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Abstract: GARCH process was developed with the combination of dynamic copula for
pricing bivariate contingent claims. In order to take into account the stylized factors in fi-
nance, such as skewness, leptokurtosis and fat tails, NIG distribution was fitted for residuals.
Furthermore, the dynamic copula method was applied to describe the dependence structure
between the underlying assets. The approach was illustrated with call-on-max option of
Shanghai and Shenzhen Stock Composite Indices. The results showed the advantage of the
suggested approach.
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0 Introduction

Over the years, various of pricing models, following the great work of Black and Scholes(!],
have been developed to price multivariate options. However, in most of these models, there are
two main disadvantages. The first one is that correlation was used to measure the dependence
between assets. It was pointed out by Embrechts et al.l2 that correlation may cause some con-
fusion and misunderstanding. Indeed, it is a financial stylized fact that correlations observed
under ordinary market conditions differ substantially from correlations observed in hectic pe-
riods. The second disadvantage concerns the heteroskedasticity of asset returns. Although
GARCH option pricing models have experienced some empirical successes®4 | the distribution
of the residual term in GARCH process attracts a lot of attention. Englel® used Normal dis-
tribution as the conditional distribution. However, in order to fully capture the excess kurtosis
and fat tails, alternative distributions such as ¢ distribution and GED distribution are con-
sidered. Unfortunately, these two distributions both have their own limitations: On the one
hand, it is inappropriate to use ¢ distribution to model continuously compounded asset returns
since its moment generating function with any finite degree of freedom does not exist; on the
other hand, GED distribution is restricted to symmetry. Therefore, a more flexible and suitable
distribution is called for.

In order to avoid the two main disadvantages in pricing models, we considered an approach
by combining GARCH-NIG model with dynamic copula. The first reason for choosing such
framework came from the properties of NIG (Normal Inverse Gaussian) distribution whose
moment generating function exists. Although GARCH process introduced by Bollerslev( can
capture excess kurtosis and fat tails of equity returns, NIG process is also proved to hold such
advantages!”). NIG process was introduced by Barndorrff-Nielsen[®!, and then a lot of papers
have been put forward in this field. With the aid of NIG distribution in the stationary NIG
process, the residual term in the GARCH process can be handled more flexibly. Secondly,
as copula has proven an ideal tool to measure the dependence structure, a dynamic copula
approach was adopted for considering the change of dependence structure when the underlying
assets cover a long time period. Therefore, in the present paper, a new dynamic approach to
price bivariate options with GARCH-NIG process and time-varying copula was proposed.

Compared with the previous methods in this aspect, the proposed approach made the dy-
namic pricing more reasonable and tractable. In our empirical study, call-on-max option based
on Shanghai and Shenzhen Stock Composite Indices was applied to illustrate the innovated
approach.

The remainder of this paper is organized as follows. In Section 1, the requisite knowledge
is reviewed. Section 2 explains in detail the new idea for pricing bivariate option with GARCH-
NIG process and dynamic copula. In Section 3, empirical study is described and results are

presented. Section 4 gives the conclusion.

1 Knowledge review

1.1 Option valuation
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This paper concentrates on call-on-max option, but the technique is sufficiently general to

apply for other multivariate options. The payoff of a unit amount call-on-max option is
max{max(S1,r,S2r) — K,0},

where T is the maturity time, S;; is the price of the i-th asset (i = 1,2) at time ¢t (0 < ¢t < T),
and K is the strike price. In the following, r;; is used to denote the log-return on ¢-th index

(:=1,2) from time ¢ — 1 to time ¢, i.e., 7; s = log(S‘_S'i’i1 ).

The fair value of the option is determined by taking the discounted expected value of the
option’s payoff under the risk-neutral measure. As the call-on-max is typically traded over the
counter, price data are not available. Therefore, valuation models cannot be tested empirically.

However, comparing models with different assumptions can be implemented.

1.2 NIG distribution

NIG (Normal Inverse Gaussian) distribution is a special case of generalized hyperbolic
distribution. The density function of NIG distribution is

_ daexp(dy/a? — (%) Ky (ay/0% + (x — p)?) exp(B(z — 1))

/82 + (w — p)? ’
where K is the modified Bessel function of the third kind and = € R. If the random variable
X has a NIG distribution, we denote it as X ~ NIG(q, 3,0, ). The mean and variance of NIG

distribution are given by

fNIG(m; aaﬁa& /J’)

0B da?

E(X)=p+ Tﬂz and Var(X) = m'

The parameters «, 3,6, u € R are interpreted as follows: p is the location parameter and
d > 0 is the scale parameter. The parameter 0 < |8| < a describes the skewness and « > 0
gives the kurtosis. Particularly, if 8 = 0, the distribution is symmetric, and if o — oo, the

Gaussian distribution is obtained in the limit.
1.3 Risk-neutralization for GARCH process

In order to derive the joint risk-neutral return process, the objective marginals should be
specified. We propose to transform each marginal process separately: In the objective envi-
ronment, the one-period log-return for every index is assumed to be conditionally distributed

under probability measure P, together with a GARCH process, that is, for 7 = 1, 2:

Tit = Myt A/ PitEits
_ q 2 P
hiw = @io+ Do Qigei;+ D5 Bijhit—j, (1.1)
git|lpit—1 ~ D(0,1) under measure P,

where the conditional mean m; ; is any predictable process, the information set ¢; ;1 contains
all information up to and including time £ — 1. Under historical measure P, ¢;; follows some
distribution D, whose distribution function is denoted as Fp, with zero mean and variance 1.
Other restrictions are p > 0,¢ > 0; ;0 > 0; a;; 20 =1,...,¢); B; 20(i=1,...,p). To
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ensure the covariance stationarity of GARCH (p, q) process, 23:1 oy + Z§:1 B; is assumed
to be less than 1.

In order to obtain the risk-neutral price, a generalized risk-neutral valuation relationship
is proposed below:

Assumption 1.1 The equilibrium pricing measure @, defined over the interval [¢;,t,] is
said to satisfy the generalized locally risk-neutral valuation relationship if, for V¢ € [t;, ¢, — 1],

the following conditions are all satisfied.
(1) @ is mutually absolutely continuous with respect to the objective measure P;

(2) there exists a predictable process \;; such that ®~1[Fp(e; ;)] + A+, conditionally on

@i t—1, is a standard normal random variable with respect to measure Q;

(3) B3 |pii1) = exp(re),

where r; denotes the one period risk free interest rate at time ¢, ®(-) denote the standard normal
distribution function.

Under some sufficient conditions!®, the above valuation relationship holds, then the asset
return can be simply characterized by a risk-neutral dynamic model:

Theorem 1.1 Under the pricing measure (), the model for one-period log-return r; ; is

given by

rie = Mit+ JhisFpt[®(Ziy — Nis),

)

2
hio = oo+ Sl @i { P @iy — M)} + S0 Bushiegy (12)
Zitlpit—1 ~ N(0,1) under measure Q,

where )\; ; is the solution to

EClexp(mis + /o Fp [#(Zis — Ai))lpis—1] = exp(r). (13)

Theorem 1.1 provides a relatively easy transformation to local risk-neutral environment.
According to this theorem, the terminal asset price is derived in the following corollary:
Corollary 1.1 Under the pricing measure @), the terminal price for the i-th (i = 1,2)

asset can be expressed as

T
Sir = Sivexp{ Y [mis+ VhisFp'[@(Zis — Xio)]]}- (1.4)
s=t+1
where h; s, Z; s and ), 5 are given in Equation (1.2) and (1.3).
It is necessary to note that the discount asset price process e 'S, ; is a Q-martingale.
Therefore, the call-on-max option, with exercise price K maturing at time 7', has the t-time

value
T

V,EOM — exp(— Z r¢) E9[max(max(S; 7, So.7) — K,0)]. (1.5)
s=t+1

1.4 Dependence measure: copula
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From one point of view, copulas are functions that join or “couple” multivariate dis-
tribution functions to their one-dimensional marginal distribution functions!®, Let X =
(X1,Xs,...,X,) be an n-dimensional random variable with multivariate distribution func-
tion F(x1,s,...,z,) and continuous marginal distributions Fy, Fs, ..., F,,. Sklar’s theorem!!!]

implies that there exists a unique copula C such that

F(zy1,22,...,2n) = C(Fi(z1), Fa(z2), -+, Fu(zy))

for all z1,xs,...,x, € R. Conversely, for any marginal distributions Fi, F5,..., F;,, and any
copula function C, the function C(Fy(z1), Fa(x2),...,Fn(2,)) is a multivariate distribution
function with given marginal distributions Fi, F3,..., F,,. This theorem provides the theo-

retical foundation for the widespread use of the copula approach in generating multivariate

distributions from univariate distributions.

2 Bivariate option pricing with GARCH-NIG process and
dynamic copula

In our proposed pricing model, the objective marginals are characterized by GARCH-NIG
process introduced in Equation (1.1), we specify the distribution D as NIG distribution. When
the pricing model is transformed to risk-neutral environment, the requirement that A; ; is the
solution to Equation (1.3) may be extremely difficult to deal with. Note that there exists a one
to one correspondence between \; ; and m; s, if m; s is assumed to be measurable with respect

to the information set ¢; s—1, Equation (1.3) may be rewritten as
mis =1y — In E9fexp(y/hi, s Fria[®(Zis — Nis)])|@is—1]- (2.1)
Therefore, Equation (1.4) is displayed as

Siz = Sizexp{3r_ . 1[rs — In EPfexp(y/hi s Fuig®(Zis — Nis)])|@is—1]
+Vhi s Frial®(Zis — Ais)l]}

In the empirical work, we assume that \; s = \; for all s, and the generalization will be discussed

(2.2)

in further research.

Furthermore, the objective copula and risk-neutral copula are assumed to be the same.

Proposition 1.1 The objective copula describing the dependence between the two as-
sets’ log-returns in Equation (1.1) and the risk-neutral copula for the dependence of the log-
returns in Equation (1.2) are the same.

Proof We define an operator ¥ by ¥(e; ;) = ®![Fnig(gi¢)], where €;; is a P-measure
NIG random variable with E(e; ¢|p;—1) = 0 and Var(e;|pii—1) = 1. As U(g;,)|pii—1 is a
P-measure standard normal random variable, so there exists an one to one transformation with

the same mean and variance, conditional on the past information:

v

NIG r.v. (zero mean and unit Variance) ‘:\1 standard Normal r.v
v .
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From the second conditon in Assumption 1.1, it can be seen that the risk neutralization merely
casuses the transformed standard residuals to undergo a shift in mean, with magnitude of A; ;,

that is, conditional on ¢;+—1:

measure P — measure Q,
std. Normal r.v. ¥(g; ;) — std. Normal r.vU(e; 1) + Nt (= Zi),
NIG r.v.€; 4 — NIG rv. U1 Z; s — Nit) (= €it)-
(mean 0 and variance 1) (mean )\; ; and variance 1)

In addition, after filtering the log-returns of underlying assets from GARCH-NIG process, the
copula measuring the dependence actually acts on the standard residuals. So the standard

residuals under the objective and risk-neutral measures are necessary to be presented as

measure P — measure Q,
Eit = G =U"YZis — Nit) + Nt =it + Aige

)

If we define T'(g;¢) = €i,t + A, then T is strictly increasing and & ; = T'(g;,). According to
the invariant property of copulas!!?!, the copula of (€1,¢,€2,¢) is exact the copula of (&1, &2,¢) for
Vt, that is, the objective copula is the same as the risk-neutral one, thus completes the proof.

Therefore, the transformation from Equation (1.1) to Equation (1.2), in conjunction with
the same dynamic conditional copula for the objective and local risk-neutral environments,
allows a particularly convenient pricing method for bivariate options.

As for the dynamic copula, our interest lies on the change of parameters in copulas with
static copula family. We firstly use the moving window to observe the change trend of copula.
On different subsamples divided by moving window, the best copulas are chosen according
to AIC criterion(!3], If the results show that the copula family remains changeless while the
copula parameters change, we then define a time-varying parameter function expressed in the
following. With the standardized residuals (e1,4,€2,¢), the dynamic copula C' is assumed to have

the time dependent parameter vector 6; = (01,4,61,,...,6m,), such that

9 2 S
01t =60+ Z s H Ejt—1 T Z Crbre—k (2.3)
i=1  j=1 k=1

forl =1,2,....mand n; (i = 1,2,...,9), ¢ (k = 1,2,...,s) are scalar parameters that can
be estimated by the maximum likelihood method. Equation (2.3) defines a dynamic structure,
motivated by GARCH process, for the dependence parameters.

Benefiting from the identification result for the objective and local risk-neutral conditional
copulas, pairs of standard normal random variables Z;; (i = 1,2) in Equation (1.2) can be
drawn from the dynamic copula. This procedure is accomplished with the aid of Monte Carlo
simulations. These generated random variables are then applied to obtain the transformed
residuals as shown in Equation (1.2). Eventually, the payoffs implied by these residuals are
averaged and discounted at the risk-free rate, and the fair value of the call-on-max option

expressed in Equation (1.5) can be obtained.
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3 Empirical results

The empirical work deals with the call-on-max option on Shanghai and Shenzhen Stock
Composite Indices. The sample contains 1 857 daily observations from January 4, 2000 to May
29, 2007. The log-returns of Shanghai and Shenzhen Stock Composite Indices are shown in Fig.
1. We restrict the parameters 5 = 0 and u = 0 for the NIG distribution fitting, then the results
are shown in Tab. 1. In Fig. 2 the Q-Q plot for NIG distribution and Gaussian distribution are
presented, from which it can be seen that the assigned NIG distributions fit well to the data,

especially in the tails.
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Fig.1 Log-returns for Shanghai and Shenzhen Stock Composite Indices

Tab.1 Estimates of NIG fitting parameters for marginal log-returns

Shanghai Index Shenzhen Index
a 4.536e-01  (4.539e-03)  5.275e-01  (6.117e-03)
B 0.000 0.000
n 0.000 0.000
o 1.409e-02  (2.044e-07) 1.516e-02  (2.146e-07)
AIC -10971.40 -10649.37
BIC -10960.34 -10638.32

Note: Figures in brackets are standard errors.

The parameter estimates of GARCH(1,1)-NIG models (see Equation (1.1)) are listed in
Tab. 2, and in order to compare, the estimate results for GARCH-Gaussian models are also pre-
sented. From AIC values, GARCH-NIG models prove better for both Shanghai and Shenzhen
Stock Composite Indices.

Several kinds of copulas are considered, including Gaussian, Frank, Gumbel, Clayton,

Student ¢ copulas. The whole sample is divided into subsamples by the moving window. We let
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NIG Q—-Q plot for Shanghai NIG Q—-Q plot for Shenzhen
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Fig. 2 Comparison of Q-Q plots for NIG fitting and Gaussian fitting
Tab.2 Estimates of GARCH-NIG and GARCH-Gaussian parameters
GARCH-NIG Shanghai Index Shenzhen Index
m 6.065e-04 (1.952e-04)  7.260e-04 (2.300e-04)
& 8.103e-01 (2.807e-03)  7.959¢-01 (5.837-03)
a0 3.597e-05 (2.032e-01)  3.532e-05 (1.989-01)
a1 2.758e-01 (3.865e-01)  3.015e-01 (5.477e-01)
81 5.651e-01 (2.988e-01)  5.558e-01 (7.747e-01)

AIC -11037.14 -10708.29

GARCH-Gaussian

Shanghai Index

Shenzhen Index

m 3.833e-04 (2.419e-04)  3.761e-04 (2.882e-04)
a0 5.136e-06 (7.682e-07)  5.529¢-06 (9.011e-07)
o 8.115e-02 (4.726e-03)  8.721e-02 (5.496e-03)
B 8.966¢-01 (5.034e-03)  8.950e-01 (5.249¢-03)
AIC -10793.11 -10518.3

Note: Figures in brackets are standard errors.

the window consist of 300 observations, and we move it by 100 observations, thus 16 windows
cover all the sample. The considered copulas are fitted to the standardized residual pairs from
GARCH-NIG models on different subsamples. We then decide series of best fitting copulas by

AIC criterion. The results for the best fitting copulas on all subsamples are shown in Tab. 3.

Results listed in Tab. 3 show that on almost all subsamples, Student ¢ copula turns out
to be the best fitting copula for GARCH-NIG model. So we assume that the copula family
remains static as Student ¢, while the parameter changes. In addition, it can be observed

that the correlation changes little while the degree of freedom varies obviously. Therefore, it is
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Tab.3 Dynamic Copula Analysis for GARCH-NIG model

Window Copula Parameter

1 Student ¢ 9.109e-1(1.032e-1); 2.444(1.302)
2 Student ¢  9.064e-1(9.990e-2); 3.084(9.590e-1)
3 Student ¢  9.308e-1(9.505e-2); 5.594(9.384e-1)
4 Student ¢ 9.451e-1(1.157e-1); 3.903(1.017)
5 Student ¢ 9.602e-1(2.804e-1); 7.919(4.215)
6 Student ¢ 9.697e-1(1.142e-1); 6.826(3.352)
7 Student ¢ 9.654e-1(1.442e-1); 8.098(3.385)
8 Student ¢ 9.598¢-1(9.931e-2); 6.005(2.104)
9 Student ¢t 9.444e-1(2.117e-1); 7.087(3.630)
10 Student ¢ 9.385e-1(1.594e-1); 7.675(2.000)
11 Student ¢ 9.419e-1(1.612e-1); 9.947(1.352)
12 Gussian 4.450(2.167e-1)

13 Student ¢ 9.228e-1(1.533e-1); 5.682(2.388)
14 Student ¢ 8.831e-1(2.594e-1); 3.574(10.030)
15 Student ¢ 8.727e-1(7.247e-2); 3.300(8.206)
16 Student ¢t 8.493¢-1(1.030e-1); 4.937(2.129)

Note: Figures in brackets are standard errors. For the Student ¢ copula, the first parameter is the correlation,

the second parameter is the degree of freedom.

reasonable to assume that the degree of freedom varies along time while the correlation remains

static. The time-varying function for the degree of freedom of Student ¢ copula is
Vg = l_l(S() + S1€1,t—1€2,¢—1 + Sll(l/t_l)), (31)
where s, 1, $2 are parameters and [(-) is a function defined by
1
)

v—2
to ensure that the degree of freedom is not smaller than 2.

I(v) = log(

The corresponding estimate result for the dynamic copula parameter in Equation (3.1) is
listed in Tab. 4.

Tab.4 Parameter estimates for dynamic parameter of Student ¢ copula
P v
s0: 4.384e-01 (1.497)
9.176e-01 (2.361e-02)  s1: -6.055¢-02 (7.407e-01)
s2: -9.414e-01 (4.165e-01)

Note: Figures in brackets are standard errors and p denotes the correlation estimate.

Standard normal random variables can then be generated from this dynamic Student ¢
copula, and the transformed residuals can be sampled to compute the option price. It is assumed
here that the initial asset prices are normalized to unity, and the claim maturity is 1 month.
Moreover, the strike price is set at levels between 0.5 and 2.7, the risk-free rate is assumed to
be 6% per annum, and ); is considered as 5%. The Monte Carlo study is based on 100000

replications.
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Using the proposed GARCH-NIG model with dynamic copula, the option prices are

2008 4

repre-
sented in Fig. 3, compared with the option prices implied by GARCH-Gaussian dynamic model.

It can be observed that the GARCH-Gaussian model generally underestimates the price.

call-on-max option price
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Option prices from dynamic GARCH-NIG and GARCH-Gaussian models

4 Conclusion

In this paper, a systematic new approach for bivariate option pricing with GARCH-NIG

model and dynamic copula has been introduced. The contributions of the proposed approach
can be generalized as follows: (1) GARCH-NIG model seems more suitable to the real data
than GARCH-Gaussian model; (2) Analyzing the change trend of copula allows to create the

dynamic model more effectively; (3) The dynamic copula with time-varying parameter enables

the changes of dependence to be more tractable; (4) The dynamic method is not restricted only
to one-parameter copulas, multi-parameter copulas can also be considered.
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