文章编号:1671-9352(2008)10-0031-05

蕴涵格的正规 MP 滤子与素滤子

胡明娣1,3、楼志刚2,3

(1. 陕西师范大学数学研究所, 陕西 西安 710062;

- 2. 西安理工大学机械与精密仪器工程学院, 陕西 西安 710048;
 - 3. 安康学院数学系, 陕西 安康 725000)

摘要:在蕴涵格上定义了 MP-滤子、生成滤子、正规 MP-滤子与素滤子的概念,研究了它们的特征性质,讨论了正规 MP-滤子和 MP-滤子之间的关系,得到正规 MP-滤子是 MP-滤子的结论,证明了蕴涵格的素滤子定理。它们是 R_0 -代数或 MV-代数上相应滤子的性质的共同特征。

关键词:蕴涵格;正规 MP-滤子;素滤子

中图分类号:0141.1;0153 文献标志码:A

Normal MP-filters and prime filters of an implication lattice

HU Ming-di^{1,3}, LOU Zhi-gang^{2,3}

- (1. Institute of Mathematics, Shaanxi Normal University, Xi'an 710062, Shaanxi, China;
- 2. School of Mechanical Instrumental Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China;
 - 3. Department of Mathematics, Ankang College, Ankang 725000, Shaanxi, China)

Abstract: The concepts of MP-filters, generated filters, normal MP-filters and prime filters in implication lattice were introduced. Their basic properties were investigated, and the structure of generated filters was obtained. The results show that the normal MP-filters are MP-filters. All the results are the common characters of the corresponding filter theories of R_0 -algebras or MV-algebras.

Key words: implication lattice; normal MP-filter; prime filter

0 引言

为了适应不同模糊推理的需要,逻辑学家和数学家们引入了不同的逻辑系统,与逻辑系统相配套的逻辑代数理论也获得了蓬勃的发展^[1-6]。早在 1999 年王国俊教授为尝试给模糊推理建立相应的逻辑基础,在文献[7]中引进了蕴涵格,它是 MTL 代数的特殊形式,同时又是由 C. C. Chang 于 1958 年提出的与 Lukasiewicz 逻辑系统相配套的著名的多值逻辑代数的基础,也是王国俊教授于 1997 年提出的与一种形式演绎系统 L^* 相匹配的 R_0 -代数^[4]的基础。因此,蕴涵格居于承上启下的地位,对它的深入研究具有重要意义。本文定义了蕴涵格并在其上给出了滤子、生成滤子、正规 MP-滤子与素滤子的概念,研究了它们的特征性质,得到正规 MP-滤子必是 MP-滤子,最后证明了蕴涵格的素滤子定理。所得结果是 R_0 -代数或 MV-代数上相应滤子的性质的共同特征。

收稿日期:2008-06-06

基金项目: 国家自然科学基金(10771129); 2006 年安康学院科研基金(2006AKXY012)

作者简介:胡明娣(1970-),女,博士研究生,副教授,主要研究方向为人工智能、不确定推理. Email: humingdiwww@163.com

楼志刚(1973-),男,博士研究生,主要研究方向为机械故障智能检测.Email: louzg@163.com

1 蕴涵格及其性质

定义 $1.1^{[1]}$ 一个剩余格 $(L, \land, \lor, \otimes, \rightarrow)$ 称为 MTL 代数,如果式(1.1)条件对 $\forall a, b \in L$ 成立。

$$(a \rightarrow b) \lor (b \rightarrow a) = 1_{\circ} \tag{1.1}$$

定义 1.2^[7] 设 M 是有界分配格(即有最大元 1 与最小元 0 的分配格)。如果

- (i) M 上有逆序对合对应一: $M \rightarrow M$ 。
- (ii) M 上有二元运算→: $M \times M \to M$, 对任意 $a, b, c \in M$, 若满足: (1) $1 \to a = a$; (2) 若 $a \le b \to c$, 则 $b \le a \to c$; (3) $\neg a \to \neg b = b \to a$; (4) $a \to x$ 关于 x 保非空有限交与有限并,则称 M 为蕴涵格。

命题 1.1 设 M 是蕴涵格, $a,b \in M$,则

- (5) $a \rightarrow (b \rightarrow a) = 1$;
- (6) $a \rightarrow b = 1$ 当且仅当 $a \le b$:
- $(7) \neg a \lor b \leq a \rightarrow b;$
- (8) $a \lor b \rightarrow c \leq (a \rightarrow c) \land (b \rightarrow c), a \land b \rightarrow c = (a \rightarrow c) \lor (b \rightarrow c);$
- (9) $(a \rightarrow b) \lor (b \rightarrow a) = 1$;
- (10) $a \rightarrow b \leq a \lor c \rightarrow b \lor c$, $a \rightarrow b \leq a \land c \rightarrow b \land c$;
- (11) $a \lor b \le (a \rightarrow b) \rightarrow b) \land (b \rightarrow a) \rightarrow a)_{\circ}$

证明 (9) 式的证明如下:

由(4)知, $a \rightarrow b = a \rightarrow (a \land b)$, $b \rightarrow a = b \rightarrow (a \land b)$,所以由(8)得

$$(a \rightarrow b) \lor (b \rightarrow a) = (a \rightarrow a \land b) \lor (b \rightarrow a \land b) = a \land b \rightarrow a \land b = 1$$

所以(9)成立。

(11)的证明如下:

由(5)得 $a \rightarrow ((b \rightarrow a) \rightarrow a) = 1$,再由(6)得 $a \leq (b \rightarrow a) \rightarrow a$,又由 $a \rightarrow b \leq a \rightarrow b$ 及定义 1.2(2)知 $a \leq (a \rightarrow b) \rightarrow b$,即 $a \leq (a \rightarrow b) \rightarrow b$) $\wedge (b \rightarrow a) \rightarrow a$),同理 $b \leq (a \rightarrow b) \rightarrow b$) $\wedge (b \rightarrow a) \rightarrow a$)。所以(11)得证。

命题 1.2 设 M 是蕴涵格,在 M 上引入一个新的运算⊗如下:

$$a \otimes b = \neg (a \rightarrow \neg b), (a, b \in M)$$
 (1.2)

- (12) (M, ⊗, 1) 是以 1 为单位的交换半群;
- (13) 若 $b \le c$ 则 $a \otimes b \le a \otimes c$, $a \otimes b \le a \wedge b$;
- (14) (\otimes ,→)是 *M* 上的伴随对,即, $a\otimes b \leq c$ 当且仅当 $a \leq b \rightarrow c$;
- $(15) \neg a \otimes a = 0, a \otimes b \rightarrow c = a \rightarrow (b \rightarrow c);$
- (16) $a \otimes (b \vee c) = (a \otimes b) \vee (a \otimes c)$;
- (17) $a \otimes (a \rightarrow b) \leq b$;
- (18) $a \lor (b \otimes c) \ge (a \lor b) \otimes (a \lor c)$

证明 仅以(18)为例证明:由(13)和(16)得

$$(a \lor b) \otimes (a \lor c) = ((a \lor b) \otimes a) \lor (a \lor b) \otimes c) = (a \lor a) \otimes (b \lor a) \otimes (a \lor c) \otimes (b \lor c) \leq a \lor a \lor a \lor (b \otimes c) = a \lor (b \otimes c)_{\circ}$$

- 注 1.1 (i)由(9)、(12)和(14)可知蕴涵格是 MTL-代数,但反之不成立,比如 Gödel 代数(G 代数)是 MTL-代数,但它不是蕴涵格,因为(3)不成立。
 - (\parallel) R_0 -代数是蕴涵格,但反之不成立,见下面的例 1.1。
 - 例 1.1 设 $M = \left\{0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1\right\}, M$ 按自然序构成有界分配格。规定 M 上的运算如下: ① $\neg a =$

$$1 - a, \textcircled{2} \ a, b \in M, \ a \leq b, a \rightarrow b = 1; 1 \rightarrow a = a; a \rightarrow 0 = \neg a; \frac{4}{5} \rightarrow \frac{1}{5} = \frac{1}{5}, \frac{4}{5} \rightarrow \frac{2}{5} = \frac{3}{5} \rightarrow \frac{1}{5} = \frac{2}{5}, \frac{4}{5} \rightarrow \frac{3}{5} = \frac{2}{5}$$

$$\frac{2}{5} \rightarrow \frac{1}{5} = \frac{4}{5}, \frac{3}{5} \rightarrow \frac{2}{5} = \frac{2}{5}$$

经检验可知, M 是蕴涵格, 但 M 不满足条件: $(a \rightarrow b) \lor ((a \rightarrow b) \rightarrow (\neg a \lor b)) = 1$, 比如: 令 $a = \frac{2}{5}$, $b = \frac{1}{5}$, 则 $(a \rightarrow b) \lor ((a \rightarrow b) \rightarrow (\neg a \lor b)) = \frac{4}{5} \lor \left(\frac{4}{5} \rightarrow \frac{3}{5}\right) = \frac{4}{5} \neq 1$ 。从而 M 不是 R_0 -代数。

2 蕴涵格的 MP-滤子、素滤子和正规 MP-滤子

2.1 基本概念

定义 2.1 设 M 是蕴涵格, $F \subseteq M$, 称 $F \in M$ 的 MP-滤子, 如果:

(i) $1 \in F$; (ii) 当 $x, x \rightarrow y \in F$ 时,有 $y \in F$ 。

如果 $F \neq M$,则称 $F \neq M$ 的真 MP-滤子。M 的真 MP-滤子 F 为素 MP-滤子,如果 $\forall x, y \in M$,有 $x \rightarrow y \in F$ 或 $y \rightarrow x \in F$ 。

定义 2.2 设 M 是蕴涵格, $\Phi \neq F \subseteq M$,如果 F 满足(\downarrow)和

 $(\parallel \parallel) z \rightarrow (x \rightarrow y) \in F, z \in F, \parallel ((\neg x \rightarrow \neg y) \rightarrow \neg y) \rightarrow \neg x \in F,$

则称 $F \in M$ 的正规 MP-滤子。

在例 1 中,容易验证蕴涵格 M 中, $F = \left\{ \frac{3}{5}, \frac{4}{5}, 1 \right\}$ 是一个正规 MP-滤子。

命题 2.1 蕴涵格 M 的一个 MP-滤子 F 是正规的 MP-滤子的充要条件是

$$\forall x, y \in M, x \rightarrow y \in F \Rightarrow ((\neg x \rightarrow \neg y) \rightarrow \neg y) \rightarrow \neg x \in F_{\circ}$$
(2.1)

证明 设 $F \in M$ 的正规 MP-滤子,在(iii)里令 z = 1,则有 $x \to y \in F \Rightarrow ((\neg x \to \neg y) \to \neg x) \to \neg x \in F$ 。 另一方面,设 $z \to (x \to y) \in F$, $z \in F$ 。由 $F \in MP$ -滤子知 $(x \to y) \in F$ 。再由已知条件知 $\forall x, y \in M$, $x \to y \in F \Rightarrow ((y \to x) \to \neg y) \to \neg x \in F$ 。即(iii)成立,因此 $F \in F$ 。即MP-滤子。

命题 2.2 正规 MP-滤子必是 MP-滤子。

证明 设 F 是正规 MP-滤子,若 $x \in F$, $x \to y \in F$,则 $x \to (1 \to y) \in F$ 。则由定义 2.1.2 知(($\neg 1 \to \neg y$) $\to \neg 1 = ((0 \to \neg y) \to \neg y) \to 0 = y \in F$ 。从而 F 是 MP-滤子。

命题 2.3 设 $F \subset M$,则 $F \neq MP$ -滤子当且仅当 $F \neq \emptyset$, $F \neq \emptyset$, F

证明 充分性: 当 $a \in F$, $a \to b \in F$ 时, $a \otimes (a \to b) \in F$, 再由(17)和 F 是上集得 $b \in F$, 所以 F 是 MP-滤子。

必要性: F 是 MP-滤子,因 $a \in F$, $b \ge a$ 时, $a \rightarrow b = 1 \in F$, 所以 $b \in F$ 。 对 a, $b \in F$, $a \rightarrow (b \rightarrow a \otimes b) = a \otimes b \rightarrow a \otimes b = 1 \in F$, 所以 $a \otimes b \in F$ 。

下文中,用M表示蕴涵格,把MP-滤子简称为滤子,M的全体滤子之集记为F(M),全体素滤子P(M)。

2.2 蕴涵格的生成滤子及其性质

设 $A \subset M$,则所有包含 A 的滤子之交显然是包含 A 的最小滤子,称为由 A 生成的滤子,记作[A)。显然

$$[A) = \bigcap \{F \mid A \subset F, F \in F(M)\}_{\circ}$$

$$(2.2)$$

命题 2.4 设 A 是蕴涵格的一个非空子集,则[A) = $\{x \in M \mid \text{存在}, n \in N \text{ 和 } a_1, a_2, \cdots, a_n \in A \text{ 使} a_1 \otimes a_2 \otimes \cdots \otimes a_n \leq x\}$ 。 $A = \{a\}$ 时把[$\{a\}$)简记为[a),则

$$[a) = \{x \in M \mid \text{ free } n \in N \text{ fee } a^n \leq x\}. \tag{2.3}$$

推论 2.1 设 F 是蕴涵格 M 的滤子及 $a \in M$,则

 $\lceil F \bigcup \{a\} \} = \{ x \in M \mid (s_1 \otimes a^{n_1}) \otimes \cdots \otimes (s_m \otimes a^{n_m}) \leq x, m \geq 1, n_1, \cdots, n_m \geq 0, s_1, \cdots, s_m \in F \} .$ (2.4)

命题 2.5 设 $A,B \subset M$,则有

① 若 $A \subseteq B$,则 $[A) \subseteq [B)$; ②若 $x \le y$,则 $[y) \subseteq [x)$; ③ 若 $A \in F(M)$, $a \in M$, $[a) \subseteq A$ 当且仅当 $a \in A$; ④ 若 A, $B \in F(M)$,则 $[A \cup B) = \{x \in M \mid \text{ Fat } a \in A \text{ } a \in B \text{ } b \in B \text{ } b \in x\}$ 。

证明 易证①~④,下证⑤。令 $\{x \in M \mid \text{存在 } a \in A \text{ 和 } b \in B \text{ 使 } a \otimes b \leq x\} = Z, 则 Z 是滤子。事实上,由 1 \in A 且 1 \in B 得到 1 \in Z。设 <math>x, x \rightarrow y \in Z, 则$ 存在 $a_1, a_2 \in A, b_1, b_2 \in B$ 使得 $a_1 \otimes b_1 \leq x, a_2 \otimes b_2 \leq x \rightarrow y$ 。由 \otimes 的可交换性和结合性以及(17)得:

$$(a_1 \otimes b_1) \otimes (a_2 \otimes b_2) = (a_1 \otimes a_2) \otimes (b_1 \otimes b_2) \leqslant x \otimes (x \rightarrow y) \leqslant y_\circ$$

又因为, $a_1 \otimes a_2 \in A$, $b_1 \otimes b_2 \in B$, 所以 $\gamma \in \mathbb{Z}$, 即 \mathbb{Z} 是滤子。

再证 Z 是包含 A , B 的最小滤子。设 F 是任一包含 A , B 的滤子,任取 $x \in Z$,则存在 $a \in A \subset F$, $b \in B \subset F$ 使 $a \otimes b \leq x$,由 F 是上集且对 \otimes 运算封闭知 $x \in F$,即 $Z \subset F$,即 Z 是包含 A , B 的最小滤子。

命题 2.6 在 F(M)中引入 2 个运算 $\overline{\Lambda}$ 与 \overline{V} 如下:

$$F_1 \overline{\wedge} F_2 = F_1 \cap F_2, F_1 \overline{\vee} F_2 = [F_1 \cup F_2), \forall F_1, F_2 \in F,$$

$$(2.5)$$

则 $(F(M), \subset, \overline{\wedge}, \overline{\vee}, \{1\}, M)$ 是有界分配格。

证明 显然它是有界格,现证明它是分配格。

在任一格中 $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ 与 $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ 是等价的,故只需证明 $F_1 \wedge (F_2 \vee F_3) = (F_1 \wedge F_2) \vee (F_1 \wedge F_3)$ 即

$$F_1 \cap [F_2 \cup F_3] = (F_1 \cap F_2) \overline{\vee} (F_1 \cap F_3) = [(F_1 \cap F_2) \cup (F_1 \cap F_3)] = [F_1 \cap (F_2 \cup F_3)]$$

显然[$F_1 \cap (F_2 \cup F_3)$) $\subset F_1 \cap [F_2 \cup F_3)$ 。 下证 $F_1 \cap [F_2 \cup F_3)$ $\subset [F_1 \cap (F_2 \cup F_3))$ 为证明方便,只需证明 $F_1 \cap [F_2 \cup F_3)$ $\subset [(F_1 \cap F_2) \cup (F_1 \cap F_3))$,任取 $x \in F_1 \cap [F_2 \cup F_3)$,则 $x \in F_1$ 且 $x \in [F_2 \cup F_3)$,由 $x \in [F_2 \cup F_3)$ 可知,存在 $a \in F_2$, $b \in F_3$ 使 $a \otimes b \leq x$,由滤子 $F_1 \cap F_2$, $F_1 \cap F_3$ 是上集知 $x \vee a \in F_1 \cap F_2$, $x \vee b \in F_1 \cap F_3$,又 $(a \vee x) \otimes (b \vee x) = (a \otimes b) \vee (x \otimes b) \vee ((a \vee x) \otimes x) \leq x$,于是 $x \in [(F_1 \cap F_2) \cup (F_1 \cap F_3)) = [F_1 \cap (F_2 \cup F_3))$ 。

命题 2.7 设 F 是蕴涵格 M 的滤子及 $a,b \in M$,则

$$\lceil F \bigcup \{a\} \cap \lceil F \bigcup \{b\} \rangle = \lceil F \bigcup \{a \lor b\} \rangle_{\circ}$$

$$(2.6)$$

证明 设 $x \in [F \cup \{a\}) \cap [F \cup \{b\})$,则存在 $n_1, \dots, n_m, l_1, \dots, l_k \ge 0, s_1, \dots, s_m, t_1, \dots t_k \in F$,使得

$$(s_1 \otimes a^{n_1}) \otimes \cdots \otimes (s_m \otimes a^{n_m}) \leq x, (t_1 \otimes b^{l_1}) \otimes \cdots \otimes (t_k \otimes b^{l_k}) \leq x_0$$

令 $h = s_1 \otimes \cdots \otimes s_m \otimes t_1 \otimes \cdots \otimes t_k$, $g = \max\{n_1, \cdots, n_m, l_1, \cdots, l_k\}$, 则 $(h \otimes a^g)^m \leq x$, $(h \otimes b^g)^k \leq x$, 于是由 (18)得

$$x \geqslant (h \otimes a^{g})^{m} \vee (h \otimes b^{g})^{k} \geqslant ((h \otimes a^{g})^{m} \vee (h \otimes b^{g}))^{k} \geqslant ((h \otimes a^{g}) \vee (h \otimes b^{g}))^{mk} = (h \otimes (a^{g} \vee b^{g}))^{mk} \geqslant (h \otimes (a \vee b)^{g^{2}})^{mk},$$

所以 $x \in [F \cup \{a \lor b\})$ 。因此, $[F \cup \{a\}] \cap [F \cup \{b\}] \subset [F \cup \{a \lor b\}]$;反包含易证。

推论 2.2 设 $x, y \in M$,则 $[x) \overline{V}[y) = [x \land y), [x \lor y) = [x) \overline{\wedge}[y)$ 。

定理 2.1 $F \in M$ 的 MP-滤子,则 $F \in B$ 是素的当且仅当 $\forall x, y \in M$,当 $x \lor y \in F$,有 $x \in F$ 或 $y \in F$ 。

证明 充分性: $\forall x, y \in M$,由(9)($x \rightarrow y$) \lor ($y \rightarrow x$) = $1 \in F$,由题设 $x \rightarrow y \in F$ 或 $y \rightarrow x \in F$,这说明, F 是 M 的素 MP-滤子。

必要性:设 F 是 M 的素 MP-滤子,且 $x \lor y \in F$ ($\forall x, y \in M$)。因为 F 是素滤子,则 $x \to y \in F$ 或 $y \to x \in F$,由(11)知 $x \lor y \le (x \to y) \to y$,再由滤子是上集可得 $(x \to y) \to y \in F$,若 $(x \to y) \in F$,则 $y \in F$;若 $(y \to x) \in F$,由 $x \lor y \le (y \to x) \to x$ 可得 $x \in F$ 。

2.3 蕴涵格的素滤子定理

命题 2.8 设 $F \in M$ 的真滤子,则以下各式彼此等价:

① *F* 是素滤子;

- ② $\forall F_1, F_2 \in F(M)$, 若 $F_1 \cap F_2 \subset F$, 则 $F_1 \subset F$ 或 $F_2 \subset F$;

证明 ① 推②设 $F_1 \cap F_2 \subset F$, F_1 , $F_2 \in F(M)$ 。 若 $F_1 \not\subset F$ 且 $F_2 \not\subset F$, 则存在 $x \in F_1 - F$, $y \in F_2 - F$, 由 推论 2.2 知[$x \lor y$) = [x] \land [y) = ([x) \land [y)) $\subset F_1 \cap F_2 \subset F$, 又因为 F 是素滤子, 由定理 2.1 知, 当 $x \lor y \in F$, 有 $y \in F$ 或 $x \in F$, 矛盾! 所以 $F_1 \subseteq F$ 或 $F_2 \subseteq F$.

- ② 推③显然。
- ③ 推①设 $x \lor y \in F$,则由命题 2.5③和推论 2.2 知[$x \lor y$) = [x) \cap [y) \cap \cap \cap F,而又由题设得到 $x \in F$ 或 $y \in F$,即 F 是素滤子。

推论 2.3 设 $F \in M$ 的素滤子,则

- ② 若 $\{F_i\}_{i\in I}$ 是F(M)的子集族,且 $\{F_i|F\subset F_i\}_{i\in I}$ 则 $\{F_i\}_{i\in I}$ 是链。

定理 2.2 (蕴涵格的素滤子定理) 设 $F \not\in M$ 的一个滤子, $S \not\in M$ 的一个对 V 运算封闭的非空子集且 $S \cap F = \emptyset$,则存在 M 的一个素滤子 P 使得 $F \subseteq P$ 且 $S \cap P = \emptyset$ 。

证明 令 $\Omega = \{J \in F(M) \mid F \subset J, J \cap S = \emptyset\}$ 。显然 $\Omega \neq \emptyset$, 若 $\{J_i\}_{i \in I}$ 为一族 Ω 中的集合,由推论 2.3 知 $\{J_i\}_{i \in I}$ 为链,则 $\bigcup_{i \in I} J_i \in F(M)$ 且 $\bigcup_{i \in I} J_i \cap S = \emptyset$ (事实上, $1 \in \bigcup_{i \in I} J_i$,且若 $a, a \rightarrow b \in \bigcup_{i \in I} J_i$,则 $b \in \bigcup_{i \in I} J_i$;假设 $\bigcup_{i \in I} J_i \cap S \neq \emptyset$ 则存在 $a \in \bigcup_{i \in I} J_i$,即 $a \in J_{i_0}$ 且 $a \in S$,矛盾!),所以 $\bigcup_{i \in I} J_i \in \Omega$ 。 Ω 满足 Zom 引理,所以 Ω 有一个极大元 P。

下证 P 为素滤子。事实上,假设 P 不为素滤子,则存在 $x, y \in M$,虽然 $x \lor y \in P$,但 $x \notin P$ 且 $y \notin P$,从 而[$P \cup \{x\}$) $\land S \neq \emptyset$,[$P \cup \{y\}$) $\land S \neq \emptyset$,任取 $a \in [P \cup \{x\}) \land S$, $b \in [P \cup \{y\}) \land S$ 则 $a \lor b \in S$ 且 $a \lor b \in [P \cup \{x\}) \cap [P \cup \{y\}) = P$,矛盾!

推论 2.4 在 M 中,以下性质成立

- ① 设 $x \in M, x \neq 1$,则有 M 中的素滤子 P 使 $x \notin P$ 。
- ② 设 $F \in F(M)$,则存在素滤子 P 使得 $F \subset P$ 。
- ③ M 的每个真滤子都是素滤子之交。

参考文献:

- [1] ESTEVA F, GÖDO L. Monoidal t-norm based logic:towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001, 124: 271-288.
- [2] GOTTWALD S. A treatise on many-valued logics[M]. Baldock: Research Studies Press LTD, 2001.
- [3] HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer, 1998.
- [4] 王国俊. 模糊命题演算的一种形式演绎系统[J]. 科学通报, 1997, 42(10): 1041-1045.
- [5] PAVELKA J. On fuzzy logic (I , [] , []) [J]. Z Math Logik Grund Math, 1979, 25; 45-52; 119-134; 447-464.
- [6] 王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社 2000.
- [7] 王国俊. 蕴涵格及其 Fuzzy 拓扑表现定理[J]. 数学学报, 1999, 42(1):133-140.

(编辑:孙培芹)