基于 MODIS 数据的悬浮泥沙定量遥感方法

刘良明,张红梅

(武汉大学遥感信息工程学院,武汉 430079)

摘要: 以黄海及东海海域为对象,研究用 MODIS 数据提取我国海域悬浮泥沙时空分布的定量遥感方法,建立了基于 MODIS 数据的悬浮泥沙定量遥感实用模式。研究表明,用 250 m 和 1 000 m 分辨率的 MODIS 数据进行悬浮泥沙 浓度的定量遥感,可以达到实际应用的精度要求。这说明,MODIS 数据是研究近岸水体中悬浮物输运变化规律的 一种经济实用数据源。

关键词: MODIS; 悬浮泥沙; 定量遥感

中图分类号: TP 79 文献标识码: A

文章编号: 1001-070X(2006)02-0042-04

0 引言

水体中悬浮泥沙是重要的水色因子之一。悬浮 泥沙含量和泥沙运动规律的研究直接关系到正确估 算水土流失、航道港口的冲淤变化、河口岸滩塑造及 近岸水产养殖开发等重要问题。卫星遥感技术可在 大范围连续、动态地反映海水中悬浮泥沙的整体性。 利用遥感手段研究河口、海岸地区浑浊水体的泥沙 运动(泥沙来源、扩散范围、输移方向以及含沙量判 读等)是十分有效的^[1]。根据国内外研究结果,水 体中悬浮泥沙含量与卫星接收到的400~900 nm 波 长范围内水体后向散射强度之间具有良好的相关关 系。而400~900 nm 波段包含有 MODIS 三种不同分 辨率的波段,因此,可以考虑用 250 m 分辨率的1、2 波段和1000 m 分辨率的海洋波段(即 8~16 波段) 数据反演近岸水体的悬浮泥沙浓度。本文主要研究 上述两种方法的模式建立以及其适用性和精度。

1 数据与研究区域

研究区包括中国长江口及整个黄海区域,此区 域近岸海水的光学成份主要是悬浮泥沙。采用的卫 星资料是 2003 年 3、4 月份的 MODIS 数据。实测数 据采用中国卫星海洋应用研究中心提供的 2003 年 4 月 03 日 ~4 月 23 日数据。站点分布如图 1 所示,其 中黑点为实测站位。

图 1 2003 年春季黄东海航次的实测站点分布

MODIS 是美国 EOS 计划的主要传感器之一,是 当前世界上新一代图谱合一的光学遥感仪器,装载 于 Terra 和 Aqua 卫星上。MODIS 具有 36 个光谱通 道,覆盖 400~1 400 nm 波谱范围,其中 8~16 波段 是专门为海洋探测设计的,具有波段窄、信噪比高, 波谱敏感性好等特点。文中所使用的 MODIS 波段 特征见表1。

表 1 MODIS 波段特征

波段号	波段位置/nm	中心波长/nm	分辨率/m	备注
1	$620\sim\!670$	645	250	
2	841 ~876	858	250	

				绥汞
波段号	波段位置/nm	中心波长/nm	分辨率/m	备注
8	$405 \sim 420$	413	1 000	海洋波段
9	438 ~ 448	443	1 000	海洋波段
10	483 ~ 493	488	1 000	海洋波段
11	526 ~ 536	531	1 000	海洋波段
12	546 ~ 556	551	1 000	海洋波段
13	662 ~ 672	667	1 000	海洋波段
14	673 ~ 683	678	1 000	海洋波段
15	743 ~753	748	1 000	海洋波段
16	862 ~ 877	869	1 000	海洋波段

2 反演方法

2.1 数据预处理

以L1A MODIS 数据为输入数据。数据处理包 括辐射定标、几何配准、云掩膜处理、大气校正和计 算遥感反射率等步骤,具体操作流程如图2所示。

图 2 数据处理流程

2.2 1000 m 分辨率海洋波段反演模式

国内外学者对含沙水体光学特性的研究表明, 可见光至红外波段(400~900 nm)对泥沙含量最敏 感^[5],但其敏感度依泥沙浓度不同而不同,当水体中 的悬浮泥沙含量增加时,在此波段范围的各个波段 的反射率都会增加,且反射峰由短波向长波方向移 动,当泥沙含量达到一定浓度时,有的长波波段反射 率会出现饱和。

由于本文的研究区域包括了高、中、低浓度含沙 水体,因此,在波段选择上需要兼顾3种浓度水体的 敏感度。在黄东海区,8~11 波段的反射率一般不会 饱和,而12~16 波段的反射率存在不同程度的饱 和,因此,无法用12~16 波段探测高悬浮泥沙的近 岸海水泥沙浓度。另外,通过研究含沙水体的波谱 曲线发现,3 种浓度的含沙水体在400~600 nm 区间 的波谱斜率与泥沙浓度有很好的相关关系,故可选 用8~11 波段来研究悬浮泥沙的浓度和时空分布。

通过研究 MODIS 数据和海上实测数据,可得到 使用 MODIS 海洋波段的中、高泥沙浓度(即含沙 量>20 mg/1时)的统计模式 I 为

$$\ln SSC = -49.6944 + 21.7545 X \tag{1}$$

$$X = \frac{\rho_{wn}(531) + \rho_{wn}(488)}{\rho_{wn}(443)}$$
(2)

式中, SSC 为水体含沙量(mg/l); $\rho_{wn}(\lambda_i)$ 为 *i* 波段的归一化离水反射率。

当泥沙浓度 < 20 mg/1 时,使用泥沙浓度统计模式Ⅱ为

SSC = 3.5 + 506.523 S (3)

$$S = [\rho_{wn}(488) - \rho_{wn}(413)]/A \qquad (4)$$

式中,S为中间变量;A=0.75。

2.3 250 m 分辨率波段1 反演模式

遥感监测近岸海域的动态变化常常受制于传感器的空间分辨率(或地面分辨率)和重访周期^[6]。 MODIS 波段1的空间分辨率为250 m,位于红光区 (表1),这个波段对悬浮泥沙含量非常敏感。而卫 星的重访周期为1~2 d,每天可获取同一地方的上、 下午两幅影像,这些特点使得该波段很适合研究高 度变化的近岸海水。

通过研究经过大气校正波段1的归一化离水反 射率与水体含沙量之间的关系,建立了悬浮泥沙浓 度统计模式Ⅲ为

$$\ln SSC = A_0 + A_1 \rho_{wn1} \tag{5}$$

式中, A_0 、 A_1 为回归系数, $A_0 = 0.086$, $A_1 = 46$. 299; ρ_{wnl} 为波段1的归一化离水反射率。

3 结果与讨论

为了对上述反演算法进行评价,本文选择了几 幅质量较好的影像进行实验。下面将给出影像 ter 为 200304160301(卫星过境时间为上午 11 点 01 分) 的实验结果。

用模式 I 和模式 II 计算得到的各个站点水体悬 浮泥沙浓度与实测值比较结果如表 2 和表 3 所示; 用模式Ⅲ反演得到的结果如表4所示。其中,总平 均相对误差等于各个站点的相对误差之和除以总的 站点数。

表 2 模式 I 反演的泥沙浓度与实测值比较^①

站号	日期	実測值/(mg・l ⁻¹)	反演值 $/(mg \cdot l^{-1})$	相对误差
HD37	04.05	36.38	44.67	0.228
HD38	04.06	185.49	109.07	0.412
HD39	04.06	53.76	56.4	0.049
HD41	04.06	117.96	76.79	0.349
HD59	04.12	173.7	158.49	0.088
HD63	04.19	120.48	109.07	0.095
HD61	04.20	340.06	349.85	0.029
HD74	04.21	23.37	41.52	0.776
HD75	04.21	27.7	27.99	0.036
HD77	04.22	79.12	38.06	0.519
HD78	04.22	106.8	170.55	0.597
			≒ = 28 9%	

①相对误差 = | 计算值 - 实测值 |/实测值

表 3	榿式 ∏	反演的	1泥沙浓度	医实测	值比较
12.5		及四日	コルレルノアハル	ィースの	旧をたた

站号	日期	实测值/($mg \cdot l^{-1}$)	反演值 $/(mg \cdot l^{-1})$	相对误差
HD35	04.05	13.68	16.33	0.194
HD36	04.05	12.75	17.01	0.334
HD42 – 2	04.06	6.83	6.2	0.092
HD43	04.06	4.4	5.53	0.256
HD49	04.09	3.94	4.87	0.236
HD58	04.12	12.94	16.02	0.238
HD53	04.13	3.69	2.01	0.455
HD54	04.13	1.01	1.21	0.198
HD55	04.13	0.94	1.53	0.628
HD56	04.13	4.8	4.17	0.131
HD50	04.14	1.84	3.14	0.706
HD52	04.14	2.1	2.15	0.024
HD68	04.15	1.01	1.31	0.297
HD67	04.16	1.028	2.01	0.955
HD66	04.16	0.837	0.80	0.044
HD65	04.16	0.788	0.79	0.003
HD64	04.19	4.29	6.2	0.445
HD73	04.20	2.775	2.15	0.225
HD76	04.21	8.52	18.34	1.153
HD79	04.22	14.58	19.03	0.305
			总平均相对误差	差=34.6%

表4 模式Ⅲ反演的泥沙浓度与实测值比较

站号	日期	实测值/(mg・l ⁻¹)	反演值/(mg・l ⁻¹)	相对误差
HD58	04.12	12.94	21.10	0.630
HD59	04.12	173.7	245.42	0.413
HD53	04.13	3.69	2.78	0.247
HD54	04.13	1.01	1.51	0.494
HD55	04.13	0.94	1.51	0.605
HD56	04.13	4.80	2.73	0.431
HD50	04.14	1.84	1.58	0.141
HD52	04.14	2.10	1.51	0.281
HD68	04.15	1.01	1.66	0.640
HD65	04.16	0.788	1.38	0.751
HD66	04.16	0.837	1.51	0.803
HD67	04.16	1.028	1.38	0.338
HD63	04.19	120.48	177.48	0.473
HD64	04.19	3.715	2.62	0.294
HD61	04.20	340.06	309.35	0.090
HD73	04.20	2.775	1.99	0.280
HD74	04.21	23.37	26.59	0.138
HD75	04.21	27.7	30.55	0.103
HD76	04.21	8.52	5.77	0.280
HD77	04.22	79.12	44.25	0.441

利用 MODIS 1 000 m 和 250 m(波段 1)波段建 立反演模式得到的泥沙分布结果分别见插页彩片 3、 4。分析彩图以及表 2~4,可以看出:

(1)波段1的算法对中、低浓度悬浮泥沙的敏感 性好,对高浓度悬浮泥沙敏感性差。但由于其空间 分辨力高,能反映海湾和河口等小区域更为详细的 泥沙分布情况,图像质量好。由于此模式只用一个 波段,所以,对多时相数据的同化效果差,同时对大 气校正也较敏感。

(2)MODIS 海洋波段算法对高、低浓度泥沙含 量的探测效果都比较好,可以从宏观上反映一个水 体区域的悬浮泥沙浓度分布,所得泥沙分布图层次 丰富。由于此模型采用了多波段组合,故与多时相 实测数据的同化效果好。其缺点是高泥沙区易受光 谱反射率饱和的影响,且对大气校正敏感。

(3)插页彩片3与4右下方的非云像元出现异 常值,经过分析,认为这是因为云层反射太阳光造成 附近像元受到漫射天空光的影响,掩盖了海面的真 实信息。 (4)这两种反演模式都不能区分甚高泥沙浓度 水体和高泥沙水体,这是因为,当泥沙浓度很高时, 光线透射水深度浅,从而降低了对高泥沙浓度的探 测灵敏度。另外,由于海流的影响,有些地方泥沙含 量变化较大。

4 结语

(1)利用 MODIS 250 m 分辨率(波段1)的反射 率算法可以粗略地提取不同浓度层次的悬浮泥沙分 布信息,其相对高的空间分辨率使这个模式可适用 于小区域的水体研究。结合 MODIS 1 000 m 分辨率 数据建立的高低浓度反演模式,可以提取整个区域 的悬浮泥沙浓度信息,算法精度较高。由于 MODIS 的重访周期很短,所以很适合研究动态的近岸水体 中悬浮物状况。

(2)本文方法对大气校正的精度要求较高,因此 需要进一步探测提高大气校正精度的方法。另一方 面,应进一步考察本文中模式的适用性和精度,以找 到更为准确的悬浮泥沙定量遥感反演模式。 **致谢**:感谢国家卫星海洋应用中心的工作人员在提供实测数据方面给予的帮助,感谢黄东海航次的试验队员在数据采集方面所作出的辛苦劳动!

参考文献

- [1] 陈晓翔,丁晓英.用FY-1D数据估算珠江口海域悬浮泥沙含量[J].中山大学学报(自然科学版),2004,43(增刊):194-196.
- [2] 黄华兵,马海州,沙占江,等. 基于 RS 的龙羊峡库区悬浮泥沙 分布研究[J].盐湖研究,2004,12(4):34-37.
- [3] 李四海,唐军武,等.河口悬浮泥沙浓度 SeaWiFS 遥感定量模式研究[J].海洋学报,2002,24(2):51-58.
- [4] 周艺,周伟奇,等. 遥感技术在内陆水体水质监测中的作用
 [J].水科学进展, 2004, 15(3):312-317.
- [5] 毛志华,黄海清,等. 我国海区 SeaWiFS 资料大气校正[J].海 洋与湖沼,2001,23(6):581-587.
- [6] Miller Richard L, McKee Brent A. Using MODIS Terra 250m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters[J]. Remote Sensing of Environment, 2004, 93:259 – 266.
- [7] MIshra Deepak R. High Resolution Ocean Color Remote Sensing of Benthic Habitats: A Case Study at the Roatan Island, Honduras
 [J]. IEEE Trans. on Goes. And Remote Sensing, 2005, 43(7): 1592 – 1604.

THE APPLICATION OF MODIS IMAGERY TO MAPPING CONCENTRATIONS OF SUSPENDED SEDIMENTS IN COASTAL WATERS

LIU Liang - ming, ZHANG Hong - mei

(School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

Abstract: Suspended sediments constitute an important component of water color, and high concentrations of suspended particulate matter in coastal waters directly affect or control numerous water column and benthic processes. In this paper, the utility of MODIS 250 m and 1 000 m data for analyzing turbid coastal waters was examined in the Yellow Sea and the East China Sea. With a set of processing procedures, the authors used MODIS images in the 250 m model and the 1 000 m model to map the concentrations of suspended sediments. The results were compared with the in – situ data set collected in April 2003. This study demonstrates that the moderately high resolution of MODIS 250 m data is useful in examining the evolutionary process of materials in coastal environments, particularly the smaller water bodies such as bays and estuaries, and that the 1000 m data are perfect in mapping the concentrations of suspended matter in open coastal waters.

Key words: MODIS; Suspended sediment; Quantitative remote sensing

第一作者简介:刘良明(1969-),男,副教授,主要从事摄影测量与遥感、GIS等方面的教学和科研工作。