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Abstract: The upper bound for the vertex-distinguishing IE-total chromatic number by the probability method is studied. If 6=
A7
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of G and A is the maximum degree of G.

7and 16 A<n< + 1, then X,ii (G) <16A is proved, where n is the order of G and & is the minimum degree
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It is well known to compute the chromatic number of a graph is NP-hard. In [1], some results about it have been ob-
tained by combinatorial. At ICM2002, Noga Alon advanced a theory that graph coloring could studied by probability
methods. For instance, some conclusions have been gotten by probability methods' > .

A proper total coloring of graph G is an assignment of colors to all vertices and edges with three conditions: condition
(v): each pair of incident vertices are colored with different colors; condition (e): each pair of incident edges are col-
ored with different colors; condition (i): every vertex with its incident edges are colored with different colors.

All the graphs G = G(V, E) discussed in this paper are finite, undirected, simple and connected. Let A be the max-
imum degree of G, & be the minimum degree of G, and n be the order of G.

Definition 1 If the total coloring graph G only satisfies condition (v), then such coloring is called a IE-total coloring
of graph G. If f is a IE-total coloring of graph G by using k colors, and for any vertices u,v€ V(G), uswv, it has
C(u)C(v), where C(u) = if( w)t U %f( w’ ) w' € E(G) Y, then f is called a k-vertex-distinguishing IE-total
coloring of G, or a k-VDIET-coloring of G for short. The minimum number of colors required for a VDIET-coloring of G
is denoted by Xfi (G), and it is called the VDIET chromatic number of G .

For other terminologies and notations, you can refer to [4].

Lemma 2 Consider a set ¢ = {A;, Ay, A, } of (typically bad) events such that each A; is mutually indepen-
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dent of e — (D; U {A;}), for some D, Ce. If we have reals x,,x,, "+, x, € (0,1) such that for each 1 <i<n,

Pr(A;) < x| lelz) (1- x; ), then the probability that none of the events in € occur is at least | [1(1 —x;)>0.
j. l 1=

7

Theorem 1 If =7 and 16A<n< +1, then ¥ (G)<16A.

32x10°(A +1)

Proof We easily know that ¥, (G)<n. We assign to each edge and vertex of G a uniformly random coloring from
{1,2,-++,16A | named this new coloring f. We will use lemma 2 to show that the probability that f is a vertex-distin-
guishing TE-total-coloring is positive. It is sufficient to show that the following two conditions should be satisfied:

(A) the vertex coloring is proper-no pair of incident vertices is colored with the same color.

(B) the coloring is vertex distinguishing-no pair of vertices meets the same color set.

Next we will show that the probability which the obtained coloring f is a vertex-distinguishing IE-total-coloring is posi-
tive. The following ‘bad’ events are defined.

Type 1 For each edge e = uv, let A, be the event that both u and v are colored with the same color;

Type 2 For any two different vertices u and w, and d(u) =d,, d(w)=d,, d =minid,,d,}, where d(u) is

the degree of u. let B, , be the event that u and w are colored with the different colors,and C(u) = C(w), where

Clu)={f(u)tUlfluw )l w/ € E(G)I;
It remains to show that with positive probability none of these events occurs. We must estimates the probability of a
given event firstly.
Lemma 3 The following two statements hold:
Bl
16A°
2x10°
AT
Proof (1) is trivial. For (2), let B; be the event of type 2 and satisfies that | C(u) | =1C(w)| =i(l<i<d+

(1) For each event A, of type 1, we have Pr(A,) =

(2) For each event B, , of type 2, we have Pr(B, ,) <

u,w

1). Then the probability Pr( B;) that the event B; happens is following:

(16A)[(d1+1)..| '-d1+1—i:|[(d2+1)_.' ..[12+1—i]
[ [ 2/
i l l

1° If u and w are not adjacent, then Pr( B;) =

(16A)% - (16A) %" 5
(164)[(d1+1)_.' '.(1]+1,'][(d2+1).-' .-d2+1—i]
. . L. l . L !
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2° If u and w are adjacent, then Pr(B;) < (164)% %+ H

(]6A)[(d1+1).' ,‘d1+1i,:||:(d2+1).-| _.,17+17;]
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From 1° and 2°, we can see that Pr( B;) <

n
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(16A)dl+d2+l

4me' (k+1)'(d+1)"
{f(k)— i2i—2.(@)k+d”7i }(d < k< A) and

1
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Pr (B ) <
e’ (d, +1)"+(dy +1)"
dl+d2+17i ’

o (163)

l

Let d, = d, = d, and since

k) = e’ (d + 1)
_kzkz.(m)uﬂk} (I<sk<sd+1),
k

h(k)_w (
{ - ( 16A ) k }(7$3$ k<A) are decreasing function {g
E+1

is increasing function, then

e
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Therefore Pr( B, , ) < 2 210 .

In this paper, event X is incident to event Y, if X and Y contain at least one common edge or vertex. Note that for
lemma 2, if we estimate the number of events of each type which are incident to one given event A, , then we easily ob-
tain the value of D;. So we need to estimate the number of events of each type which are incident to any given event.

Lemma 4 The following two statements hold:

(1) Each event of type 1 is incident to at most 2A events of type 1 which consist one set D, 2n — 2 events of type
2 which consist one set Dy, ;

(2) Each event of type 2 is incident to at most 2A events of type 1 which consist one set D,, , RA+2)n-(A+1)
(2A +3) events of type 2 which consist one set D, .

Proof (1) For each event A, of type 1, for any given edge e = uv, at most 2A vertices are incident to u or v. Be-
cause events of type 1 which contain one vertex u or v are at most n — 1, so each event of type 1 is incident to at most
2n —2 events of type 2.

The proof of (2) is similar to (1).

Next we must determine the real constant x,(0< x; < 1) for applying lemma 2. Let {A,,4,, ", Aml | be the set of

events of type 1 and %Aml Yl A’"l IPPREE ,Am2 { be the set of events of type 2. Note that type 1 and type 2 have no com-
mon event. Note that type 1 and type 2 have no common event. For lemma 2, ¢ = {A,,A,, ", A"'1 , A,,l1 i1 Am] 25"

Am2 { ,then each A,(1<i < m,) is mutually independent of ¢ — [(D,UDy) UA4,], and Aj(m1 +lsjsm,) is

mutually independent of € — [(D,UD,) U Aj] , where D; is defined in lemma 4. Let x; = i (1<si<m,) and
4x10° : . : . .
=TT (m; +1<j<m,). Using lemma 2, we conclude that with positive probability no events of type 1 and type
2 occur, provided that:
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(2)
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! . ..
) = 4 for all real z=2, and ns3zx A+ 1) + 1, we can prove that the inequalities (1) and

Since ( 1- 1
z
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(2) are true. So G has (16A)-VDIET-coloring, when 6=7 and 16A < nsm

+ 1. This completes the
proof .
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