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Abstract

In many scientific, economic and policy-related problems, pieces of in-
formation from different sources have to be aggregated. Typically, the
sources are not equally competent. This raises the question of how the
relative weights and competences should be related to arrive at an opti-
mal final verdict. Our paper addresses this question under a more realistic
perspective of measuring the practical loss implied by an inaccurate ver-
dict.

1 Introduction

When information from different sources is aggregated, be it predictions of sci-
entific models, measurements of different instruments, or opinions of members
of a group, it is rarely the case that all sources are equally reliable. Typically,
the degree of competence or accuracy varies: some models are known to be
more reliable than others, some instruments measure more accurately, some
group members possess superior expertise, due to their qualification, knowledge
or experience (Lehrer and Wagner 1981).

If we want to obtain an optimal final verdict, we are well advised to take
these differences into account. For example, when averaging the predictions of
statistical models, the performance of these models with respect to the data is
used to determine different relative weights of the models in future predictions
(Hoeting et al. 1999).

We transfer this approach to the problem of rational information pooling. A
pooling procedure is conceived of as rational if it transforms individual pieces
of information, together with information about the expertise or accuracy of
the sources, in a justifiable way into a final group judgment. More precisely,
we investigate the question of how to transform individual competence into
relative weight when forming a rational judgment. This question can be applied
equally to all problems of opinion pooling where individual contributions are
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valuable, yet to different degrees, due to the different levels of competence.
These problems are pervasive in science, the economy, and in policy-making.

A classical predecessor of our paper is Shapley and Grofman (1984). We
replace their approach by a model where the losses suffered by a wrong or
imprecise decision are modeled more realistically than in standard statistical
theory. In particular, we set up some adequacy conditions on a realistic loss
function and propose a peculiar class of functions (section 2). Then, we set up
a mathematical model where we map degrees of expertise onto optimal relative
weights (section 3). Section 4 summarizes our results and concludes.

2 A Realistic Loss Function

We model the problem of making a sensible final judgment as an estimation
problem: there is a unknown numerical quantity µ which we would like to es-
timate, and the individual judgments Xi, i ≤ n, are modeled as independent
random variables that scatter around the true value µ with variance σ2

i . This
approach is inspired by the idea that the information sources resemble measure-
ment instruments with some degree of precision.

The central task consists in finding an estimate µ̂(X1, . . . , Xn) that makes
optimal use of the available information. But how shall we evaluate the quality
of such an estimator? A standard measure in similar statistical problems is the
expected quadratic loss E[(µ̂− µ)2]. Then our problem would be the standard
problem of finding the ordinary least square estimate, and we could build on an
elaborate mathematical theory. But the quadratic loss has severe drawbacks:
First, the losses are unbounded whereas in real decisions, there is in general a
finite set of options and a worst outcome. Second, large deviations are penal-
ized to a much higher degree than small deviations, due to the convexity of the
quadratic function. For example, it is in many situations not clear why a 9%
deviation should be nine times as bad as a 3% deviation. Third, for practical
purposes it usually does not matter whether one is grossly or very grossly mis-
taken. This observation has been confirmed experimentally: Kahneman and
Tversky (1992, 2000) showed that decision-makers are decreasing sensitivity to
large deviations from the true value. But quadratic loss fails to account for this
intuition.

We propose the following adequacy conditions on a loss function L:

Smoothness and Boundedness The loss function L : R≥0 → [0, 1] is an
element of C∞.

Monotony L is monotonously increasing: L′(x) ≥ 0 ∀x ≥ 0.

Asymptotic Behavior The loss rate approaches zero for the limiting points:
limx→0 L

′(x) = 0 and limx→∞ L′(x) = 0.

These conditions are easily motivated. As argued above, when there is a “worst
case”, it is reasonable to assume a bounded loss function, and we normalize the
range of L to [0, 1]. Monotony is self-evident: the more severe the error, the
higher the loss. Together this implies the asymptotic behavior of L (concave,
decreasing increments). On the other hand, it is plausible that a prediction
that is “almost right” is in practice just as good as a fully precise assumption.
This justifies the condition limx→0 L

′(x) = 0, and the behavior of the quadratic
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Figure 1: The loss function Lα(x) for α = .5 (dotted line), α = 1 (dashed line)
and α = 2 (solid line).

loss function is mimicked for small losses. Finally, by Rolle’s theorem, all this
implies the existence of an inflection point.

Skewness There is an x0 such that

{
L′′(x) > 0 for all x < x0,

L′′(x) < 0 for all x > x0.

There are many loss functions which fit that our four adequacy conditions,
but we believe that a particularly elegant family of functions is given by

Lα(x) = 1− e−
1

2α2 x
2
. (1)

A further advantage of this family of functions is that it also plays a crucial role
in statistical theory. Here α represents the point where the loss rate becomes
sublinear. See also figure 1. We contend that these functions are suitable for
purposes of decision-making by combining different measurements, predictions,
or opinions. Using them instead of the conventional quadratic loss function is an
innovation compared to previous approaches of opinion-pooling, and the scale
parameter α allows a flexible adaptation of the loss function Lα to the specifics
of a particular problem.

3 Expertise and Relative Weight

As mentioned above, the individual judgments of the (not necessarily human)
agents are modeled as estimates Xi that scatter around the true value µ. Now,
we impose the additional constraint that they scatter symetrically. In particu-
lar, the individual estimates are unbiased : the agents have no systematic bias
towards either a lower or higher value of µ.

At this point, we would like to stress that our paper is intended as a contribu-
tion to social epistemology, not to social choice theory. And so considerations of
strategic voting, dishonesty or manipulation (e.g. distortion of judgments) have
no place: all agents, even if they are human, submit their judgments in the best
intention to capture the truth about µ. There is no systematic bias around;
error occurs by chance, because one cannot be right all the time.
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Figure 2: The competence si as a function of σi/α.

For reasons of convenience (and because we don’t see superior modeling al-
ternatives), we assume that the Xi are normally distributed: Xi ∼ N(µ, σi).
Furthermore, we write the group judgment as a linear combination of the indi-
vidual judgments:

µ̂ =
n∑
i=1

ciXi, (2)

where n denotes group size and the ci denote individual weights. Now, we ask
which values of the ci minimize the expected loss E[Lα(µ̂ − µ)] for a given
expertise σi?

Before we can actually tackle this question, we have to say a word on the
σi. Obviously, the higher the σi, the lower an agent’s competence. Therefore,
we propose to measure individual competence by

si := E [Sα(Xi − µ)] , (3)

with the success function Sα(x) defined by

Sα(x) := 1− Lα(x) = e−
1

2α2 x
2
. (4)

This leads to an inverse relationship between competence and variance. We
easily establish the following relationship between both quantities (for a proof,
see Appendix A):

si =
α√

α2 + σ2
i

(5)

Note that si only depends on σi/α. See also figure 2. Alternatively, σi can be
expressed in terms of si and α:

σi =

√
1− s2i
si

· α (6)

To obtain the optimal weights, we minimize the average loss

E

[
Lα

(
n∑
i=1

ci (Xi − µ)

)]
(7)
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under the boundary condition
∑n
i=1 ci = 1. This becomes a straightforward

problem of calculating the expectation and finding the corresponding Lagrange
multipliers. The computational details can be found in the appendix. In the
end, we obtain

ci =

 n∑
j=1

σ2
i

σ2
j

−1

. (8)

This establishes an inverse proportionality between variance and optimal relative
weight. By making use of (5), we also get

ci =

 n∑
j=1

s2j
1− s2j

−1

· s2i
1− s2i

. (9)

Two things are worth noting. First, the scale parameter α has vanished from
equation (9). That is, as long as the loss function has the structure given by
(1), we obtain the same optimal relative weights. Arguably, this property is a
substantial asset of our approach: The optimal weights do not depend on the
scale parameter α that specifies the inflection point of the loss function. So even
if the exact form of an appropriate loss function is disputed, our results can be
applied.

Second, the weights in (8) equal the optimal weights that would have been
obtained if one had used quadratic loss instead of our loss function L (see the ap-
pendix). So we obtain the surprising result that in the case under investigation,
the recommendations under our realistic loss function and the recommendations
under a conventional loss function agree. It is a project for further research to
generalize this result, e.g. by allowing the Xi to be non-normal.

4 Conclusions

What did we achieve? We have set up a model where individual judgments,
predictions or measurements are pooled into a single verdict. Such problems
are pervasive in politics, economy, and science – at any place where different
pieces of information have to be combined. Within our model, we have then
calculated which relative weights lead to a minimal expected loss, if we know
the agents’ degree of expertise.

Let us stress two main points. First, we chose loss functions that are, due to
their normalized character, much more suitable for problems of opinion pooling
than the standard statistical measure of quadratic loss. This makes our ap-
proach more realistic than the standard approach. Second, our optimal weights
are independent of the precise loss function in this family. Hence, even if there
is uncertainty about the exact loss rate, our results keep their normative force.
Therefore, we believe that our model is a fruitful contribution to solving prob-
lems of pooling information.
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A Proofs

We assume that the random variables Xi are normally distributed with common
mean (Xi ∼ N(µ, σi)). From equations (3) and (4), we obtain:

si := E [Sα(Xi − µ)]

=
1√

2π σi

∫ ∞
−∞

e
− 1

2σ2
i

(x−µ)2

· e−
1

2α2 (x−µ)2dx

=
1√

2π σi

∫ ∞
−∞

e
− 1

2

„
1
σ2
i

+ 1
α2

«
(x−µ)2

dx

We introduce the new variable Σi,

Σ−1
i :=

√
1
σ2
i

+
1
α2

, (10)

and obtain:

si =
1√

2π σi

∫ ∞
−∞

e
− 1

2Σ2
i

(x−µ)2

dx

=
√

2πΣi√
2π σi

=
Σi
σi

Using equation (10), we finally obtain

si =
α√

α2 + σ2
i

. (11)

The other equation follows by resolving this equation for σi.
Now, we tackle the optimizing problem, and we calculate the variance of∑
ciXi. It is straightforward to show (and it holds for all independent random

variables) that

V

(
n∑
i=1

ciXi

)
= E

( n∑
i=1

ciXi − µ)

)2


= E

( n∑
i=1

ci (Xi − µ)

)2


=
n∑
i=1

n∑
j=1

ci cj E [(Xi − µ)(Xj − µ)]

=
n∑
i=1

c2i E
[
(Xi − µ)2

]
=

n∑
i=1

c2i σ
2
i .

Thus, the random variable
∑n
i=1 ciXi is distributed according to N(µ, σ2) where

σ2 :=
∑n
i=1 c

2
iσ

2
i .
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Combining this result with equation (11), we obtain

E

[
Lα

(
n∑
i=1

ciXi − µ

)]
= 1− E

[
Sα

(
n∑
i=1

ciXi − µ

)]
= 1− α√

α2 +
∑n
i=1 c

2
i σ

2
i

. (12)

It is well known (Lehrer and Wagner 1981, 139) that
∑n
i=1 c

2
iσ

2
i is minimized

under the constraint
∑
ci = 1 by setting

ci =

 n∑
j=1

σ2
i

σ2
j

−1

. (13)

This implies the desired result since (12) is monotonously increasing in∑n
i=1 c

2
i σ

2
i . Therefore the left hand side of (12) is minimized by the expres-

sion in (13). �
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