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Iterative algorithm for solving least Frobenius
norm problem of an inconsistent
matrix equation pair

XU Xiang-jian '*, WANG Ming-hui®, WEI Mu-sheng ?
(1. School of Science, Nantong University, Nantong Jiangsu 226007, China; 2. Department o f Mathematics,
East China Normal University, Shanghai 200062, China)

Abstract: This paper presented an iterative algorithm for solving the least Frobenius norm
problem of inconsistent matrix equation pair (AXB,CXD) = (E,F) with a real matrix X. By this
algorithm, for any (special) initial matrix Xy, a solution (the minimal Frobenius norm solution)
can be obtained within finite iteration steps in the absence of roundoff crrors. The numerical ex-
amples verify the efficiency of the algorithm,
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0 Introduction

In this paper we use the following notation. R™*" is the set of 7 X n real matrices, A"
is the transpose matrix of a matrix A, AXB is the Kronecker product of two matrices A
and B. In R™", we deline the inner product ol two matrices A,BER™ " as (A,B) = trace

(BTA). Then the matrix norm ol A induced by this inner product is Frobeniusnorm and
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denoted by | A||. For all A,BER?*?, if (A,B) = trace(B*A) =0, then we say that A and
B are orthogonal.

The author of[ 1 ]proposed an iterative algorithm to solve the matrix equation pair
(AXB,CXD) = (E,F) when it is consistent, In this paper, we propose a dillerent iterative

algorithm to solve the least Frobenius norm problem as follows:
min ([|[AXB—E ||’ + [|[CXD || —F| %), (0)

Xe Rp>< q

where AER™? ,BER?”", CER*?,DERY ,EER™ " and FE R,

It is easy to see that if (AXB, CXD) = (E,F) is a consistent matrix equation pair,
then its solutions are also the solutions of problem (0).

This paper is organized as follows. In Section 1, we propose an iterative algorithm to
solve problem (0) and prove that the algorithm can obtain (the minimal Frobenius norm) a
solution for any (special) initial matrix X in finite steps. In Sectiocn 2, two numerical ex-
amples are given to show that our iterative algorithm is efficient. Finally, we provide some

concluding remarks in Section 3.

1 An iterative algorithm for solving (0)

In this section, we first establish the following equivalent result of (0)
Iemma 1.1 The least Frobenius norm problem (0) is equivalent to the {ollowing con-
sistent matrix equation:
ATAXBBT +C*'CXDDT = AYEB' 4+ C*FD", @D)
Proof Because the least Frobenius norm problem (0) is equivalent to
min ( || (BT Q) A)vec(X) — vec(E)? + (D' &) C )vec(X) — vec(F) ||*),1. e,

XE RV

2

min |
XCRPd

BT R A vec(E)\ |,

(DT ®C vec(F ) |

Furthermore, the solution set of (2) is also the solution set of the following equation:
(BB' Q@ A*"A+ DD R C O vec(X) = (B AN vec(E) + (D &) CH) vec(F) 3

which is equivalent to (1). Therelore the assertion of the lemma holds.

>V€C(X) — (

We now state our algorithm,
Algorithm 1, 1
(1) Input matrices A,B,C,D,E,F and X, ;
(2) Compute
R, = ATEB" 4+ C'FD" — ATAX,BB' — C'CX,DD",
P, = ATAR,BB* +-C"CR,DD",
Qo = Po; k= 0;
(3) Il R,=0, then stop; else k=% +1;
(4 Compute
| R [

Xi =X+ 0
LT g
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R, = ATEB' +C'FDT — ATAX,BBT — C'CX,.DD",
P, = ATAR,BBT +~C"(R,DD",
trace(PIQ: 1)

Qk:Pk*
Qe 17

Qs

(5) Return to Step 3.

For Algorithm 1. 1,we have the following basic properties.

Lemmal, 2 For any initial matrix X;, the sequences {R;} and {Q;} generated by Al-
gorithm 1. 1 satisfy
| R ||®
Q. l?
Proof Denote G = ATEBT 4+ C"FD", then we have

trace(R,"R;) = trace[ (G —A"AX ;. BB® — C'CX,..DD)'R, ]

IR [ ? IR |I?

Q)BB” —C"C(X; +
1Q: |? 1o |

| R |I'?
Q. 1°
IR | *
1o l®
The following lemma shows that il R,7#0, then Q;20(:=0,1,2,--+).

trace(R; 'R;) = trace(R'R;) — trace(Q;'P;) s isj = 0,1,2,+, )

= trace (G—ATAX,; +

0)DD™R;]

= trace(R,"R;) —

[ trace(BB"Q;"A"AR;) + trace(DD'Q,"C'(R;) ]

= trace(R,"R;) — trace(Q," P;).

Lemma 1.3 Assume X* is a solution of (1),then the sequences {R;} and {Q:} generated
by Algorithm 1. 1 satisfy
trace (X* — X0 = |R |12, kE=0,1,2,-. (5)

Proof We prove the conclusion by induction. When £=0, we have

tracel (X* —X;)Q0F ] = trace[ (X* —X,)(BB'RIA'A+ DD'RIC'O)]

= trace(X* BBTRIATA+ X* DDTRICTC) — trace(X, BBTRIATA + X, DD"RI C*C)

= trace[ Ry "(ATAX " BB* + C'CX* DD") ] — trace| R{ (A"AX,BB" +C"CX,DD") ]

= trace[ RIG] — trace| R," (G—Ry) |

= trace(R{R,)

= [[Ro |2
Assume that equality in (5) holds for 1<Ck<In, then we have

~ IR.?
Q.1
IR, |’

~trace(2,0,D)
Q. II?
= IR "= IR, [I?=0.

trace[ (X* —X,1)0 ] = trace[ (X* — X, 0.0."]

= trace[ (X* —X,)0r | —

So

trace(P,1, " Q,)

trace[(X* _Xn-]>Qn'1T] = trace[(X* _X,m)(PnH - ” Q H 2

07"
= trace[ (X" — X, DP,. "]
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= trace[ (X* — X, ) (ATAR,_ BB" +C"CR,.,DD")"]
= trace< X*BB"R,.,"ATA+ X* DD"R,., TCTC)

— trace[ X, . BB'R, , "A"A+ X, ,DD"R,.,"C'C]
= trace(R,1 'G) — trace[ R,_; " (G —R,1) |
= [ R |17
By the induction principle, the conclusion holds.
Lemma 1.4 Assume that the sequences {R;} and {Q;} are generated by Algorithm 1.
1,where R;20(i=0,1,2,+*,%k), then we have
trace(RIR;) = 0, trace(QiQ;) =0, (i,j = 0,1,2,+,k, 1 £ j). (6)
Proof By l.emma 1.2, when £=1, we have
IRy ||

trace(RTR,) = trace(R{R,) — o | Ztrace(QgPo)
0
R |? "
— Rl R @i =0,
Q ||
trace(P1Q,)
trace(QTQy) = trace[ (P, — 1FEL|(|‘€Q71%QO)TQO]
0
t Pt
= trace(P,TQy) —%trace(QoTQo) = 0.
0
Assume that equality in (6) holds for 1<Ck<In, then we have
i B R, |’ B
trace(R, 1" R;) = trace(R,"R;) — ” 0 ” Ztrace(Qin)
. R, |? " t PIQ .
= trace(R,R;) — | | Ztrace[Qi Q;, — L]Q];)Qjﬂ)]
Q. |l Qi |
= 07(] = 071725"'77’1_1).
When j=n,
" - " B IR, || 2 .
trace(R,, R,) = trace(R,R,) o, 2tlrace(QnPn)
IR, ° - trace(PIQ, 1)
- || Rn H z— 7trace[Qi (Qn 7 —Q7F ):I
|| Qn || z || Qn~] || ¢ '
= 0.
" t P,."0, -
trace(Qr1Q;) = tracel (P, — race(leQ)Qn)le]
" t P70, "
= trace(Pr1Q;) — raci(leQ)trace(Qin). D)
When j=n, the right side of above equality (7) equal to 0.
When j=0,1,2,++,n—1, by equality (7)., we have
trace(Qy.10;) = trace(P}1Q;) = trace(Q/P, 1)
. 2
= o, | [trace(R/R,.,) — trace(R;|;'R,.,) ] = 0, (8

Ak
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where the equality (8) is because of LLemma 1. 2.

By the induction principle, the conclusion of the lemma holds.

Theorem 1,5 For any initial matrix X, € R?*?, the sequence {X,} generated by Algo-
rithm 1. 1 converges to an exact solution of (1. 1) in at most pg iteration steps.

Proof Assume that R;740 for :=0,1,2,+:+, pg, then by LLemma 1. 3, Q,5%0 for =0,
1,2,, pg,s0 X, »R,, can be obtained by Algorithm 1, 1, then by LLemma 1. 4, {R,,R;,
-+,R,,} is an orthogonal sequence in R?*?, this is impossible, because that for £=0,1,2,
«, pg, we have

vec(R,) = vec(G) — (BBT @ ATA+ DDT X C'C)vec(X,) € R™,
Therefore R,,=0 and X, is an exact solution ol the matrix equation (1),

It is known that il the consistent system of linear equation Ax =5 has a solution z* &
R(A"), where AER™ ",HER™, then x* is the unique minimal Frobenius norm solution of
Az=b. In Algorithm 1. 1, if we choose the initial matrix X, =(ATAHBB* +C"CHDD"),
where HE R is an arbitrary matrix, then

vee(X) = (BB® @ A"A+DD' ® C'C)vec(H) € R(BB* @ AA-+DD* @ C'C)

=R (BB ) A"A+DD* K C'O"].

It is not dilficult to verily that all X, generated by Algorithm 1. 1 satisly vec(X;) ER
[(BB"XATA+DD"XC"C)"T ]. Therelore, with initial matrix X,, then solution X* ob-
tained by Algorithm 1. 1 is the minimal Frobenius norm solution.

Restate the above ohservations as the following theorem.,

Theorem 1.6 If we choose the initial matrix X,=(ATAHBB'+C'CHDD") . then the
solution X* obtained by Algorithm 1. 1 is the minimal Frobenius norm solution ol (1),

where HE R?™? is arbitrary, specially, we can choose X, =0& R"™?,

2 Numerical example

This section gives two examples to illustrate our results. All the following tests are
performed by MATLARB 7. 0, and the initial iterative matrix is chosen as X, = (.
Example 2.1 Given matrices A,B,E and C,D,F as follows:

—10 7 0 6 9 8 —9 9 80 —6
13 —9 8 23 —14 0 18 100 1020 —75
A=| 0 —1 24 § |y B=]| 5 14 6 |, E=|93 920 —62/,
-7 10 6 0 0 9 =17 25 250 —18
19 0 —9 —12 3 —1 0 —5 —60 4
17 6
—1 —21 11 9 —15 —26 —75 —50
C= |3 11 43 4|, D=| 17 61 |, F= ]2370 3020].
39 17 —9 37 1 4 310 4010
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It can be verified that the matrix equations AXB=EFE and CXD=F are all inconsistent. By

Lemma 1. 1, we can obtain an approximation ol the unique minimal Frobenius norm solution,

1. 0481477e + 00
~ 9.4932555e—01
1. 0397843e + 00
9. 8881412 —01

5.7050135e— 01 1.0322990e+ 00
8.4110781le— 01 9. 2974062e — 01
1. 1411831e+ 00 9. 4812920e — 01
4, 9749231e— 01 1. 0429709e+ 00

5. 3747750e — 01
8. 3745073e — 01
1. 1070043e + 00 |
5.0045105e — 01

We apply Algorithm 1. 1 to compute X,. The result is provided in Fig. 1, where r, = ||

G-ATAX.BB"—C"CX,DD" | and

1.0481 0.5705 1.0323 0.5375 — 1.2356
_|0.9493 0.8411 0.9297 0.8375  0.4727
Xio =1 0308 1.1412 0.9481 1.1070 1.6399 |’

0.9888 0.4975 1.0430 0.5005 —1.4584

rn= || E—AXB| =6. 9431,

rn=| F—CXD | =1. 8644e—009.

By the way, our algorithm is also applicable for the consistent matrix equation pair.

Example 2.2 Choose matrices A, B and C,D as same in Example 2. 1 and

9 90 —6
105 1050 —70 —76 —104
E= |93 930 —62|, F= |2318 3172
27 2710 —18 3192 4368
—6 —60 4
20
15
10+
= Sr
En)
=L
-5k
=10+
\M\r
-15 1 1 1 1 1 1 1 J
0 20 40 60 80 100 120 140 160
k
Fig. 1 The residual in logarithm

It can be verified that the matrix equations AXB=E and CXD=F are all consistent

and has a solution of 4X5 matrix with all elements equal to one. Alter applying Algorithm

1. 1, we obtain
1.032 7
0.9881
1.003 4
0.971 8

X5 =

1.030 9
0.988 8
1. 003 2
0.973 3

0.981 2
1. 006 8
0.998 1
1.016 2

1. 008 8
0.996 8
1. 000 9
0.992 4

1.077 6
0.971 8
1.008 0
0.933 1
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r= || E-AXB || =3.519 4e—009,
= | F—CXD | =1. 180 7e—009.

3 Concluding remarks

In this paper, we have proposed an iterative algorithm for solving the least Frobenius
norm problem (0). We proved that, with any initial matrix Xj , the iterative sequence {X }
generated by our algorithm converges to a solution of (0), within finite steps in the ab-
sence of roundoff errors. Numerical examples we tested using MATLAB verily our theo-

retical results.

[References]

[1] SHENG X, CHEN G. A [inite iterative method for solving a pair ol linear matrix equations (AXB,CXD) = (E,F)
[7]. Appl Math Comput, 2007, 189; 1350-1358.

[2] GOLUB G H, VAN LOAN C F. Matrix Computations| M]. 3rd Edition. Baltimore: Johns Hopkins Univ Press,
1996.

[3] WEI M. The Theory and Computation of the Generalized Least Squares Problem[ M ]. Beijing: Science Press,
2006.

[4] PENG Y. An iterative method for the least squares symmetric solution of the linear matrix equation AXB=C []].
Appl Math Comput, 2005, 170; 711-723.

[5] PENGY, HUX, ZHANG L. Aniteration method for the symmetric solutions and the optimal approximation so-
lution of the matrix equation AXB=C [J]. Appl Math Comput, 2005, 160(3); 763-777.

(EH5 29 7O

[4] VASIL'VA A B,BUTUZOV V F. Asymptotic Expansions of Solutions of Singularly Perturbed Equations M]. Nau-
ka; Moscow, 1973.

[5] HORNR A,JOHSON C R. Topics in Matrix Analysis[ M ]. Cambridge: Cambridge University Press, 1991 459-489.

[6] ESIPOVA V A. Asymptotic properties of general boundary value problems for singularly perturbed conditionally
stable systems of ordinary differential equations[ J]. Differential Equations, 1975,11(11); 1 457-1465.



