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Abstract.  Suppose that several individuals who have separately 
assessed prior probability distributions over a set of possible states of 
the world wish to pool their individual distributions into a single group 
distribution, while taking into account jointly perceived new evidence. 
They have the option of (i) first updating their individual priors and 
then pooling the resulting posteriors or (ii) first pooling their priors and 
then updating the resulting group prior. If the pooling method that 
they employ is such that they arrive at the same final distribution in 
both cases, the method is said to be externally Bayesian, a property 
first studied by Madansky (1964). We show that a pooling method for 
discrete distributions is externally Bayesian if and only if it commutes 
with Jeffrey conditioning, parameterized in terms of certain ratios of 
new to old odds, as in Wagner (2002), rather than in terms of the 
posterior probabilities of members of the disjoint family of events on 
which such conditioning originates. 
  
 
1.  Combining Probability Distributions. 
 
In what follows, Ω denotes a countable set of possible states of the 
world, assumed to be mutually exclusive and exhaustive. A function 
p: Ω → [0,1]  is a probability mass function (pmf)  iff   ∑ω∈Ω p(ω) = 1. 
The support of a pmf p is the set  Supp(p) : = { ω : p(ω) > 0 }. 
Each pmf p gives rise to a probability measure (which, abusing 
notation, we also denote by p) defined for each set  E ⊆  Ω  by 
p(E) := ∑ω∈E p(ω). 
 
   Denote by  ∆  the set of all pmfs on Ω, and let n be a positive 
integer. Let  ∆n   denote the n-fold Cartesian product of  ∆ , with  
 
               ∆n+ : = {  (p1,…,pn) ∈ ∆n :   ∩i Supp(pi) ≠  ∅  } . 



  
A  pooling operator  is any function T: ∆n+ → ∆ .1  Given                             
(p1,…,pn) ∈ ∆n+ , the pmf  T(p1,…,pn) may, depending on the context, 
represent 
 
(i)  a rough summary of the current pmfs  p1,…,pn  of  n individuals; 
 
(ii)  a compromise adopted by these individuals in order to complete an 
exercise in group decision making; 
 
(iii)  a “rational” consensus to which all individuals have revised their 
initial pmfs  p1,…,pn  after extensive discussion; 
 
(iv)  the pmf of a decision maker external to a group of n experts (who 
may or may not have assessed his own prior over Ω before consulting 
the group) upon being apprised of the pmfs  p1,…,pn  of these experts; 
 
(v)  a revision of the pmf pi of a particular individual i upon being 
apprised of the pmfs of individuals 1,…,i-1,i+1,…,n, each of whom he 
may or may not consider to be his “epistemic peer.”  
 
   The appropriate restrictions to place on the pooling operator T will 
naturally depend on the interpretation of T(p1,…,pn). For example, it 
might seem reasonable for T to preserve unanimity (T(p,…,p) = p) 2 

in cases (i),(ii), and (v) above, but perhaps not in cases (iii) and (iv). 
There is an extensive literature on this general subject (see, for 
example, the article of Genest and Zidek (1986) for a summary and 
appraisal of work done through the mid-1980s). There has also been a 
recent surge of interest in problems associated with interpretation (v) 
above, as part of a field of inquiry that has come to be termed the 
“epistemology of disagreement.” 
 
   Our interest here is not in adjudicating which restrictions on pooling 
are appropriate in which situations, but rather in a formal analysis of 
one proposed group rationality condition, known as external 
Bayesianity, and its connections with Jeffrey conditioning.(We employ 
in what follows the language of interpretations (ii) and (iii) above, since 
it is in those cases where external Bayesianity seems most compelling.  
But our formal results apply to the other interpretations as well, for 
whatever interest that may have.) We shall see that a pooling operator 
for pmfs is externally Bayesian if and only if it commutes with Jeffrey 



conditioning, parameterized in terms of certain ratios of new to old 
odds, as in Wagner (2002), rather than in terms of the posterior 
probabilities of members of the disjoint family of events on which such 
conditioning originates. 
 
2.  Externally Bayesian Pooling Operators. 
 
Consider the situation in which n individuals who have assessed pmfs  
p1,…,pn    over  Ω  subsequently undergo  identical new learning as a 
result of jointly perceived new evidence. Should they first update their 
individual priors based on the jointly perceived new information, and 
then pool the posteriors? Or should they pool their priors, and then 
update the result of pooling based on this information?   
 
   Take the simplest case, where each individual comes to learn that 
the true state of the world belongs to the subset E of Ω, but nothing 
that would change the odds between any states ω1 and ω2 in E.  It 
would thus be appropriate for each individual i to revise his pi to, let us 
call it qi, by conditioning on E,3  so that for each ω ∈ Ω, 
 
(2.1)       qi(ω) = pi(ω|E) : = pi(ω) [ω ∈ E] / pi(E), 
 
where [ω ∈ E] denotes the characteristic function4 of the set  E,  
evaluated at ω . These revised pmfs might then be combined by 
means of the pooling operator T.  Alternatively, one might imagine first 
pooling the priors p1,…,pn  and then conditioning the result on E.  If 
either of these procedures results in the same final distribution, we say 
that T commutes with conditioning (CC). This property may be 
expressed formally as follows: 
 
CC :  For all subsets E of Ω and all  (p1,…,pn) ∈ ∆n+  such that pi(E) > 0,  
i= 1,…,n,  and  (p1(.|E),…,pn(.|E))   ∈ ∆n+ , it is the case that 
 
(2.2)                    T(p1,…,pn)(E)  > 0  , 
 
and                     
 
(2.3)              T(p1(.|E),…,pn(.|E))  =  T(p1,…,pn)(.|E).   
 
   Condition CC is a special case of a more general property of pooling 
operators called external Bayesianity, first introduced by Madansky 
(1964,1978), and elaborated upon by Genest, McConway, and 



Schervish (1986). Given  (p1,…,pn)∈ ∆n+, we say that a function           
λ : Ω → [0, ∞)  is a  likelihood  for (p1,…,pn)  if 
 
(2.4)            0 <   ∑ω∈Ω λ(ω) pi(ω)  < ∞  , i= 1,…,n, 
 
and  (q1,…,qn) ∈ ∆n+ ,  where 
 
(2.5)           qi(ω) : =   λ(ω)pi(ω) / ∑ω∈Ω λ(ω) pi(ω) . 
 
For concreteness, it may be useful to think of the special case of the 
above in which the domain of the pmfs pi is extended to include the 
event obs, with qi(ω) = pi(ω|obs), and λ(ω) denoting the common value 
of the likelihoods  pi(obs|ω).5 Then (2.5) is simply Bayes’ formula, and 
models the revision of the priors p1,…,pn in a situation where 
individuals disagree about the probabilities of various possible states of 
the world, while agreeing about the probability of experiencing obs in 
each of those states.6 

  
A pooling operator T :   ∆n+ → ∆  is externally Bayesian (EB)  iff the 
following condition is satisfied: 
 
EB :  If  (p1,…,pn)  ∈ ∆n+  and  λ  is a likelihood for (p1,…,pn), then 
 
(2.6)                       0 < ∑ω∈Ω λ(ω) T(p1,…,pn)(ω) < ∞, 
 
and the following commutativity property holds: 
 
(2.7)    T( λp1 / ∑ω∈Ω λ(ω) p1(ω), … , λpn / ∑ω∈Ω λ(ω) pn(ω)) 
 
            = λ T(p1,…,pn) / ∑ω∈Ω λ(ω) T(p1,…,pn)(ω).  7 

 

   Implicit in the definition of external Bayesianity is the following view 
of the proper way to represent identical new learning:  Recall that if  q  
is a revision of the probability measure  p  and  A  and  B  are events, 
the Bayes factor  β(q,p ; A : B) is the ratio 
 
(2.8)               β(q,p ; A:B)  := (q(A)/q(B)) / (p(A)/p(B)) 
 
of new to old odds, and the  relevance quotient  ρ(q,p ; A)  is the ratio 
 
(2.9)               ρ(q,p ; A)  := q(A)/p(A) 



 
of new to old probabilities.  When q = p(.|E), then (2.8) is simply the 
likelihood ratio  p(E|A)/p(E|B).  More generally, 
 
(2.10)               β(q,p ; A : B) = ρ(q,p ; A) / ρ(q,p ; B) , 
 
a simple, but useful, identity.  Suppose that the probability distributions  
(q1,…,qn) are related by formula (2.5) to the distributions (p1,…,pn).  
Then, for all i, and for all ω and ω* in Ω, it is easy to verify that 
 
(2.11)              β(qi,pi ; ω : ω*) = λ(ω)/ λ(ω*), 8 

 
i.e., for each fixed pair of states in Ω, the ratios of new to old odds are 
uniform over i = 1,…,n. Similarly, denoting  T(p1,…,pn)  by  p  and         
λ T(p1,…,pn) / ∑ω∈Ω λ(ω) T(p1,…,pn)(ω)  by  r , we have  
 
(2.12)              β(r,p ; ω : ω*) = λ(ω)/ λ(ω*). 
 
In other words, implicit in the definition of external Bayesianity is the 
view that, identical new learning should be reflected in identical Bayes 
factors at the level of atomic events. This is an important point, to 
which we shall have occasion to return in Section 3. 
 
     Remark 2.1. Setting   λ(ω) = [ω ∈ E]  shows, as suggested above, 
that EB implies CC. 
 
    Remark 2.2. The term externally Bayesian derives from the fact that 
a group of decision makers having a common utility function but 
different priors over the relevant states of nature and employing an EB 
pooling operator will make decisions that appear to an outsider like the 
decisions of a single Bayesian decision maker (see Madansky 1964). 
An example due to Raiffa (1968, pp. 221-6) shows that the use of 
pooling operators that fail to satisfy EB may lead members of the group 
to act in strange ways. 
 
   The set of externally Bayesian pooling operators is clearly nonempty 
since “dictatorial” pooling (for fixed d, T(p1,…,pn) = pd for all       
(p1,…,pn) ∈ ∆n+)  satisfies EB.  Note, however, that weighted arithmetic 
means, i.e., pooling operators T defined by 
 
(2.13)              T(p1,…,pn) := ∑1≤ i ≤n w(i)pi(ω), 



 
where  w(1), … ,w(n)  is a sequence of nonnegative real numbers 
summing to one, fail in general to satisfy EB. On the other hand, 
suppose that we define a pooling operator  T  by 
 
(2.14)    T(p1,…,pn)(ω) := Π1≤ i ≤n pi(ω)w(i) / ∑ω∈Ω Π1≤ i ≤n pi(ω)w(i) , 9 

 
where 00 : = 1. It is easy to verify that such normalized weighted 
geometric means, which have come to be termed logarithmic pooling 
operators, are externally Bayesian, a fact first noted (according to 
Bacharach (1972)) by Peter Hammond. A complete characterization of 
externally Bayesian pooling operators appears in Genest, McConway, 
and Schervish (1986). 
 
 

3.  Jeffrey Conditioning and External Bayesianity.   
 
Let Ω be a set of possible states of the world (with no cardinality 
restrictions for the moment) and let A be a σ-algebra of subsets 
(“events”) of Ω. Let p and q be probability measures on A, and let        
E = {Ek} be a countable set of nonempty, pairwise disjoint events such 
that p(Ek) > 0  for all k. We say that q comes from p by Jeffrey 
conditioning (JC) on E  if there exists a sequence (ek) of positive real 
numbers summing to one such that, for every A in A, 
 
(3.1)                        q(A) = ∑k ek p(A|Ek). 

10 

 
Formula (3.1) is the appropriate way to update your prior p in light of 
new evidence if and only if  (1) based on the total evidence, old as well 
as new, you judge that for each k, the posterior probability  q(Ek) 
should take the value ek ; and  (2) for each  Ek, and for all A in A, you 
judge that q(A|Ek) = p(A|Ek).

11 Conditions (1) and (2) amount to the 
assertion that you have learned something new about the events Ek, 
but nothing new about their relevance to any other events. Of course, 
when E = {E},  JC reduces to ordinary conditioning. 
 
     In the special case where Ω is countable and A = 2Ω, formula (3.1) 
is equivalent to 
 
(3.2)    q(ω) = ∑k ek p(ω|Ek) =  ∑k ek p(ω) [ω ∈ Ek] / p(Ek),   for all ω∈Ω, 
 



and condition (2) is equivalent to the judgment that, for all k, nothing in 
the new evidence should disturb the odds between any two states of 
the world in Ek.

12   Note also that if  p  and  q  are any pmfs on the 
countable set  Ω  and  Supp(q) ⊆  Supp(p), then  q  comes from  p  by 
JC on the family  E = { {ω} :  q(ω) > 0 }.  
 
    Does every externally Bayesian pooling operator commute with 
Jeffrey, as well as ordinary, conditioning?  Consider the following 
simple example, where Ω = { ω1, ω2, ω3, ω4 },   E1 = { ω1, ω2 },               
E2 = { ω3, ω4 },  E = { E1, E2 },  and  e1 = e2 = ½ : 
 
                                     TABLE 3.1 
 
           ω1     ω2      ω3     ω4                           ω1     ω2      ω3     ω4 
 
p1 :      1/7    4/7     1/7    1/7        POOL 

                                                     →        p :  1/4     1/4     1/4    1/4 
p2 :    4/13   1/13   4/13  1/13 
                                                                                   ↓   J C 

                                                                  
                      ↓    J C                                  r :  1/4     1/4     1/4    1/4 
 
 
q1 :    1/10    2/5    1/4     1/4        POOL 

                                                     →        q :  2/9     2/9    5/18   5/18 
q2  :    2/5    1/10   1/4     1/4 
 
 
     In the above revision schema, qi comes from pi by JC on the 
partition E, with qi(E1) = qi(E2) = ½, i = 1, 2, and r comes from p by JC 
on E, with r(E1) = r(E2) = ½.  The distribution p results from the 
externally Bayesian pooling of p1 and p2 by normalized geometric 
averaging (i.e., by formula (2.14) above, with n =2 and w(1) =         w(2) 
= ½), and the distribution q results from the same pooling formula, 
applied to q1 and q2. Since q ≠ r, we apparently have here a case 
where updating by JC does not commute with externally Bayesian 
pooling. But this is neither surprising nor disturbing. For the Jeffrey 
revisions of p1 to q1, of p2 to q2, and of p to r, parameterized as in 
formula (3.2), are not instances of updating by a single likelihood λ.  
Contrary to (2.11) and (2.12), we have, for example,  β(q1,p1 ; ω1 : ω3) 
= 2/5, β(q2,p2 ; ω1 : ω3) = 8/5, and β(r,p ; ω1 : ω3) = 1.  On the 



conception of identical new learning implicit in the definition of external 
Bayesianity, agents 1 and 2 are not revising their priors p1 and p2 
based on identical new learning. And their fictional group surrogate is 
revising the result, r, of pooling p1 and p2 in response to still different 
new learning. In short, in the context of updating by Jeffrey 
conditioning, identical new learning is not expressed by identical 
posterior probabilities of the events Ek.  
 
      What is the proper representation of identical new learning in this 
context? We have already observed that it is implicit in the definition of 
external Bayesianity that identical new learning should be reflected in 
identical Bayes factors at the level of atomic events. When updating by 
JC, however, there is an equivalent, coarser-grained version of this 
identity, based on the following special case of a theorem in Wagner 
(2003, Theorem 3.1): 
 
Theorem 3.1.  Given a countable set Ω, let p, q, P, and Q  be 
probability measures on A = 2Ω, with q regarded as a revision of p, and 
Q a revision of P. If q comes from p by Jeffrey conditioning on the 
family E, then 
 
(3.3)        β(Q,P ; ω : ω*) = β(q,p ; ω : ω*)     for all ω, ω* ∈ Ω 
 
if and only if  Q comes from P by Jeffrey conditioning on E  and 
 
(3.4)        β(Q,P ; Ei : Ej) = β(q,p ; Ei : Ej)   for all Ei ,Ej ∈ E. 
 
This suggests that, for our present purposes, the proper 
parameterization of Jeffrey conditioning should involve Bayes factors 
associated with pairs of events in E. Such a parameterization, which 
first appears in Wagner (2002)13, is easily derived from formula (3.2). 
 
 Theorem 3.2.  Suppose that q comes from p by Jeffrey conditioning 
on the family E = {Ek} and let  bk : = β(q,p ; Ek : E1) ,  k = 1,2,… . Then, 
for all ω in Ω,  
 
(3.5)            q(ω ) =  ∑k bk p(ω) [ω ∈ Ek]  /  ∑k bk p(Ek) .

14 

 
Proof.  Dividing  (3.2) by  1 = q(Ω) = ∑k  p(Ek) q(Ek)/p(Ek), replacing ek 

by q(Ek),  dividing the numerator and denominator of the resulting 
fraction by q(E1)/ p(E1), and invoking (2.10) yields (3.5).     □ 



 
The above parameterization of JC allows us to formulate a 
commutativity property with the proper relation to external Bayesianity.  
We say that a pooling operator T commutes with JC, so parameterized, 
(CJC) if and only if the following condition holds: 
 
CJC :  For all families E = {Ek} of nonempty, pairwise disjoint subsets 
of Ω, all  (p1,…,pn) ∈ ∆n+   such that pi(Ek) > 0  for all i and all k, and all 
sequences (bk) of positive real numbers such that b1 = 1  and 
 
(3.6)        ∑k bk pi(Ek) < ∞  , i= 1,…,n,   
 
and such that (q1,…,qn) ∈ ∆n+ , where 
 
(3.7)       qi(ω) : = ∑k bk pi(ω)[ ω∈Ek]  /  ∑k bk pi(Ek) , 

 

 
it is the case that 
 
(3.8)        0 < ∑k bk T(p1,…, pn) (Ek) < ∞ , 
 
and 
 
(3.9)  T(∑k bk p1[ .∈Ek] / ∑k bk p1(Ek), … , ∑k bk pn[ .∈Ek] / ∑k bk pn(Ek)) 
 
          =  ∑k bk T(p1,…, pn) [ .∈Ek]  /  ∑k bk T(p1,…, pn) (Ek) .  

 

 
 
Theorem 3.3.  A pooling operator T:  ∆n+ → ∆  is externally Bayesian if 
and only if it commutes with Jeffrey conditioning in the sense of CJC . 
 
Proof.  Necessity. Let T be externally Bayesian. Suppose that (3.6) 
holds and that (q1,…,qn) ∈ ∆n+, where qi is given by (3.7).                   
Let  λ(ω) = ∑k bk [ω ∈Ek] .  Then, for  i = 1,…,n ,  
 
(3.10)             ∑ω∈Ω λ(ω) pi(ω) = ∑ω∈Ω  pi(ω) ∑k bk [ω ∈Ek]   
  
                         = ∑k bk ∑ω∈Ω  pi(ω) [ω ∈Ek] = ∑k bk pi(Ek) , 
 
and so by (3.6) and the fact that each of the terms bk pi(Ek)  is positive, 
λ is a likelihood for (p1,…,pn).  By (2.6) and (2.7) it then follows that (3.8) 
and (3.9) hold. 



        
Sufficiency.  Suppose that T satisfies CJC and that λ is a likelihood for 
(p1,…,pn).  Let (ω1,ω2,…) be a list of all those  ω ∈Ω  for which        λ(ω) 
> 0, and let   E = { E1, E2 ,…}, where Ei : = { ωi }.  Setting  
bk : = λ(ωk)/ λ(ω1) for k = 1,2,…, we have each bk > 0 and b1 = 1. 
From the fact that λ is a likelihood for (p1,…,pn) it follows that (3.6) 
holds and that   (q1,…,qn) ∈ ∆n+ , where qi(ω) is given by (3.7). Hence, 
by CJC, (3.8) and (3.9) hold. But (3.8) implies (2.6), and (3.9) implies 
(2.7).   □ 
 
4. Discussion 
 
   On a minimalist interpretation of the foregoing, we have simply 
established the mathematical fact that if we want Jeffrey conditioning 
to commute with externally Bayesian pooling operators, then the right 
parameterization of such conditioning is given by (3.5), rather than 
(3.2). And the heuristic employed in identifying (3.5)  can be seen as a 
purely formal inference from the fact that the very scenario in which 
external Bayesianity is formulated dictates that individuals update their 
priors using identical likelihoods, and that the result of pooling those 
priors is updated using those same likelihoods. Since identical 
likelihoods entail identical Bayes factors at the level of atomic events, 
we need only observe (Theorem 3.1) that for Jeffrey updating, the 
identity of atomic level Bayes factors is equivalent to the identity of 
Bayes factors at the level of events in the family E, and we arrive at the 
doorstep of the parameterization (3.5), and hence of the formulation of 
CJC that ensures that EB implies CJC. As a bonus, we get the 
converse implication, and thus a particularly salient characterization of 
EB in terms of Jeffrey conditioning, a probability revision method with 
which formal epistemologists are well acquainted. 
 
   As we suggested in section 2, however, the parameterization of 
Jeffrey conditioning in terms of Bayes factors is more than a mere 
mathematical expedient. After all, the definition of external Bayesianity 
dictates that individuals update their priors using identical likelihoods 
(hence, identical Bayes factors) because EB is an attempt to model a 
feature of probability pooling in a context where individuals undergo 
identical new learning.  And the view that what is learned from new 
evidence alone should be represented by ratios of new to old odds (or 
their logarithms) has a distinguished pedigree, going back to I.J. Good 
(1950, 1983) and promoted in recent years in the work of Richard 



Jeffrey (1992a, 2004), among others. In addition to being supported by 
the results of the present paper, this view is buttressed by several 
other theorems.  In Wagner (2002) it is shown that Jeffrey updating on 
a family E, followed by Jeffrey updating on a family F, produces the 
same final result as first updating on F, and then on E, as long as 
identical new learning is represented by identical Bayes factors. Indeed, 
under mild regularity conditions, such a representation is necessary to 
ensure the commutativity of Jeffrey updates. See also Lange (2000) 
and Osherson (2002). In Wagner (1997,1999, 2001) it is shown that 
two ways of generalizing Jeffrey’s (1992b, 1995) solution to the old 
evidence problem to the case of uncertain old evidence and statistical 
new explanation coincide when identical new learning is represented 
by identical Bayes factors. In Wagner (2003) the aforementioned 
results are given a unified treatment, and detailed arguments are 
presented in support of the general principle (“the uniformity rule”) that 
identical new learning should be represented by identical Bayes factors 
at the level of atomic events.15,16  
 
Notes 
 
1.  Many treatments of the problem of combining probability 
distributions deal with pooling operators defined, slightly more 
generally, on ∆n.  For reasons that will soon be obvious, we are  
excluding consideration of cases where there is no state of the world  
ω  to which all individuals assign positive probability. This is, however, 
considerably less stringent than the usual restriction posited in 
treatments of external Bayesianity, namely, that for all pmfs pi under 
consideration,  Supp(pi) = Ω. 
 
2.  This is a rather weak unanimity condition. One often sees in the 
literature a much stronger condition of this type postulated, namely, 
that for each  c ∈ [0,1],  if  p1(ω) = …= pn(ω) = c,  then       
T(p1,…,pn)(ω) = c. It isn’t clear that pooling should be restricted in this 
way in any of the scenarios (i)-(v). 
 
3.  See Jeffrey [1992a, pp.117-119].  
 
4.  Specifically, [ω ∈ E] = 1  if  ω ∈ E,  and  0  if  ω ∈ Ec . This notation 
is a special case of the wonderful notational device introduced by 
Kenneth Iverson [1962] in his programming language APL, in which 
propositional functions are denoted simply by enclosing the 



propositions in question in square brackets. See Knuth [1992] for an 
elaboration of how this notation simplifies the representation of various 
restricted sums. 
 
5. As statisticians use the term, any constant multiple of the 
elementary likelihoods pi(obs|ω) is also called a likelihood function. It is 
for this reason (and also the fact that in the continuous case, 
conditional density functions may take values outside [0,1]) that λ is not 
restricted to taking values in the unit interval. See Evans and 
Rosenthal [2004, pp. 281-283] for a particularly lucid discussion of the 
likelihood function. 
 
6. It should be emphasized, however, that if Ω is infinite, there are 
cases of probability revision that cannot be conceptualized as the 
result of conditioning on some event obs in an extension of Ω. This 
observation is the essence of the famous Superconditioning Criterion 
of Diaconis and Zabell [1982, Theorem 2.1]. 
 
7.  The property of external Bayesianity actually applies to pooling 
operators for any sort of density function. We have described here 
what this property amounts to in the discrete case. For the full 
formulation, including a characterization of externally Bayesian pooling 
operators in the most general setting, see Genest, McConway, and 
Schervish (1986). 
 
8.  When formula (2.11) involves division by zero, it is to be understood 
as asserting that  λ(ω*)pi(ω*)qi(ω) = λ(ω)pi(ω)qi(ω*). A similar remark 
applies to formula (2.12). 
 
9.  Note that  ∑ω∈Ω Π1≤ i ≤n pi(ω)w(i) is strictly positive since          
(p1,…,pn) ∈ ∆n+ , and finite since   Π1≤ i ≤n pi(ω)w(i) ≤ ∑1≤ i ≤n w(i)pi(ω) 
by the generalized arithmetic-geometric mean inequality. See 
Royden (1963, p. 94). 
 
10. In the standard exposition of Jeffrey conditioning (also called 
probability kinematics) the family E = {Ek} is taken to be a partition of  
Ω, so that, in addition to pairwise disjointness of the events Ek, one has  
Uk Ek = Ω.  Standardly, (ek) is a sequence of nonnegative real numbers 
summing to one, and it is assumed that zeros are not raised, i.e., that 
p(Ek) = 0  implies that  ek (= q(Ek)) = 0.  Finally, it is stipulated that 
0 x p(A|Ek) = 0 if p(Ek) = 0, so that ek p(A|Ek) is well-defined even if 



p(A|Ek) isn’t. Given the standard formulation, our family E simply 
comprises those Ek in the partition for which ek > 0. Conversely, our 
format yields the standard one by associating to our family                   
E = {E1, E2,…} , if it fails to be a partition, the partition                           
E = {E0, E1, E2,…}, where E0 := Ω \ U k Ek, and setting  e0 = 0. 
 
11.  Condition (2) is known variously as the rigidity condition or the 
sufficiency condition. 
 
12.  See Jeffrey [1992, pp. 124-125]. 
 
13.  This parameterization of JC is in the spirit of an earlier 
parameterization, due to Hartry Field (1978). Field’s parameterization 
only applies, however, to JC originating in a finite family of events. 
 
14.  When p and q are probability measures on a sigma algebra A of 
subsets of a set Ω of arbitrary cardinality, this parameterization takes 
the form  q(A) = Σk bk p(A∩ Ek) /  Σk bk p(Ek)  for all  A ∈ A. 
 
15.  In particular, it is shown in section 5 of that paper how other 
measures of probability change, such as ratios or differences between 
posterior and prior probabilities, fail to meet three criteria that should 
clearly be satisfied by any representation of new learning. 
 
16. Note that the problem of how best to represent new learning is 
distinct from the problem of how to measure the extent to which 
evidence E confirms hypothesis H. In particular, adopting atomic level 
Bayes factors as the solution to the former problem does not commit 
one to adopting the likelihood ratio p(E|H)/p(E|Hc), or some monotone 
transformation thereof, as the solution to the latter. See Joyce (2004)     
for a spirited defense of the view that the multiplicity of measures of 
confirmation is something to be celebrated, each capturing a different 
and useful sense of evidential support.  
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