1996 model (see AppendiX for the equations)

with N=32, M=16 andF =10, consisting of 32 large-scale
In a second example, the true states of the system are takemariables (thex-variables) and 512 fine-scale variables (the
as the trajectories of the one-level Lorenz model (witk40 y-variables). The parameters-10 andh=10 are chosen so
and F=8) obtained with the Runge-Kutta scheme, wherethat the fine-scale variables fluctuate ten times more rapidly,
Gaussian white process noise with variar@e-1072| is but with ten times smaller magnitude than the large-scale
added to the discretized state variables and where a nonsariables. The system is discretized using a fourth order
smooth disturbance is added to state variableat time in- Runge-Kutta scheme with time steéyr=0.005 The model
stant 50@¢. This disturbance has a peak value of 5 and ais the one-level Lorenz model witN = 32 andF=10. As
duration of 1Q\t. We compare the assimilation results ob- pointed out in Qrrell et al, 2001), this situation is analo-
tained with the EnKF, where the disturbance is neglected, tagous to that encountered in real weather models, where a
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] ) o Fig. 6. True and estimated value of the error due to unresolved
Fig. 5. Comparison between the assimilation results of the EnKF¢5es affecting state variabigg. The model is taken to be the
and the EnKiF for the Lorenz model subject to a high non-smoothyne jevel Lorenz model, while measurements are generated using
disturbance. Results are shown for 20 ensemble members angha nvo-level Lorenz model(a) Results forQ=1061. (b) Results
Q=10"2I, R=10"3I. (a) Results for state variable,;, whichis 1o, 0=3,310~4I.
measured, but affected by a disturban(t®. Results for state vari- '
ablexyg, which is not affected by a disturbance, but not measured

either. In order for the EnKiF to yield estimates of the model error
affecting state variables; s to x17, we choose th&-matrix

ot T _ >
constant forcing term is adopted to model the influence of un-85G=[0sx1413 036X 15]" . The value oRQ in the EnKiF is cho--
resolved fine-scale variables on the large-scale variables. TheeN 0 P&Q=10""1, which is the variance of the stochastic

stochastic model error is assumed to be Gaussian white witf'0de! error affecting the large-scale variable in the true sys-
varianceQ, =101 for the discretized large-scale variable €M- In the second step of the EnKiF algorithm, we apply
and variancerzlo—Sl for the discretized small-scale vari- cevariance localization such that the model error affecting

able. Itis assumed that noisy measurements of all large-scafgfat€ variablesis t0 x17 is estimated from innovations de-
variables are available. The measurement noise is Gaussidtf"ding on estimates of state variabigs to x17 only. Al
white withR=10-61. For these choices. the error in the mea- Other innovations are inappropriate for estimating the model

surements is approximately ten times smaller than the mag€""or affectingxis to x17 due to the fact that these innova-
nitude of the error due to unresolved scales. tions depend on state estimates which are not accounted for

The aim of this experiment is twofold. Firstly, we want model error. The true and estimated value of the model er-

to obtain an accurate estimate of the model error af“fectin%Or affecting the state variable with index,1&re shown in

state variablesis, x16 and x17. Secondly, we want to ac-
count for the model error affecting all other state variables
by using an extension of the additive error approach devel-
oped byMitchell and Houtekameg2002 and used bydamill

and Wh|take|(_2003 to account for errors due to unresolved where F! () is the two-level Lorenz model operator,
scales. In this approach, systematic model errors are ac- | k-1
counted for by treating them like random white noise with Fim1() 1S the one-level Lorenz model operator and where
artificially chosen variance. The aim of this experiment is to T() projects the state of the two-level model to the one-level

design a procedure in which this variance is computed fromModel- , ,
the estimates of the filter. In a second step, we proceed as if all state variables are af-

fected by independent zero-mean Gaussian errors with equal
variance. In that case, the optimal value @requalss?l,

ig. 6a. The true value of the model error at time instant
is computed by

dy =F ! ) —F (Tl ), (55)
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) . .
whereo is the variance of the errors. We approximate 110 5 Results obtained in the three consecutive experiments deal-
by computing the standard deviation of the estimated modej,q with errors due to unresolved scales. The ma@ridenotes the

error affectingxy6 over 5000 consecutive steps. The com- yariance of the random vectors which are added to the forecasted
puted standard deviation equals=0, 018 Next, we apply  ensemble members to account for the model error. The column
the EnKiF withQ=10"%| for state variabless to x17, but “MSE” shows the mean square error of the state estimates. The last
with Q:sfl for all other state variables. The true and esti- column shows the standard deviation of the estimates of the model
mated value of the model error affectings are shown in  error affectingr1g, which is used to compute tH@-matrix of the

Fig. 6b. Estimation accuracy has clearly increased. Thisn€xtstep.

improvement is also noticeable in the MSE of the state es-

timates, which has dropped from3.10~2 in the first run to Step number Q MSE s
4 . . B B .
3,6.10" % in this run. The standard deviation of the estimated 1 10-9| 13103 0,018
model errc_)r affecting16 now equals>=0, 011 _ 2 33104 3.610°% 0,011
In a third step, we repeat the same procedure, with 3 12104 3.310°% 0012

Q=109 for state variables1s to x17 and withQ:s§I for

all other state variables. The standard deviation of the model
error affectingxig now equalss3=0, 012 This values lies
close tosz, which indicates that has almost converged to

the optimal value which lies around @12 Table2 summa-  give insight into the dynamics of the error, which might lead

rizes the results obtained in the three steps. to a refinement of the simulation model or might lead to the
The method described above can be used to tune the Varﬂevebpment of a “model error model” which can then be

ance of the random numbers in the additive error approach oincorporated into the assimilation procedure.
Mitchell and Houtekame(2002. In real-life applications,
where the dimension of the measurement vector is mucf}
smaller than the dimension of the state vector, the m&ix €
can for example be chosen to estimate the errors affecting
limited number of state variables of which the value is incor-
porated into the measurements. For such a choi, pthe
rank condition 27) is always satisfied. The method describe
above can then be used to obtain an estimate of the errors af- Simulation results on the chaotiorenz(1996 model in-
fecting these state variables. Based on these estimates of thiicate that the model error estimates obtained with the EnKiF
model error, the variance of the random numbers to be usetiave a rather high variance. Estimation accuracy is mainly
in the approach oMitchell and Houtekamef2002 can be  determined by the variances of the measurement error and
tuned. the stochastic model error. It was shown that the availability
of an accurate dynamical model for the error in the DDS-
EnKiF strongly reduces the variance of the model error esti-
7 Conclusion and discussion mates. However, results also indicate that the high variance
of the model error estimates obtained with the EnKiF has

A new methodology was developed to estimate and accoungnly minor detrimental effect on the state estimates.
for additive systematic model error in linear filtering as well Furth imulati its indi hat the ENKiF
as in nonlinear ensemble based data assimilation. In contrast Furthermore, simulation results indicate that the Enki

to existing methodologies, the approach adopted in this pape?nd DDS-EnKiF are robust against systematic errors in the

can also deal with the case where no dynamical model for thé“e"?‘S‘_”e_me”t_S- Th_e non-gvallabmty of measurements at all
error is available. assimilation times is detrimental for the accuracy of the

In case no model for the error is available, the filter is re- EnKiF, but has only minor effect on the DDS-EnkiF be-

ferred to as EnKiF. The applicability of the EnKiF is limited cause of the_ error model. The example dealing W'th c-onstant
by the available computational power and by a matrix rankb'as errors indicates that both methods behave similarly as

condition which has to be satisfied in order for the filter to the number of measurements in space decreases.

exist. The EnKiF can therefore not be used to correct the This study indicates that the EnKiF might be preferable
entire state vector for all possible types of systematic errorsover the DDS-EnKiF when little or no prior information of
The intended use is therefore to obtain, possibly for a limitedthe model error is available and when accurate measurements
number of state variables, an idea about the additive effect oére available at every assimilation time. However, when rela-
the model error affecting these state variables. This is espetively little information is available from measurements, ad-
cially useful if the dynamics of the error are unknown, e.g. ditional information, e.g. in the form of a prior for the model

in case of unknown time-varying bias errors or errors due toerror or an assumption on its evolution, will be necessary to
unresolved scales. The estimates of the model error migh&ccount for systematic model error.

In case a model for the error is available, the filter is re-
rred to as DDS-EnKiF. It was shown that there is strong
gonnection between the DDS-EnKIiF and the efficient sub-
optimal filter developed byee and Todling2000. More
precisely, our results extend the latter work to time-varying
d bias errors.
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Appendix A
Calculation of optimal gain matrix

In this Appendix, we prove the optimality of the filte32)—
(38) for the case where condition29)—(30) are satisfied.
We show that under the latter conditions the gain mag8® (
minimizes the variance 086).

Using 32)—(38), we find that

P2 = KIR KT — KX§ — STKST 4 P, (A1)
where
Ry = CiP¥C] + R — ExKIR;, — R,KITE], (A2)
S = CiP¥ — RKITG] (A3)
P2 = E[(xx — £2) (xx — £59)71, (A4)
= (1 -G_1KICH (PL + G_1Py,G]_p)
(I —Gr_1KICH ™ + G KIRKKITGT ;. (A5)

Note that these equations are valid only if conditioR9)€
(30) are satisfied. The gain matri«; minimizing the trace
of (A1), is given by

KX =SIR; L. (A6)

Finally, substituting A2) and A3) in (A6), yields after a
straightforward calculation

KX =PL.Cl(CiPLC] + Rp)™L. (A7)

Appendix B

Proof of convergence

In this Appendix, we give an outline of the proof that, in case

Appendix C

The Lorenz (1996 model

The equations for the one-levebrenz (1999 model are
given by

dx,-

=7 (Cy)

= (Xi41 — Xi—2)xi—1—x; + F,
where the index i=1,...,N is that
Xi—N=Xi4+N=X;.

The equations for the two-level model are given by

cyclic so

M
dxi

C
5y = Wit XX =X+ F = jz::l)’i,j» (C2)
dyi. i c
=L = cb(yi,j—1— Vi,j+2)Vi,j+1 — ij + —Xi, (C3)
dt b
fori=1,..., N andj=1,..., M. The indices are cyclic so

that for exampl@i,ﬁM:y,-H,j andyl-JrN,j:y,;j.
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