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Abstract: The minimum number of colors required to give a graph G an adjacent vertex-
distinguishing edge partition was studied. Based on the classification of the degree of a
graph, this paper proved that every graph without K2 of minimum degree at least 188
permits an adjacent vertex-distinguishing 3-edge partition. The result is more superior
than previous ones.
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0 Introduction

Let G be a finite simple graph. A partition of the edges of a graph G into sets {S1,- -, Sk}
defines a multiset X, for each vertex v where the multiplicity of ¢ in X, (duplicate elements are
allowed) is the number of edges incident to v in S;. It is adjacent vertex-distinguishing if for
every edge (u,v), the multiset X, is distinct from X,,. Similarly, it is vertex-distinguishing if for
all pairs of distinct vertices u and v, X,, # X,,. A k-edge-weighting of a graph G is an assignment
of k colors to each edge e. An edge-weighting is vertex-coloring if for every edge (u, v), the colors
¢, and ¢, are distinct, where the colors of a vertex is defined as the sum of the weights on the
edges incident to that vertex. Similarly, an edge-weighting is vertex-distinguishing if for all

pairs of distinct vertices u and v, ¢, is distinct from c,.
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If a k-edge-weighting is vertex-coloring then it is adjacent vertex-distinguishing, though
the converse may not hold. Clearly, a graph cannot have a vertex-coloring edge weighting or an
adjacent vertex-distinguishing edge partition if it has a component which is isomorphic to Ks.
The concept of vertex-coloring edge weighting was introduced in [1], where was conjectured
that every graph without Ky permits a vertex-coloring 3-edge-weighting. Then, [2] showed that
every graph without K, permits a vertex-coloring 30-edge-weighting. The similar concept of
vertex-distinguishing edge weighting has been considered in [3,4].

For a k-edge-coloring of a simple graph G, it is proper if no two adjacent edges are assigned
the same color. An edge coloring of a graph is said to be adjacent vertex-distinguishing if for
every vertex u adjacent to v, the set of colors assigned to the set of edges incident to u differs
from the set of colors assigned to the set of edges incident to v. It is vertex-distinguishing if
each pair of vertices is incident to a different set of colors. The concept of vertex-distinguishing
proper edge coloring and non-proper vertex-distinguishing edge coloring have been studied in
many papers (see for example [5-8]). Adjacent vertex-distinguishing edge colorings are studied
in [9] (for non-proper colorings) and [10] (for proper colorings).

In paper [11], they proved that every graph without K5 permits an adjacent vertex-
distinguishing 4-edge partition and that graphs of minimum degree at least 1000 permits an
adjacent vertex-distinguishing 3-edge partition. This paper will improve the condition of the
theorem in [11], then we have the following theorem:

Theorem 1 Every graph without K» of minimum degree at least 188 permits an adjacent
vertex-distinguishing 3-edge partition.

We shall prove Theorem 1 in Section 2. Therefore the following lemmas will be useful.

1 Preliminary results

If H is a spanning subgraph of G, or if W is a subset of V = V(G), then dg(v) denotes
the number of neighbors of v in H and dw (v) denotes |N(v) (W] where N(v) is the set of
neighbors of v in G.

Lemma 1.1

that for all v,

Every graph G can be partitioned into two subgraphs G; and G2 such

e[ |4£] -]

1] Suppose that for some graph G we have chosen, for every vertex v, two

Lemma 1.2l

integers a, and a; such that dGT(”) <a, < dGT(”) and dGT(U) <af < MGT(“) Then there is a

spanning subgraph H of G such that for every vertex v:
dg(v) € {a, ,a; +1,a},a} +1}.

In [11], we have the proofs of Lemma 1.1 and Lemma 1.2.
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2  The proof of Theorem 1

Let G be a graph of minimum degree > 188. We can give a greedy vertex-coloring of G
such that for each vertex v, the color ¢(v) of G is between 0 and dg(v). We think of ¢(v) as a

pair (p(v),r(v)) where

p(v):\jc(v)J and r(v):c(v)mod{m-‘.

da(v)]

By Lemma 1.1, G can be partitioned into two subgraphs G; and G4 such that

do o) < {0 oy | e | de0)] 1)

a0 = [*42] =) - 1 a0 = | 242 ) 41

We set

Since 0 < p(v) < { dg (v) J < {\/dg(v)J < \/dg(v) and dg(v) > 188, we have

Va1
o< -1 (42 -] ) e
and
aj (1) > idG;U)J — % +p(v)+1= ;QdGQ(U)J + 1> +p(v) = ;QdGQ(U)J + 1> > dGl;v).

We can also prove that

dGl (U) a+(1) < 2dG1 (U)
3 9 v ~ 3

In fact, we consider the values of dg(v) according to the following four cases:
Case 1 dg(v) =4k (k € Z1), then we have k > 47, and

a, (1) >

ay (1) > k—Vdk -1, af (1) <k+ V4dk + 1.

As well,
00 3((4600) 1) S
o) 2(|46(0)| 1) _2u
3 3 2 3
To ensure that a; (1) > dGlT(U),aqf(l) < 2dG§ @) it is enough that
k—Vik—1> %(2k+1), k+VAk +1< 2(21%1).

That is k —6vVk —4 >0, k—6vk—5 > 0. By calculating, when k >47, both of the above

two inequalities hold.
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Case 2 dg(v) =4k +1 (k € ZT), then we have k > 47, and
a; ()2 k—vVak+1-1, af (1) <k+Vdk+1+1.

As well,

dGl?)(U) < ;({dG;U)J n 1) _ %(2/{ +1),

MGg“’biQdGQ(”)J _1> = (k- 1),

To ensure that a; (1) > dGlT(v), af(1) < MGTM, it is enough that

k—Vik+1-1>-(2k+1), k+Vak+1+1<=(2k—1).

Wl =
w| N

That is kK — 3v4k+1—4 > 0, k —3v4k +1—5 > 0. By calculating, when k >47, both of
the above two inequalities hold.
Case 3 dg(v) =4k +2 (k € Z7T), then we have k > 47, and

ay (D) > k—Vak+2—-1, af(1) <k+Vdk+2+1.

As well,
dGlT(U) < ;(VGQ(U)J+1>=;(2k+1+1)=§(k+1),
MGTM > deGQ(”)J—1):2(2k+1—1):‘f.

To ensure that a, (1) > dGl(v),aj(l) < 2dG§ @) it is enough that

4
E—Vak+2-1>Z(k+1), k+\/4k+2+1<§k.

[SCRN )

w

That is, kK —3v4k+2—-5>0, k—3v4k+2—3 > 0. By calculating, when k£ >47, both of

the above two inequalities hold.
Case 4 dg(v) =4k + 3 (k € ZT), then we have k > 47, and

a; (1) >k—Vak+3—1, af (1) <k+Vak+3+1.

As well,
dGlT(“) < ;qu;U)JJrl)=;(2k+1+1)=§(/€+1),

To ensure that a, (1) > dGlT(v),aj(l) < Mch(v)’ it is enough that

2 4k
k—\/4k+3—1>§(k+1), k+\/4k+3+1<§.



20 BRI (1 RRRERR) 2009 -

That is k —3v4k+3—-52>0, k—3v4k+ 3 —3 > 0. By calculating, when k >47, both of
the above two inequalities hold.

So, by Lemma 1.2, we find a spanning subgraph H; of GG such that for every vertex v:
dm, (v) € {ag (1),a; (1) + 1,07 (1), a7 (1) +1}.

We set J J
7@ = 1Y) ) -1 ar@) = 199 ) 41,

Since 0 < r(v) € /dg(v), by Lemma 1.2, as the proof of the above, we can find a spanning
subgraph Hs of G5 such that for every vertex v:

du, (v) € {a; (2),a,(2) + 1L, a7 (2), a5 (2) + 1}

We label the edges of H; with color ¢ and the remaining edges with label 0. If v and v
are not distinguished by our labeling, then dg(u) = dg(v), du, (v) = dg, (v), du,(u) = dp, (v)
from which it follows that p(u) = p(v) and r(u) = r(v), that is, ¢(u) = ¢(v). But, by greedily
coloring, this implies ww€E(G).
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