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Abstract: The minimum number of colors required to give a graph G an adjacent vertex-

distinguishing edge partition was studied. Based on the classification of the degree of a

graph, this paper proved that every graph without K2 of minimum degree at least 188

permits an adjacent vertex-distinguishing 3-edge partition. The result is more superior

than previous ones.
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0 Introduction

Let G be a finite simple graph. A partition of the edges of a graph G into sets {S1, · · · , Sk}
defines a multiset Xv for each vertex v where the multiplicity of i in Xv (duplicate elements are
allowed) is the number of edges incident to v in Si. It is adjacent vertex-distinguishing if for
every edge (u, v), the multiset Xu is distinct from Xv. Similarly, it is vertex-distinguishing if for
all pairs of distinct vertices u and v, Xu 6= Xv. A k-edge-weighting of a graph G is an assignment
of k colors to each edge e. An edge-weighting is vertex-coloring if for every edge (u, v), the colors
cu and cv are distinct, where the colors of a vertex is defined as the sum of the weights on the
edges incident to that vertex. Similarly, an edge-weighting is vertex-distinguishing if for all
pairs of distinct vertices u and v, cu is distinct from cv.
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If a k-edge-weighting is vertex-coloring then it is adjacent vertex-distinguishing, though
the converse may not hold. Clearly, a graph cannot have a vertex-coloring edge weighting or an
adjacent vertex-distinguishing edge partition if it has a component which is isomorphic to K2.
The concept of vertex-coloring edge weighting was introduced in [1], where was conjectured
that every graph without K2 permits a vertex-coloring 3-edge-weighting. Then, [2] showed that
every graph without K2 permits a vertex-coloring 30-edge-weighting. The similar concept of
vertex-distinguishing edge weighting has been considered in [3,4].

For a k-edge-coloring of a simple graph G, it is proper if no two adjacent edges are assigned
the same color. An edge coloring of a graph is said to be adjacent vertex-distinguishing if for
every vertex u adjacent to v, the set of colors assigned to the set of edges incident to u differs
from the set of colors assigned to the set of edges incident to v. It is vertex-distinguishing if
each pair of vertices is incident to a different set of colors. The concept of vertex-distinguishing
proper edge coloring and non-proper vertex-distinguishing edge coloring have been studied in
many papers (see for example [5-8]). Adjacent vertex-distinguishing edge colorings are studied
in [9] (for non-proper colorings) and [10] (for proper colorings).

In paper [11], they proved that every graph without K2 permits an adjacent vertex-
distinguishing 4-edge partition and that graphs of minimum degree at least 1000 permits an
adjacent vertex-distinguishing 3-edge partition. This paper will improve the condition of the
theorem in [11], then we have the following theorem:

Theorem 1 Every graph without K2 of minimum degree at least 188 permits an adjacent
vertex-distinguishing 3-edge partition.

We shall prove Theorem 1 in Section 2. Therefore the following lemmas will be useful.

1 Preliminary results

If H is a spanning subgraph of G, or if W is a subset of V = V (G), then dH(v) denotes
the number of neighbors of v in H and dW (v) denotes |N(v)

⋂
W | where N(v) is the set of

neighbors of v in G.
Lemma 1.1[11] Every graph G can be partitioned into two subgraphs G1 and G2 such

that for all v,

dG1(v) ∈
{⌊

dG(v)
2

⌋
,

⌊
dG(v)

2

⌋
+ 1

}
.

Lemma 1.2[11] Suppose that for some graph G we have chosen, for every vertex v, two
integers a−

v and a+
v such that dG(v)

3 6 a−
v 6 dG(v)

2 and dG(v)
2 6 a+

v 6 2dG(v)
3 . Then there is a

spanning subgraph H of G such that for every vertex v:

dH(v) ∈ {a−
v , a−

v + 1, a+
v , a+

v + 1}.

In [11], we have the proofs of Lemma 1.1 and Lemma 1.2.
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2 The proof of Theorem 1

Let G be a graph of minimum degree > 188. We can give a greedy vertex-coloring of G

such that for each vertex v, the color c(v) of G is between 0 and dG(v). We think of c(v) as a
pair (p(v), r(v)) where

p(v) =
⌊

c(v)
d
√

dG(v)e

⌋
and r(v) = c(v)mod

⌈√
dG(v)

⌉
.

By Lemma 1.1, G can be partitioned into two subgraphs G1 and G2 such that

dGi(v) ∈
{⌊

dG(v)
2

⌋
− 1,

⌊
dG(v)

2

⌋
,

⌊
dG(v)

2

⌋
+ 1

}
.

We set

a−
v (1) =

⌊
dG(v)

4

⌋
− p(v) − 1, a+

v (1) =
⌊

dG(v)
4

⌋
+ p(v) + 1.

Since 0 6 p(v) 6
⌊

dG(v)

d
√

dG(v)e

⌋
6

⌊√
dG(v)

⌋
6

√
dG(v) and dG(v) > 188, we have

a−
v (1) 6 1

2

⌊
dG(v)

2

⌋
− p(v) − 1 =

1
2

(⌊
dG(v)

2

⌋
− 1

)
− p(v) − 1

2
6 1

2

(⌊
dG(v)

2

⌋
− 1

)
6 dG1(v)

2
,

and

a+
v (1) > 1

2

⌊
dG(v)

2

⌋
− 1

2
+ p(v) + 1 =

1
2

(⌊
dG(v)

2

⌋
+ 1

)
+ p(v) > 1

2

(⌊
dG(v)

2

⌋
+ 1

)
> dG1(v)

2
.

We can also prove that

a−
v (1) > dG1(v)

3
, a+

v (1) 6 2dG1(v)
3

.

In fact, we consider the values of dG(v) according to the following four cases:

Case 1 dG(v) = 4k (k ∈ Z+), then we have k > 47, and

a−
v (1) > k −

√
4k − 1, a+

v (1) 6 k +
√

4k + 1.

As well,
dG1(v)

3
6 1

3

(⌊
dG(v)

2

⌋
+ 1

)
=

1
3
(2k + 1),

2dG1(v)
3

> 2
3

(⌊
dG(v)

2

⌋
− 1

)
=

2
3
(2k − 1).

To ensure that a−
v (1) > dG1 (v)

3 , a+
v (1) 6 2dG1 (v)

3 , it is enough that

k −
√

4k − 1 > 1
3
(2k + 1), k +

√
4k + 1 6 2

3
(2k − 1).

That is k − 6
√

k − 4 > 0, k − 6
√

k − 5 > 0. By calculating, when k >47, both of the above
two inequalities hold.
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Case 2 dG(v) = 4k + 1 (k ∈ Z+), then we have k > 47, and

a−
v (1) > k −

√
4k + 1 − 1, a+

v (1) 6 k +
√

4k + 1 + 1.

As well,
dG1(v)

3
6 1

3

(⌊
dG(v)

2

⌋
+ 1

)
=

1
3
(2k + 1),

2dG1(v)
3

> 2
3

(⌊
dG(v)

2

⌋
− 1

)
=

2
3
(2k − 1).

To ensure that a−
v (1) > dG1 (v)

3 , a+
v (1) 6 2dG1 (v)

3 , it is enough that

k −
√

4k + 1 − 1 > 1
3
(2k + 1), k +

√
4k + 1 + 1 6 2

3
(2k − 1).

That is k − 3
√

4k + 1 − 4 > 0, k − 3
√

4k + 1 − 5 > 0. By calculating, when k >47, both of
the above two inequalities hold.

Case 3 dG(v) = 4k + 2 (k ∈ Z+), then we have k > 47, and

a−
v (1) > k −

√
4k + 2 − 1, a+

v (1) 6 k +
√

4k + 2 + 1.

As well,

dG1(v)
3

6 1
3

(⌊
dG(v)

2

⌋
+ 1

)
=

1
3
(2k + 1 + 1) =

2
3
(k + 1),

2dG1(v)
3

> 2
3

(⌊
dG(v)

2

⌋
− 1

)
=

2
3
(2k + 1 − 1) =

4k

3
.

To ensure that a−
v (1) > dG1 (v)

3 , a+
v (1) 6 2dG1 (v)

3 , it is enough that

k −
√

4k + 2 − 1 > 2
3
(k + 1), k +

√
4k + 2 + 1 6 4k

3
.

That is, k − 3
√

4k + 2 − 5 > 0, k − 3
√

4k + 2 − 3 > 0. By calculating, when k >47, both of
the above two inequalities hold.

Case 4 dG(v) = 4k + 3 (k ∈ Z+), then we have k > 47, and

a−
v (1) > k −

√
4k + 3 − 1, a+

v (1) 6 k +
√

4k + 3 + 1.

As well,

dG1(v)
3

6 1
3

(⌊
dG(v)

2

⌋
+ 1

)
=

1
3
(2k + 1 + 1) =

2
3
(k + 1),

2dG1(v)
3

> 2
3

(⌊
dG(v)

2

⌋
− 1

)
=

2
3
(2k + 1 − 1) =

4k

3
.

To ensure that a−
v (1) > dG1 (v)

3 , a+
v (1) 6 2dG1 (v)

3 , it is enough that

k −
√

4k + 3 − 1 > 2
3
(k + 1), k +

√
4k + 3 + 1 6 4k

3
.
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That is k − 3
√

4k + 3 − 5 > 0, k − 3
√

4k + 3 − 3 > 0. By calculating, when k >47, both of
the above two inequalities hold.

So, by Lemma 1.2, we find a spanning subgraph H1 of G1 such that for every vertex v:

dH1(v) ∈ {a−
v (1), a−

v (1) + 1, a+
v (1), a+

v (1) + 1}.

We set
a−

v (2) = bdG(v)
4

c − r(v) − 1, a+
v (2) = bdG(v)

4
c + r(v) + 1.

Since 0 6 r(v) 6
√

dG(v), by Lemma 1.2, as the proof of the above, we can find a spanning
subgraph H2 of G2 such that for every vertex v:

dH2(v) ∈ {a−
v (2), a−

v (2) + 1, a+
v (2), a+

v (2) + 1}.

We label the edges of Hi with color i and the remaining edges with label 0. If u and v

are not distinguished by our labeling, then dG(u) = dG(v), dH1(u) = dH1(v), dH2(u) = dH2(v)
from which it follows that p(u) = p(v) and r(u) = r(v), that is, c(u) = c(v). But, by greedily
coloring, this implies uv∈E(G).
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