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Abstract. Secular variations of the geomagnetic field have
been measured with a continuously improving accuracy dur-
ing the last few hundred years, culminating nowadays with
satellite data. It is however well known that the dynamics
of the magnetic field is linked to that of the velocity field
in the core and any attempt to model secular variations will
involve a coupled dynamical system for magnetic field and
core velocity. Unfortunately, there is no direct observation of
the velocity. Independently of the exact nature of the above-
mentioned coupled system – some version being currently
under construction – the question is debated in this paper
whether good knowledge of the magnetic field can be trans-
lated into good knowledge of core dynamics. Furthermore,
what will be the impact of the most recent and precise geo-
magnetic data on our knowledge of the geomagnetic field of
the past and future? These questions are cast into the lan-
guage of variational data assimilation, while the dynamical
system considered in this paper consists in a set of two over-
simplified one-dimensional equations for magnetic and ve-
locity fields. This toy model retains important features inher-
ited from the induction and Navier-Stokes equations: non-
linear magnetic and momentum terms are present and its lin-
ear response to small disturbances contains Alfvén waves. It
is concluded that variational data assimilation is indeed ap-
propriate in principle, even though the velocity field remains
hidden at all times; it allows us to recover the entire evo-
lution of both fields from partial and irregularly distributed
information on the magnetic field. This work constitutes a
first step on the way toward the reassimilation of historical
geomagnetic data and geomagnetic forecast.
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1 Introduction

The magnetic observation of the earth with satellites has now
matured to a point where continuous measurements of the
field are available from 1999 onwards, thanks to the Oer-
sted, SAC-C, and CHAMP missions (e.g.Olsen et al., 2000;
Maus et al., 2005, and references therein). In conjunction
with ground-based measurements, such data have been used
to produce a main field model of remarkable accuracy, in par-
ticular concerning the geomagnetic secular variation (GSV)
(Olsen et al., 2006a). Let us stress that we are concerned in
this paper with recent changes in the earth’s magnetic field,
occurring over time scales on the order of decades to cen-
turies. This time scale is nothing compared to the age of the
earth’s dynamo (>3 Gyr), or the average period at which the
dynamo reverses its polarity (a few hundreds of kyr, see for
instanceMerrill et al., 1996), or even the magnetic diffusion
time scale in earth’s core, on the order of 10 kyr (e.g.Backus
et al., 1996). It is, however, over this minuscule time win-
dow that the magnetic field and its changes are by far best
documented (e.g.Bloxham et al., 1989).

Downward-projecting the surface magnetic field at the
core-mantle boundary, and applying the continuity of the
normal component of the field across this boundary, one ob-
tains a map of this particular component at the top of the
core. The catalog of these maps at different epochs con-
stitutes most of the data we have at hand to estimate the
core state. Until now, this data has been exploited within
a kinematic framework (Roberts and Scott, 1965; Backus,
1968): the normal component of the magnetic field is a pas-
sive tracer, the variations of which are used to infer the veloc-
ity that transports it (e.g.Le Mouël, 1984; Bloxham, 1989).
For the purpose of modeling the core field and interpreting its
temporal variations not only in terms of core kinematics, but
more importantly in terms of core dynamics, it is crucial to
make the best use of the new wealth of satellite data that will
become available to the geomagnetic community, especially
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with the launch of the SWARM mission around 2010 (Olsen
et al., 2006b).

This best use can be achieved in the framework of data
assimilation. In this respect, geomagnetists are facing chal-
lenges similar to the ones oceanographers were dealing with
in the early Nineteen-nineties, with the advent of operational
satellite observation of the oceans. Inasmuch as oceanog-
raphers benefited from the pioneering work of their atmo-
sphericist colleagues (data assimilation is routinely used to
improve weather forecasts), geomagnetists must rely on the
developments achieved by the oceanic and atmospheric com-
munities to assemble the first bricks of geomagnetic data as-
similation. Dynamically speaking, the earth’s core is closer
to the oceans than to the atmosphere. The similarity is lim-
ited though, since the core is a conducting fluid whose dy-
namics are affected by the interaction of the velocity field
with the magnetic field it sustains. These considerations, and
their implications concerning the applicability of sophisti-
cated ocean data assimilation strategies to the earth’s core,
will have to be addressed in the future. Today, geomagnetic
data assimilation is still in its infancy (see below for a re-
view of the efforts pursued in the past couple of years). We
thus have to ask ourselves zero-th order questions, such as:
variational or sequential assimilation?

In short, one might be naively tempted to say that vari-
ational data assimilation (VDA) is more versatile than se-
quential data assimilation (SDA), at the expense of a more
involved implementation – for an enlightening introduction
to the topic, seeTalagrand(1997). Through an appropriately
defined misfit function, VDA can in principle answer any
question of interest, provided that one resorts to the appropri-
ate adjoint model. In this paper, we specifically address the
issue of improving initial conditions to better explain a data
record, and show how this can be achieved, working with a
non-linear, one-dimensional magneto-hydrodynamic (MHD)
model. SDA is more practical, specifically geared towards
better forecasts of the model state, for example in numeri-
cal weather prediction (Talagrand, 1997). No adjoint model
is needed here; the main difficulty lies in the computational
burden of propagating the error covariance matrix needed to
perform the so-called analysis, the operation by which past
information is taken into account in order to better forecast
future model states (e.g.Brasseur, 2006).

Promising efforts in applying SDA concepts and tech-
niques to geomagnetism have recently been pursued: Liu
et al. (2007)1 have performed so-called Observing System
Simulation Experiments (OSSEs) using a three-dimensional
model of the geodynamo, to study in particular the response
(as a function of depth) of the core to surface measurements
of the normal component of the magnetic field, for differ-
ent approximations of the above mentioned error covariance

1Liu, D., Tangborn, A., and Kuang, W.: Observing System Sim-
ulation Experiments in Geomagnetic Data Assimilation, J. Geo-
phys. Res., in review, 2007.

matrix. Also, in the context of a simplified one-dimensional
MHD model, which retains part of the ingredients that make
the complexity (and the beauty) of the geodynamo, Sun et
al. (2007)2 have applied an optimal interpolation scheme that
uses a Monte-Carlo method to calculate the same matrix, and
studied the response of the system to assimilation for differ-
ent temporal and spatial sampling frequencies. Both studies
show a positive response of the system to SDA (i.e. better
forecasts).

In our opinion, though, SDA is strongly penalized by its
formal impossibility to use current observations to improve
past data records -even if this does not hamper its poten-
tial to produce good estimates of future core states. As said
above, most of the information we have about the core is less
that 500 yr old (Jackson et al., 2000). This record contains
the signatures of the phenomena responsible for its short-
term dynamics, possibly hydromagnetic waves with periods
of several tens of years (Finlay and Jackson, 2003). Our goal
is to explore the VDA route in order to see to which extent
high-resolution satellite measurements of the earth’s mag-
netic field can help improve the historical magnetic database,
and identify more precisely physical phenomena responsible
for short-term geomagnetic variations. To tackle this prob-
lem, we need a dynamical model of the high-frequency dy-
namics of the core, and an assimilation strategy. The aim of
this paper is to reveal the latter, and illustrate it with a sim-
plified one-dimensional nonlinear MHD model. Such a toy
model, similar to the one used by Sun et al. (2007)2, retains
part of the physics, at the benefit of a negligible computa-
tional cost. It enables intensive testing of the assimilation
algorithm.

This paper is organized as follows: the methodology we
shall pursue in applying variational data assimilation to the
geomagnetic secular variation is presented in Sect.2; its im-
plementation for the one-dimensional, nonlinear MHD toy
model is described in detail in Sect.3. Various synthetic as-
similation experiments are presented in Sect.4, the results of
which are summarized and further discussed in Sect.5.

2 Methodology

In this section, we outline the bases of variational geomag-
netic data assimilation, with the mid-term intent of improv-
ing the quality of the past geomagnetic record using the high-
resolution information recorded by satellites. We resort to
the unified set of notations proposed byIde et al.(1997).
What follows is essentially a transcription of the landmark
paper byTalagrand and Courtier(1987) with these conven-
tions, transcription to which we add the possibility of impos-
ing constraints to the core state itself during the assimilation
process.

2Sun, Z., Tangborn, A., and Kuang, W.: Data assimilation in a
sparsely observed one-dimensional modeled MHD system, Nonlin.
Processes Geophys., submitted, 2007.
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2.1 Forward model

Assume we have a prognostic, nonlinear, numerical model
M which describes the dynamical evolution of the core state
at any discrete timeti, i∈{0, . . . , n}. If 1t denotes the time-
step size, the width of the time window considered here is
tn−t0=n1t , the initial (final) time beingt0 (tn). In formal
assimilation parlance, this is written as

xi+1 = Mi[xi], (1)

in which x is a column vector describing the model state.
If M relies for instance on the discretization of the equa-
tions governing secular variation with a grid-based approach,
this vector contains the values of all the field variables at ev-
ery grid point. The secular variation equations could involve
terms with a known, explicit time dependence, hence the de-
pendence ofM on time in Eq. (1). Within this framework, the
modeled secular variation is entirely controlled by the initial
state of the core,x0.

2.2 Observations

Assume now that we have knowledge of the true dynamical
state of the corext

i through databases of observationsyo col-
lected at discrete locations in space and time:

yo
i = Hi[xt

i] + εi, (2)

in whichHi andεi are the discrete observation operator and
noise, respectively. For GSV, observations consist of (scalar
or vector) measurements of the magnetic field, possibly sup-
plemented by decadal timeseries of the length of day, since
these are related to the angular momentum of the core (Jault
et al., 1988; Bloxham, 1998). The observation operator is
assumed linear and time-dependent: in the context of geo-
magnetic data assimilation, we can safely anticipate that its
dimension will increase dramatically when entering the re-
cent satellite era (1999–present). However,H will always
produce vectors whose dimension is much lower than the di-
mension of the state itself: this fundamental problem of un-
dersampling is at the heart of the development of data assim-
ilation strategies. The observational error is time-dependent
as well: it is assumed to have zero mean and we denote its
covariance matrix at discrete timeti by Ri .

2.3 Quadratic misfit functions

Variational assimilation aims here at improving the definition
of the initial state of the corex0 to produce modeled obser-
vations as close as possible to the observations of the true
state. The distance between observations and predictions is
measured using a quadratic misfit functionJH

JH =

n∑
i=0

[
Hixi − yo

i

]T R−1
i

[
Hixi − yo

i

]
, (3)

in which the superscript “T ” means transpose. In addition
to the distance between observations and predictions of the
past record, we might as well wish to try and apply some
further constraints on the core state that we seek, through the
addition of an extra cost functionJC

JC =

n∑
i=0

xT
i Cxi, (4)

in which C is a matrix which describes the constraint one
would like x to be subject to. This constraint can originate
from some a priori ideas about the physics of the true state
of the system, and its implication on the state itself, should
this physics not be properly accounted for by the modelM,
most likely because of its computational cost. In the context
of geomagnetic data assimilation, this a priori constraint can
come for example from the assumption that fluid motions in-
side the rapidly rotating core are almost invariant along the
direction of earth’s rotation, according to Taylor-Proudman’s
theorem (e.g.Greenspan, 1990). We shall provide the reader
with an example forC when applying these theoretical con-
cepts to the 1-D MHD model (see Sect.4.2).

Consequently, we write the total misfit functionJ as

J =
αH

2
JH +

αC

2
JC, (5)

whereαH andαC are the weights of the observational and
constraint-based misfits, respectively. These two coefficients
should be normalized; we will discuss the normalization in
Sect.4.

2.4 Sensitivity to the initial conditions

To minimize J , we express its sensitivity tox0, namely
∇x0J . With our conventions,∇x0J is a row vector, since
a change inx0, δx0, is responsible for a change inJ , δJ ,
given by

δJ = ∇x0J · δx0. (6)

To compute this gradient, we first introduce the tangent linear
operator which relates a change inxi+1 to a change in the
core state at the preceding discrete time,xi :

δxi+1 = M ′

iδxi . (7)

The tangent linear operatorM ′

i is obtained by linearizing the
modelMi about the statexi . Successive applications of the
above relationship allow us to relate perturbations of the state
vectorxi at a given model timeti to perturbations of the ini-
tial statex0:

δxi =

i−1∏
j=0

M ′

j δx0, ∀i ∈ {1, . . . , n} (8)

The sensitivity ofJ to anyxi expresses itself via

δJ = ∇xi
J · δxi, (9)
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that is

δJ = ∇xi
J ·

i−1∏
j=0

M ′

j δx0, i ∈ {1, . . . , n}. (10)

Additionally, after differentiating Eq. (5) using Eqs. (3) and
(4), we obtain

∇xi
J = αH (Hixi − yo

i )
T R−1

i Hi + αCxT
i C, i ∈ {0, . . . , n}.

Gathering the observational and constraint contributions toJ

originating from every state vectorxi finally yields

δJ =

n∑
i=1

[
αH (Hixi − yo

i )
T R−1

i Hi + αCxT
i C

]
·

i−1∏
j=0

M ′

j δx0

+

[
αH (H0x0 − yo

0)
T R−1

0 H0 + αCxT
0 C

]
δx0

=

{
n∑

i=1

[
αH (Hixi − yo

i )
T R−1

i Hi + αCxT
i C

] i−1∏
j=0

M ′

j

+αH (H0x0 − yo
0)

T R−1
0 H0 + αCxT

0 C

}
δx0,

which implies in turn that

∇x0J =

n∑
i=1

[
αH (Hixi−yo

i )
T R−1

i Hi+αCxT
i C

] i−1∏
j=0

M ′

j

+αH (H0x0 − yo
0)

T R−1
0 H0 + αCxT

0 C. (11)

2.5 The adjoint model

The computation of∇x0J via Eq. (11) is injected in an itera-
tive method to adjust the initial state of the system to try and
minimizeJ . The l + 1-th step of this algorithm is given in
general terms by

xl+1
0 = xl

0 − ρldl, (12)

in which d is a descent direction, andρl an appropriate cho-
sen scalar. In the case of the steepest descent algorithm,
dl

=(∇xl
0
J )T , andρl is an a priori set constant. The descent

direction is a column vector, hence the need to take the trans-
pose of∇xl

0
J . In practice, the transpose of Eq. (11) yields,

at thel-th step of the algorithm,[
∇xl

0
J
]T

=

n∑
i=1

M ′T
0 · · ·M ′T

i−1

[
αH H T

i R−1
i (Hixl

i−yo
i ) + αCCxl

i

]
+αH H T

0 R−1
0 (H0xl

0 − yo
0) + αCCxl

0. (13)

Introducing the adjoint variablea, the calculation of(∇xl
0
J )T

is therefore performed practically by integrating the so-called
adjoint model

al
i−1=M ′T

i−1al
i+αH H T

i−1R−1
i−1(Hi−1xl

i−1−yo
i−1)+αCCxl

i−1, (14)

starting fromal
n+1=0, and going backwards in order to fi-

nally estimate

(∇xl
0
J )T = al

0. (15)

Equation (14) is at the heart of variational data assimilation
(Talagrand, 1997). Some remarks and comments concerning
this so-called adjoint equation are in order:

1. It requires to implement the transpose of the tangent lin-
ear operator, the so-called adjoint operator,M ′T

i . If the
discretized forward model is cast in terms of matrix-
matrix and/or matrix-vector products, then this imple-
mentation can be rather straightforward (see Sect.3).
Still, for realistic applications, deriving the discrete ad-
joint equation can be rather convoluted (e.g.Bennett,
2002, Sect. 4).

2. The discrete adjoint equation (Eq.14) is based on the
already discretized model of the secular variation. Such
an approach is essentially motivated by practical rea-
sons, assuming that we already have a numerical model
of the geomagnetic secular variation at hand. We should
mention here that a similar effort can be performed at
the continuous level, before discretization. The misfit
can be defined at this level; the calculus of its variations
gives then rise to the Euler–Lagrange equations, one of
which being the continuous backward, or adjoint, equa-
tion. One could then simply discretize this equation,
using the same numerical approach as the one used for
the forward model, and use this tool to adjustx0. Ac-
cording toBennett(2002), though, the “discrete adjoint
equation” is not the “adjoint discrete equation”, the for-
mer breaking adjoint symmetry, which results in a solu-
tion being suboptimal (Bennett, 2002, Sect. 4.1.6).

3. Aside from the initial statex0, one can in principle add
model parameters (p, say) as adjustable variables, and
invert jointly for x0 andp, at the expense of expressing
the discrete sensitivity ofJ to p as well. For geomag-
netic VDA, this versatility might be of interest, in order
for instance to assess the importance of magnetic diffu-
sion over the time window of the historical geomagnetic
record.

4. The whole sequence of core statesxl
i, i∈{0, . . . , n}, has

to be kept in memory. This memory requirement can
become quite significant when considering dynamical
models of the GSV. Besides, even if the computational
cost of the adjoint model is by construction equivalent
to the cost of the forward model, the variational assimi-
lation algorithm presented here is at least one or two or-
ders of magnitude more expensive than a single forward
realization, because of the number of iterations needed
to obtain a significant reduction of the misfit function.
When tackling “real” problems in the future (as opposed
to the illustrative problem of the next sections), memory
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and CPU time constraints might make it necessary to
lower the resolution of the forward (and adjoint) mod-
els, by taking parameters values further away from the
real core. A constraint such as the one imposed through
Eq. (4) can then appear as a way to ease the pain and not
to sacrifice too much physics, at negligible extra com-
putational cost.

We give a practical illustration of these ideas and concepts in
the next two sections.

3 Application to a one-dimensional nonlinear MHD
model

We consider a conducting fluid, whose state is fully charac-
terized by two scalar fields,u andb. Formally,b represents
the magnetic field (it can be observed), andu is the velocity
field (it is invisible).

3.1 The forward model

3.1.1 Governing equations

The conducting fluid has densityρ, kinematic viscosityν,
electrical conductivityσ , magnetic diffusivityη, and mag-
netic permeabilityµ (η=1/µσ ). Its pseudo-velocityu and
pseudo-magnetic fieldb are both scalar fields, defined over
a domain of length 2L, [−L, L]. We refer to pseudo fields
here since these fields are not divergence-free. If they were
so, they would have to be constant over the domain, which
would considerably limit their interest from the assimilation
standpoint. Bearing this remark in mind, we shall omit the
‘pseudo’ adjective in the remainder of this study.

We chooseL as the length scale, the magnetic diffusion
time scaleL2/η as the time scale,B0 as the magnetic field
scale, andB0/

√
ρµ as the velocity scale (i.e. the Alfvén

wave speed). Accordingly, the evolution ofu andb is con-
trolled by the following set of non-dimensional equations:

∀(x, t) ∈] − 1, 1[×[0, T ],

∂tu + S u∂xu = S b∂xb + Pm∂2
xu, (16)

∂tb + S u∂xb = S b∂xu + ∂2
xb, (17)

supplemented by the boundary and initial conditions

u(x, t) = 0 if x = ±1, (18)

b(x, t) = ±1 if x = ±1, (19)

+ givenu(·, t = 0), b(·, t = 0). (20)

Equation (16) is the momentum equation: the rate of change
of the velocity is controlled by advection, magnetic forces
and diffusion. Similarly, in the induction equation (17), the
rate of change of the magnetic field results from the compe-
tition between inductive effects and ohmic diffusion.

Two non-dimensional numbers define this system,

S =
√

µ/ρσB0L,

−1 1

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

Fig. 1. An example of a basis function used to discretize the MHD
model in space. This particular Lagrangian interpolant,h150

50 , is
obtained for a polynomial orderN=150, and it is attached to the
51st Gauss–Lobatto–Legendre point.

which is the Lundquist number (ratio of the magnetic diffu-
sion time scale to the Alfv́en time scale), and

Pm = ν/η,

which is the magnetic Prandtl number, a material property
very small for liquid metals -Pm ∼ 10−5 for earth’s core
(e.g.Poirier, 1988).

3.1.2 Numerical model

Fields are discretized in space using one Legendre spec-
tral element of orderN . In such a framework, basis func-
tions are the Lagrangian interpolantshN

i defined over the
collection of N+1 Gauss–Lobatto–Legendre (GLL) points
ξN
i , i∈{0, . . . , N} (for a comprehensive description of the

spectral element method, seeDeville et al., 2002). Figure1
shows such a basis function fori=50, N=150. Having basis
functions defined everywhere over[−1, 1] makes it straight-
forward to define numerically the observation operatorH

(see Sect.3.3). We now drop the superscriptN for the sake
of brevity. The semi-discretized velocity and magnetic fields
are column vectors, denoted with bold fonts

u(t) = [u(ξ0 = −1, t), u(ξ1, t), . . . , u(ξN = 1, t)]T , (21)

b(t) = [b(ξ0 = −1, t), b(ξ1, t), . . . , b(ξN = 1, t)]T . (22)

Discretization is performed in time with a semi-implicit
finite-differencing scheme of order 1, explicit for nonlinear
terms, and implicit for diffusive terms. As in the previous
section, assuming that1t is the time step size, we define
ti=i1t, ui=u(t=ti), bi=b(t=ti), i∈{0, . . . , n}. As a result
of discretization in both space and time, the model is ad-
vanced in time by solving the following algebraic system[

ui+1
bi+1

]
=

[
H−1

u 0
0 H−1

b

] [
fu,i

fb,i

]
, (23)

where

Hu = M/1t + PmK, (24)

www.nonlin-processes-geophys.net/14/163/2007/ Nonlin. Processes Geophys., 14, 163–180, 2007



168 A. Fournier et al.: A case for variational geomagnetic data assimilation
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−1.5

−2.0

ut(·, t = 0)
ut(·, t = T )
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bt(·, t = 0)
bt(·, t = T )

Fig. 2. The true state used for synthetic variational assimilation experiments. Left: the first,t=0 (black) and last,t=T (red) velocity fields.
Right: the first,t=0 (black) and last,t=T (red) magnetic fields.

Hb = M/1t + K, (25)

fu,i = M (ui/1t − Sui � Dui + Sbi � Dbi) , (26)

fb,i = M (bi/1t − Sui � Dbi + Sbi � Dui) , (27)

are the Helmholtz operators acting on velocity field and the
magnetic field, and the forcing terms for each of these two,
respectively. We have introduced the following definitions:

– M, which is the diagonal mass matrix,

– K, which is the so-called stiffness matrix (it is symmet-
ric definite positive),

– �, which denotes the Hadamard product:(b�u)k=(u�

b)k=bkuk,

– andD, the so-called derivative matrix

Dij=
dhN

i

dx
|x=ξj

, (28)

the knowledge of which is required to evaluate the nonlinear
terms. Advancing in time requires to invert both Helmholtz
operators, which we do directly resorting to standard linear
algebra routines (Anderson et al., 1999). Let us also bear in
mind that the Helmholtz operators are symmetric (i.e. self-
adjoint).

In assimilation parlance, and according to the conventions
introduced in the previous section, the state vectorx is con-
sequently equal to[u, b]

T , and its dimension iss=2(N−1)

(since the value of both the velocity and magnetic fields are
prescribed on the boundaries of the domain).

3.2 The true state

Since we are dealing in this paper with synthetic observa-
tions, it is necessary to define the true state of the 1-D sys-
tem as the state obtained via the integration of the numerical
model defined in the preceding paragraph, for a given set of
initial conditions, and specific values of the Lundquist and
magnetic Prandtl numbers,S andPm. The true state (de-
noted with the superscript “t”) will always refer to the fol-
lowing initial conditions

ut (x, t = 0) = sin(πx) + (2/5) sin(5πx), (29)

bt (x, t = 0) = cos(πx) + 2 sin[π(x + 1)/4], (30)

along with S=1 andPm=10−3. The model is integrated
forward in time untilT =0.2 (a fifth of a magnetic diffusion
time). The polynomial order used to compute the true state
is N=300, and the time step size1t=2×10−3. Figure 2
shows the velocity (left) and magnetic field (right) at initial
(black curves) and final (red curves) model times. The low
value of the magnetic Prandtl numberPm reflects itself in
the sharp velocity boundary layers that develop near the do-
main boundaries, while the magnetic field exhibits in con-
trast a smooth profile (the magnetic diffusivity being three
orders of magnitude larger than the kinematic viscosity). To
properly resolve these Hartmann boundary layers there must
be enough points in the vicinity of the domain boundaries:
we benefit here from the clustering of GLL points near the
boundaries (Deville et al., 2002). Besides, even if the mag-
netic profile is very smooth, one can nevertheless point out
here and there kinks in the final profile. These kinks are asso-
ciated with sharp velocity gradients (such as the one around
x=0.75) and are a consequence of the nonlinearb∂xu term
in the induction Eq. (17).

Nonlin. Processes Geophys., 14, 163–180, 2007 www.nonlin-processes-geophys.net/14/163/2007/



A. Fournier et al.: A case for variational geomagnetic data assimilation 169

3.3 Observation of the true state

In order to mimic the situation relevant for the earth’s core
and geomagnetic secular variation, assume that we have
knowledge ofb at discrete locations in space and time, and
that the velocityu is not measurable. For the sake of general-
ity, observations ofb are not necessarily made at collocation
points, hence the need to define a spatial observation oper-
ator HS

i (at discrete timeti) consistent with the numerical
approximation introduced above. IfnS

i denotes the number
of virtual magnetic stations at timeti , and ξo

i,j their loca-

tions (j∈{1, . . . , nS
i }), HS

i is a rectangularnS
i ×(N+1) ma-

trix, whose coefficients write

HS
i,j l = hN

l (ξo
i,j ). (31)

A database of magnetic observationsyo
i =bo

i is therefore pro-
duced at discrete timeti via the matrix-vector product

bo
i = HS

i bt
i . (32)

Integration of the adjoint model also requires the knowledge
of the transpose of the observation operator (Eq.14), the con-
struction of which is straightforward according to the pre-
vious definition. To construct the set of synthetic observa-
tions, we take for simplicity the observational noise to be
zero. During the assimilation process, we shall assume that
estimation errors are uncorrelated, and that the level of confi-
dence is the same for each virtual observatory. Consequently,

Ri = Io, (33)

in which Io is thenS
i × nS

i identity matrix, throughout the
numerical experiments.

As an aside, let us notice that magnetic observations could
equivalently consist of an (arbitrarily truncated) set of spec-
tral coefficients, resulting from the expansion of the mag-
netic field on the basis of Legendre polynomials. Our use
of stations is essentially motivated by the fact that our for-
ward model is built in physical space. For real applications,
a spectral approach is interesting since it can naturally ac-
count for the potential character of the field in a source-free
region; however, it is less amenable to the spatial description
of observation errors, if these do not vary smoothly.

3.4 The adjoint model

3.4.1 The tangent linear operator

As stated in the the previous section, the tangent linear oper-
atorM ′

i at discrete timeti is obtained at the discrete level by
linearizing the model about the current solution(ui, bi). By
perturbing these two fields

ui → ui + δui, (34)

bi → bi + δbi, (35)

we get (after some algebra)[
δui+1
δbi+1

]
=

[
Ai Bi

Ci Ei

] [
δui

δbi

]
having introduced the(N+1)2 following matrices

Ai = H−1
u M (I/1t − SDui � −Sui � D) , (36)

Bi = H−1
u M (Sbi � D + SDbi�) , (37)

Ci = H−1
b M (−SDbi � −Sbi � D) , (38)

Ei = H−1
b M (I/1t − Sui � D + SDui�) . (39)

Aside from the(N+1)2 identity matrixI, matrices and nota-
tions appearing in these definitions have already been intro-
duced in Sect.3.1.2. In connection with the general defini-
tion introduced in the previous section,δxi+1=M ′

iδxi , M ′

i is
the block matrix

M ′

i =

[
Ai Bi

Ci Ei

]
. (40)

3.4.2 Implementation of the adjoint equation

The sensitivity of the model to its initial conditions is com-
puted by applying the adjoint operator,M ′T

i , to the adjoint
variables – see Eq. (14). According to Eq. (40), one gets

M ′T
i =

[
AT

i CT
i

BT
i ET

i

]
, (41)

with each transpose given by

AT
i =

(
I/1t − Sui � DT

− SDT ui�

)
MH−1

u , (42)

BT
i =

(
SDT bi � +Sbi � DT

)
MH−1

u , (43)

CT
i =

(
−Sbi � DT

− SDT bi�

)
MH−1

b , (44)

ET
i =

(
I/1t − SDT ui � +Sui � DT

)
MH−1

b . (45)

In writing the equation in this form, we have used the sym-
metry properties of the Helmholtz and mass matrices, and
introduced the transpose of the derivative matrix,DT . Pro-
gramming the adjoint model is very similar to programming
the forward model, provided that one has cast the latter in
terms of matrix-matrix, matrix-vector, and Hadamard prod-
ucts.

4 Synthetic assimilation experiments

Having all the numerical tools at hand, we start out by assum-
ing that we have imperfect knowledge of the initial model
state, through an initial guessxg

0, with the model parameters
and resolution equal to the ones that helped us define the true
state of Sect.3.2. We wish here to quantify how assimilation
of observations can help improve the knowledge of the ini-
tial (and subsequent) states, with particular emphasis on the
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influence of spatial and temporal sampling. In the series of
results reported in this paragraph, the initial guess at model
initial time is:

ug(x, t=0) = sin(πx), (46)

bg(x, t=0) = cos(πx)+2 sin[π(x+1)/4]+(1/2) sin(2πx). (47)

With respect to the true state at the initial time, the first guess
is missing the small-scale component ofu, i.e. the second
term on the right-hand side of Eq. (29). In addition, our es-
timate ofb has an extra parasitic large-scale component (the
third term on the right-hand side of Eq.47), a situation that
could occur when dealing with the GSV, for which the im-
portance of unmodeled small-scale features has been recently
put forward given the accuracy of satellite data (Eymin and
Hulot, 2005). Figure3 shows the initial and finalug andbg,
along withut andbt at the same epochs for comparison, and
the difference between the two, multiplied by a factor of five.
Differences inb are not pronounced. Over the time window
considered here, the parasitic small-scale component has un-
dergone considerable diffusion. To quantify the differences
between the true state and the guess, we resort to theL2 norm

‖f ‖ =

√∫
+1

−1
f 2dx,

and define the relative magnetic and fluid errors at timeti by

eb
i =

∥∥∥bt
i − b

f
i

∥∥∥ /
∥∥bt

i

∥∥ , (48)

eu
i =

∥∥∥ut
i − u

f
i

∥∥∥ /
∥∥ut

i

∥∥ . (49)

The initial guess given by Eqs. (46–47) is characterized by
the following errors:eb

0=21.6%, eb
n=2.9%, eu

0=37.1%, and
eu
n=37.1%.

4.1 Improvement of the initial guess with no a priori con-
straint on the state

4.1.1 Regular space and time sampling

Observations ofbt are performed atnS virtual observato-
ries which are equidistant in space, at a number of epochs
nt evenly distributed over the time interval. Assuming no a
priori constraint on the state, we setαC=0 in Def. (5). The
other constantαH =1/(ntnS).

The minimization problem is tackled by means of a con-
jugate gradient algorithm,̀a la Polak–Ribìere (Shewchuk,
1994). Iterations are stopped either when the initial misfit
has decreased by 8 orders of magnitude, or when the itera-
tion count exceeds 5000. In most cases, the latter situation
has appeared in our simulations. A typical minimization is
characterized by a fast decrease in the misfit during the first
few tens of iterations, followed by a slowly decreasing (al-
most flat) behaviour. Even if the solution keeps on getting
better (i.e. closer to the synthetic reality) during this slow
convergence period, practical considerations (having in mind

the cost of future geomagnetic assimilations) prompted us to
stop the minimization.

A typical example of a variational assimilation result is
shown in Fig.4. In this case,nS

=20 andnt=20. The recov-
ery of the final magnetic fieldbn is excellent (see Fig.4d),
the relativeL2 error being 1.8×10−4. The benefit here is
double: first, the network of observatories is dense enough
to sample properly the field, and second, a measurement is
made exactly at this discrete time instant, leaving no time for
error fields to develop. When the latter is possible, the re-
covered fields can be contaminated by small-scale features,
that is features that have length scales smaller than the spatial
sampling scale. We see this happening in Fig.4c, in which
the magnified difference between the recovered and trueb0,
shown in blue, appears indeed quite spiky;eb

0 has still de-
creased from an initial value of 21.6% (Fig. 3c) down to
1.2%. Results for velocity are shown in Figs. 4a and b. The
recovered velocity is closer to the true state than the initial
guess: this is the expected benefit from the nonlinear cou-
pling between velocity and magnetic field in Eqs. (16–17).
The indirect knowledge we have ofu, through the observa-
tion of b, is sufficient to get better estimates of this field vari-
able. At the end of the assimilation process,eu

0 andeu
n, which

were approximately equal to 37% with the initial guess, have
been brought down to 8.2 and 4.7 %, respectively. The veloc-
ity at present time (Fig.4) is remarkably close to the true ve-
locity, save for the left boundary layer sharp structure, which
is undersampled (see the distribution of red triangles). We
further document the dynamical evolution ofL2 errors by
plotting on Fig.5 the temporal evolution ofeb andeu for this
particular configuration. Instants at which observations are
made are represented by circles, and the temporal evolution
of the guess errors are also shown for comparison. The guess
for the initial magnetic field is characterized by a decrease
of the error that occurs over≈.1 diffusion time scale, that
is roughly the time it takes for most of the parasitic small-
scale error component to diffuse away, the error being then
dominated at later epochs by advection errors, originating
from errors in the velocity field. The recovered magnetic
field (Fig.5a, solid line), is in very good agreement with the
true field as soon as measurements are available (t≥1% of
a magnetic diffusion time, see the circles on Fig.5a). Even
though no measurements are available for the initial epoch,
the initial field has also been corrected significantly, as dis-
cussed above. In the latter parts of the record, oscillations
in the magnetic error field are present – they disappear if the
minimization is pushed further (not shown).

The unobserved velocity field does not exhibit such a dras-
tic reduction in error as soon as observations are available
(Fig. 5b, solid line). Still, it is worth noticing that the ve-
locity error is significantly smaller in the second part of the
record, in connection with the physical observation that most
of the parasitic small-scale component of the field has de-
cayed away (see above): advection errors dominate in deter-
mining the time derivative ofb in Eq. (17), leaving room for
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Fig. 3. Initial guesses used for the variational assimilation experiments, plotted against the corresponding true state variables. Also plotted
is five times the difference between the two.(a) velocity at time 0.(b) velocity at final timeT . (c) magnetic field at time 0.(d) magnetic
field at final timeT . In each panel, the true state is plotted with the black line, the guess with the green line, and the magnified difference
with the blue line.

a better assessment of the value ofu. For other cases (differ-
entnS andnt), we find a similar behaviour (not shown). We
comment on the effects of an irregular time sampling on the
above observations in Sect.4.1.3.

Having in mind what one gets in this particular(nt, nS)

configuration, we now summarize in Fig.6 results obtained
by varying systematically these 2 parameters. After assimi-
lation, the logarithmic value of theL2 velocity and magnetic
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Fig. 4. Synthetic assimilation results.(a) velocity at initial model timet=0. (b) velocity at final timet=T . (c) magnetic field at initial time
t=0. (d) magnetic field at final timet=T . In each panel, the true field is plotted in black, the assimilated field (starting from the guess shown
in Fig. 3) in green, and the difference between the two, multiplied by a factor of 5, is shown in blue. The red triangles indicate the location
of thenS virtual magnetic observatories (nS

=20 in this particular case).

field errors, at the initial and final stages (i=0 andi=n), are
plotted versusnt , usingnS

=5, 10, 20, 50, and 100 virtual
magnetic stations. As far as temporal sampling is concerned,
nt can be equal to 1 (having one observation at present time
only), 10, 20, 50 or 100. Inspection of Fig.6 leads us to make
the following comments:

– Regardingb:

– 50 stations are enough to properly sample the mag-

netic field in space. In this casent=1 is sufficient
to properly determinebn, and no real improvement
is made when increasingnt (Fig. 6b). During the
iterative process, the value of the field is brought
to its observed value at every station of the dense
network, and this is it: no dynamical information is
needed.

– When, on the other hand, spatial sampling is not
good enough, information on the dynamics ofb
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Fig. 5. Dynamical evolution ofL2 errors (logarithmic value) for the magnetic field(a) and the fluid velocity(b). Dashed lines: errors for
initial guesses. Solid lines: errors after variational assimilation. Circles represent instants are which magnetic observations are made. In this
particular case,nt=20 andnS

=20.

helps improve partially its knowledge at present
time. For instance, we get a factor of 5 reduc-
tion in eb

n with nS
=20, going fromnt=1 to nt=10

(Fig. 6b, circles). The improvement then stabilizes
upon increasingnt : spatial error dominates.

– This also applies for the initial magnetic fieldb0,
see Fig.6a. As a matter of fact, having no dy-
namical information aboutb (nt=1) precludes any
improvement onb0, for any density of the spatial
network. Improvement occurs fornt>1. If the spa-
tial coverage is good enough (nS>50), no plateau
is reached, since the agreement between the assim-
ilated and true fields keeps on getting better, as it
should.

– Regardingu:

– The recoveredu is always sensitive to spatial reso-
lution, even fornt=1 (Figs.6c and6d).

– If nt is increased, the error decreases and reaches
a plateau which is again determined by spatial res-
olution. This holds foreu

0 andeu
n. For the reason

stated above,un is better known thanu0. The er-
ror is dominated in both cases by a poor description
of the left boundary layer (see the blue curves in
Figs.4a and b). The gradient associated with this
layer is not sufficiently well constrained by mag-
netic observations (one reason being that the mag-
netic diffusivity is three times larger than the kine-

matic viscosity). Consequently, we can speculate
that the error made in this specific region at the final
time is retro-propagated and amplified going back-
wards in time, through the adjoint equation, result-
ing in eu

0>eu
n.

4.1.2 Irregular spatial sampling

We have also studied the effect of an irregular spatial sam-
pling by performing a suite of simulations identical to the
ones described above, save that we assumed that stations
were only located in the left half of the domain (i.e. the
[−1, 0] segment).

The global conclusion is then the following: assimilation
results in an improvement of estimates ofb andu in the sam-
pled region, whereas no benefit is visible in the unconstrained
region. To illustrate this tendency (and keep a long story
short), we only report in Fig.7 the recoveredu and b for
(nS, nt)=(10, 20), which corresponds to the “regular” case
depicted in Fig.4, deprived from its 10 stations located in
[0, 1]. The lack of transmission of information from the left-
hand side of the domain to its right-hand side is related to
the short duration of model integration (0.2 magnetic diffu-
sion time, which corresponds to 0.2 advective diffusion time
with our choice ofS=1). We shall comment further on the
relevance of this remark for the assimilation of the historical
geomagnetic secular variation in the discussion.

The lack of observational constraint on the right-hand side
of the domain results sometimes in final errors larger than
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Fig. 6. Systematic study of the response of the one-dimensional MHD system to variational assimilation. Shown are the logarithms ofL2
errors for thet=0 (a) andt=T (b) magnetic field, and thet=0 (c) andt=T (d) velocity field, versus the number of times observations are
made over [0,T],nt , using spatial networks of varying density (nS

=5, 10, 20, 50 and 100).

the initial ones (compare in particular Figs.7a and b, with
Figs. 4a and b).

We also note large error oscillations located at the interface
between the left (sampled) and right (not sampled) regions,
particularly at initial model time (Figs.7a and7c). The con-
trast in spatial coverage is likely to be the cause of these os-
cillations (for which we do not have a formal explanation);
this type of behaviour should be kept in mind for future geo-
magnetic applications.

4.1.3 Irregular time sampling

We can also assume that the temporal sampling rate is not
constant (keeping the spatial network of observatories ho-

mogeneous), restricting for instance drastically the epochs at
which observations are made to the last 10% of model inte-
gration time, the sampling rate being ideal (that is perform-
ing observations at each model step). Not surprisingly, we
are penalized by our total ignorance of the 90 remaining per
cent of the record. We illustrate the results obtained after as-
similation with our now well-known array ofnS

=20 stations
by plotting the evolution of the errors inb andu (as defined
above) versus time in Fig.8. Although the same amount
of information (nSnt=400) has been collected to produce
Figs.5 and8, the uneven temporal sampling of the latter has
dramatic consequences on the improvement of the estimate
of b. In particular, the initial erroreb

0 remains large. The error
decreases then linearly with time until the first measurement
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Fig. 7. Synthetic assimilation results obtained with an asymmetric network of virtual observatories (red triangles). Other model and
assimilation parameters as in Fig.4. (a) velocity at initial model timet=0. (b) velocity at final model timet=T . (c) magnetic field att=0.
(d) magnetic field att=T . In each panel, the true field is plotted in black, the assimilated field in green, and the difference between the two,
multiplied by a factor of 5, is shown in blue.

is made. We also observe that the minimumeb is obtained
in the middle of the observation era. The poor quality of
the temporal sampling, coupled with the not-sufficient spa-
tial resolution obtained with these 20 stations, does not allow

us to reach error levels as small as the ones obtained in Fig.5,
even at epochs during which observations are made. The ve-
locity is sensitive to a lesser extent to this effect, with velocity
errors being roughly 2 times larger in Fig.8 than in Fig.5.
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Fig. 8. Same as Fig.5, save that thent=20 epochs at which measurements are made are concentrated over the last 10% of model integration
time.

4.2 Imposing an a priori constraint on the state

As stated in Sect.2, future applications of variational data as-
similation to the geomagnetic secular variation might require
to try and impose a priori constraints on the core state. In
a kinematic framework, this is currently done in order to re-
strict the extent of the null space when trying to invert for the
core flow responsible for the GSV (Backus, 1968; Le Mouël,
1984).

Assume for instance that we want to try and minimize the
gradients of the velocity and magnetic fields, in a proportion
given by the ratio of their diffusivities, that is the magnetic
Prandtl numberPm, at any model time. The associated cost
function is written

JC =

n∑
i=0

[
bT

i DT Dbi + Pm
(
uT

i DT Dui

)]
, (50)

in which D is the derivative matrix introduced in Sect.3.1.2.
The total misfit reads, according to Eq. (5)

J = αH JH + αCJC,

with αH =1/(ntnS) as before, andαC=β/[n(N−1)], in
which β is the parameter that controls the constraint to ob-
servation weight ratio. Response of the assimilated model
to the imposed constraint is illustrated in Fig.9, using the
(nt=20, nS

=20) reference case of Fig.4, for three increas-
ing values of theβ parameter: 10−1, 1, and 101, and showing
also for reference what happens whenβ=0. We show the er-
ror fields (the scale is arbitrary, but the same for all curves) at

the initial model time, for velocity (left panel) and magnetic
field (right panel). TheL2 errors for each field at the end of
assimilation indicate that this particular constraint can result
in marginally better estimate of the initial state of the model,
provided that the value of the parameterβ is kept small. For
β=10−1, the initial magnetic field is much smoother than the
one obtained without the constraint and makes more physical
sense (Fig.9d). The associated velocity field remains spiky,
with peak to peak error amplitudes strongly reduced in the
heart of the computational domain (Fig.9c). This results in
smaller errors (reduction of about 20% forb0 and 10% for
u0). Increasing further the value ofβ leads to a magnetic
field that is too smooth (and an error field even dominated
by large-scale oscillations, see Fig.9h), simply because too
much weight has been put on the large-scale components of
b. The velocity error is now also smooth (Fig.9g), at the ex-
pense of a velocity field being further away from the sought
solution (eu

0=11.7%), especially in the left Hartmann bound-
ary layer. In the case of real data assimilation (as opposed to
the synthetic case here, the true state of which we know, and
departures from which we can easily quantify), we do not
know the true state. To get a feeling for the response of the
system to the imposition of an extra constraint, it is never-
theless possible to monitor for instance the convergence be-
haviour during the descent. On Fig.10, the ratio of the misfit
to its initial value is plotted versus the iteration number in the
conjugate gradient algorithm (log-log plot). Ifβ is small, the
misfit keeps on decreasing, even after 5000 iterations (green
curve). On the other hand, a too strong a constraint (blue
and red curves in Fig.10) is not well accommodated by the
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Fig. 9. Influence of an a priori imposed constraint (in this case
aiming at reducing the gradients in the model state) on the results of
variational assimilation. Shown are the difference fields (arbitrary
scales) between the assimilated and true states, for the velocity field
(left panel) and the magnetic field (right panel), at initial model
time. Again, as in Fig.4, we have madent=20 measurements at
nS

=20 evenly distributed stations.β measures the relative ratio of
the constraint to the observations. Indicated for reference are the
L2 errors corresponding to each configuration. The grey line is the
zero line.

model and results in a rapid flattening of the convergence
curve, showing that convergence behaviour can be used as a
proxy to assess the efficacy of an a priori imposed constraint.

Again, we have used the constraint given by Eq. (50) for
illustrative purposes, and do not claim that this specific low-
pass filter is mandatory for the assimilation of GSV data.
Similar types of constraints are used to solve the kinematic
inverse problem of GSV (Bloxham and Jackson, 1991); see
alsoPais et al.(2004) andAmit and Olson(2004) for recent
innovative studies on the subject. The example developed
in this section aims at showing that a formal continuity ex-
ists between the kinematic and dynamical approaches to the
GSV.

4.3 Convergence issues

In most of the cases presented above, the iteration counts
had reached 5000 before the cost function had decreased by 8
orders of magnitude. Even though the aim of this paper is not
to address specifically the matter of convergence acceleration
algorithms, a few comments are in order, since 5000 is too
large a number when considering two- or three-dimensional
applications.

– In many cases, a reduction of the initial misfit by only 4
orders of magnitude gives rise to decent solutions, ob-
tained typically in a few hundreds of iterations. For ex-
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Fig. 10. Convergence behaviour for different constraint levelsβ.
The ratio of the current value of the misfitJ l (normalized by its
initial valueJ0) is plotted against the iteration countl. β measures
the strength of the constraint imposed on the state relative to the
observations.

ample, in the case corresponding to Fig.4, a decrease
of the initial misfit by 4 orders of magnitude is ob-
tained after 475 iterations. The resulting error levels
are already acceptable:eu

0=12×10−2, eu
n=7.5×10−2,

eb
0=1.8×10−2, andeb

n=3.0×10−4.

– More importantly, in future applications, convergence
will be sped up through the introduction of a back-
ground error covariance matrixB, resulting in an extra
term (Ide et al., 1997)

1

2
[x0 − xb]

T B−1
[x0 − xb]

added to the cost function (Eq.5). Here, xb denotes
the background state at model time 0, the definition of
which depends on the problem of interest. In order to il-
lustrate how this extra term can accelerate the inversion
process, we have performed the following assimilation
experiment: we take the network of virtual observato-
ries of Fig.4, and define the background state at model
time 0 to be zero for the velocity field (which is not di-
rectly measured), and the polynomial extrapolation of
the t=0 magnetic observations made at thenS

=20 sta-
tions on theN+1 GLL grid points for the magnetic field
(resorting to Lagrangian interpolants defined by the net-
work of stations). The background error covariance ma-
trix is chosen to be diagonal, without cross-covariance
terms. This approach enables a misfit reduction by
5 orders of magnitude in 238 iterations, with the fol-
lowing L2 error levels:eu

0=13×10−2, eu
n=11.9×10−2,

eb
0=2.6×10−5, and eb

n=2.6×10−4. This rather crude
approach is beneficial for a) the computational cost and
b) the estimate of the magnetic field. The recovery of
the velocity is not as good as it should be, because we
have made no assumption at all on the background ve-
locity field. In future applications of VDA to the GSV,
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Fig. 11. Dynamical evolution ofL2 errors (logarithmic value) for the magnetic field(a) and the fluid velocity(b). Black lines: errors for
initial guesses. Green (red) lines: errors for assimilation results that do (not) incorporate the data obtained by a dense virtual network of
magnetic stations, which aims at mimicking the satellite era – the blue segment on each panel –, spanning the last 5% of model integration
time.

some a priori information on the background velocity
field inside the core will have to be introduced in the as-
similation process. The exact nature of this information
is beyond the scope of this study.

5 Summary and conclusion

We have laid the theoretical and technical bases necessary to
apply variational data assimilation to the geomagnetic secu-
lar variation, with the intent of improving the quality of the
historical geomagnetic record. For the purpose of illustra-
tion, we have adapted these concepts (well established in
the oceanographic and atmospheric communities) to a one-
dimensional nonlinear MHD model. Leaving aside the tech-
nical details exposed in Sect.3, we can summarize our find-
ings and ideas for future developments as follows:

– Observations of the magnetic field always have a posi-
tive impact on the estimate of the invisible velocity field,
even if these two fields live at different length scales (as
could be expected from the small value of the magnetic
Prandtl number).

– With respect to a purely kinematic approach, hav-
ing successive observations dynamically related by the
model allows one to partially overcome errors due to
a poor spatial sampling of the magnetic field. This is
particularly encouraging in the prospect of assimilating

main geomagnetic field data, the resolution of which is
limited to spherical harmonic degree 14 (say), because
of (remanent or induced) crustal magnetization.

– Over the model integration time (20% of an advection
time), regions poorly covered exhibit poor recoveries of
the true fields, since information does not have enough
time to be transported there from well covered regions.
In this respect, model dynamics clearly controls assim-
ilation behaviour. Concerning the true GSV, the time
window we referred to in the introduction has a width of
roughly a quarter of an advective time scale. Again, this
is rather short to circumvent the spatial limitations men-
tioned above, if advective transport controls the GSV
catalog. This catalog, however, could contain the signa-
ture of global hydromagnetic oscillations (Hide, 1966;
Finlay and Jackson, 2003), in which case our hope is
that problems due to short duration and coarse spatial
sampling should be alleviated. This issue is currently
under investigation in our simplified framework, since
the toy model presented here supports Alfvén waves.

– A priori imposed constraints (such as the low-pass fil-
ter of Sect.4.2) can improve assimilation results. They
make variational data assimilation appear in the formal
continuity of kinematic geomagnetic inverse problems
as addressed by the geomagnetic community over the
past 40 years.
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Finally, in order to illustrate the potential interest of applying
VDA techniques to try and improve the recent GSV record,
we show in Fig.11 the results of two synthetic assimilation
experiments. These are analogous to the ones described in
great length in Sect.4 (same physical and numerical param-
eters, constraint parameterβ=10−1). In both cases, observa-
tions are made by a network of 6 evenly distributed stations
during the first half of model integration time (the logbooks
era, say). The second half of the record is then produced
by a network of 15 stations for case A (the observatory era).
For case B, this is also the case, save that the last 5% of the
record are obtained via a high-resolution network of 60 sta-
tions. The two records therefore only differ in the last 5%
of model integration time. Case B is meant to estimate the
potential impact of the recent satellite era on our description
of the historical record.

The evolution of the magnetic erroreb backwards in time
(Fig. 11a) shows that the benefit due to the dense network is
noticeable over three quarters of model integration time, with
an error reduction of roughly a factor of 5. The velocity field
is (as usual) less sensitive to the better quality of the record;
still, it responds well to it, with an average decrease ofeu on
the order of 20%, evenly distributed over the time window.

Even if obtained with a simplified model (bearing in par-
ticular in mind that real geomagnetic observations are only
available at the core surface), these results are promising and
indicate that VDA should certainly be considered as the nat-
ural way of using high-quality satellite data to refine the his-
torical geomagnetic record in order to “reassimilate” (Tala-
grand, 1997) pre-satellite observations. To do so, a good
initial guess is needed, which is already available (Jackson
et al., 2000); also required is a forward model (and its ad-
joint) describing the high-frequency physics of the core. This
model could either be a full three-dimensional model of the
geodynamo, or a two-dimensional, specific model of short-
period core dynamics, based on the assumption that this dy-
namics is quasi-geostrophic (Jault, 2006). The latter possi-
bility is under investigation.
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Le Mouël, J.-L.: Outer core geostrophic flow and secular variation
of Earth’s magnetic field, Nature, 311, 734–735, 1984.

Maus, S., L̈uhr, H., Balasis, G., Rother, M., and Mandea, M.: In-

www.nonlin-processes-geophys.net/14/163/2007/ Nonlin. Processes Geophys., 14, 163–180, 2007



180 A. Fournier et al.: A case for variational geomagnetic data assimilation

troducing POMME, the POstam Magnetic Model of the Earth,
in: Earth observation with CHAMP, edited by: Reigber, C.,
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