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Abstract. As the dissipation mechanisms considered for the
heating of the solar corona would be sufficiently efficient
only in the presence of small scales, turbulence is thought
to be a key player in the coronal heating processes: it al-
lows indeed to transfer energy from the large scales to these
small scales. While Direct numerical simulations which have
been performed to investigate the properties of magnetohy-
drodynamic turbulence in the corona have provided inter-
esting results, they are limited to small Reynolds numbers.
We present here a model of coronal loop turbulence involv-
ing shell-models and Alfv́en waves propagation, allowing the
much faster computation of spectra and turbulence statistics
at higher Reynolds numbers. We also present first results
of the forward-modelling of spectroscopic observables in the
UV.

1 Introduction

Although the temperature of the solar corona has been known
for more than sixty years to be as much as a million Kelvin
(e.g.Edlén, 1943), the precise physical mechanisms allow-
ing its material to reach such high temperatures are still not
known precisely. At first view it seems indeed unphysi-
cal that the temperature rises when one goes further away
from the surface, while the Sun is the primary source of en-
ergy in its corona. Several questions arise (Klimchuk, 2006),
mainly:

1. What power is necessary to heat the corona to the ob-
served temperatures?

2. Where does the energy come from, how is it transported
to the corona, and, if necessary, how is it dissipated
there?
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One can also try to understand whether all structures in the
solar atmosphere (loops, active regions, the quiet Sun. . . ) are
heated by the same mechanisms, and how the coronae of
other stars are heated.

According to observations (Withbroe and Noyes, 1977),
the power necessary to heat the corona (i.e. the energy losses
in the corona) would be between 3×102 W/m2 in the quiet
Sun and 104 W/m2 in active regions. This answers to the first
question, even though observations with new instruments
may lead to slightly revise these quantities.

Over the years, different heating mechanisms have been
proposed, generally relying on either the dissipation in the
corona of waves produced at the photospheric level or the
reconnection of current sheets formed by the tangling of
the magnetic field lines by the photospheric motions (see
e.g.Zirker, 1993; Klimchuk, 2006, for a review). However,
all these mechanisms, if considered at the large, observable
scales, are not efficient enough to provide the necessary heat-
ing power. The solution would then be to consider small
scales, at which most dissipation mechanisms are more effi-
cient (for example, the efficiency of classical hydrodynamic
viscosity scales as the inverse square of the scale of the struc-
tures). The problem is now to produce these small-scale
structures, and this could be done thanks to turbulence.

The solar corona seems indeed to be in a very turbulent
state, as a rough estimation of the Reynolds number gives
1012 to 1014, based on the observed velocities and large struc-
tures, and a kinematic viscosity of the order of 1 m2/s. This
is also supported by observations, which have revealed dy-
namic structures over a wide range of scales, in both space
and time. Furthermore turbulence is expected in the corona
because it has been detected and measured in media like the
photosphere (seeEspagnet et al.1993 for the velocity and
Abramenko et al.2002for the magnetic field), the transition
region (Buchlin et al., 2006) and the solar wind (seeRoberts
and Goldstein, 1991; Tu and Marsch, 1995, for a review).
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Fig. 1. Layout of a shell model, in Fourier space. The triad non-
linear interaction represented by the thin triangle is not taken into
account because it is not local.

These ideas have lead to the development of models in-
cluding the effects of magnetohydrodynamic (MHD) turbu-
lence in the coronal heating (Heyvaerts and Priest, 1992; Ein-
audi et al., 1996). In this paper we present a model of MHD
turbulence and nonlinear Alfvén wave propagation in a coro-
nal loop, whose results lead us to think that turbulence is
indeed a key player in the coronal heating processes.

2 Model for turbulent heating in a coronal loop

2.1 Alternatives to Direct Numerical Simulations

Although Direct Numerical Simulations (DNS) of turbulence
have been performed in the framework of coronal heating,
they have strong limitations due to the complexity of the non-
linear physics involved. The main problem is related to the
fact that they are computationally much too expensive: in
the space domain, their resolution (at most 10243 for MHD)
is too low compared to what would be needed to simulate
a system like the corona with very high Reynolds numbers,
and in the time domain, they are too slow to produce long
time series suitable for a statistical analysis. An improve-
ment of DNS such as adaptive mesh refinement is not always
sufficient because turbulence is not intermittent enough (the
most refined grid would be necessary on a large part of the
domain). Simulations in 1D (e.g.Suzuki and Inutsuka, 2005)
or 2D have their own limitations on the geometry of the struc-
tures they can simulate.

For these reasons alternatives have to be considered. A
first alternative is to useCellular Automata(CA), i.e., dis-
crete lattice models that evolve according to simple rules in-
volving neighboring cells of the lattice: it is assumed that

MHD in the solar corona has, as many complex systems, a
Self-Organized Criticality (SOC) behavior (Bak et al., 1987),
and that it can then be modelled by a CA representing a clas-
sical SOC system, like a sandpile (Lu and Hamilton, 1991).
These models reproduce the slow buildup of the energy in the
system under the action of exterior perturbations, until a crit-
ical state is reached, and then another perturbation can lead
to an sudden energy release. This energy release can be a sig-
nificant portion of the total energy in the system, depending
on the individual perturbations and the critical state that had
been reached; the distributions of these releases are then dis-
tributed over a very wide range of scales, and their power-law
distributions can be identified to those of the energy releases
in the solar corona.

In the context of the solar corona, these models have been
progressively developed towards a better conformance to the
original physical equations (Isliker et al., 2000; Vlahos et al.,
1995), including also the propagation of Alfvén waves in a
coronal loop (Buchlin et al., 2003). However some of the
complexity of the MHD equations is still missed, and other
alternatives, like the shell models that we are going to de-
scribe now, need to be considered.

2.2 Description of the shell model

2.2.1 “Classical” shell models

Shell models have first been developed in order to study the
nonlinear behavior of hydrodynamics (Gledzer, 1973; Ya-
mada and Ohkitani, 1987), and they have been extended
to incompressible MHD (Gloaguen et al., 1985; Biskamp,
1994; Giuliani and Carbone, 1998). In these models the
Fourier space for the fields is divided into concentric shells of
radii kn=k0λ

n, with λ the logarithmic spacing (usuallyλ=2)
between shells (see Fig.1). In each shell, complex scalarsun

andbn represent the rms amplitude of the velocity and mag-
netic fields respectively. The Fourier transform of the nonlin-
ear terms of the MHD equations formally gives terms which
are convolutions of the fields; introducing the Elsässer-like
variablesZ±

n =un±bn this gives

(
dtZ

±
n

)
NL = ikn

(∑
l,m

αl,mZ±

l Z∓
m

)∗

(1)

whereαl,m are coefficients that still need to be determined.
The next assumption is that the nonlinear interactions are

local in Fourier space: only triads1 of consecutive shells can
interact, i.e.,αl,m=0 if {l, m, n} are not consecutive num-
bers (in any order). Locality is actually not entirely veri-
fied in MHD: DNS have indeed recently allowed to study to
what extent these interactions are non-local (Alexakis et al.,
2005); however, withλ=2 (i.e., direct nonlinear interactions
between wavenumbers separated by a factorλ2

=4), such

1Sets of three shells.

Nonlin. Processes Geophys., 14, 649–654, 2007 www.nonlin-processes-geophys.net/14/649/2007/
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non-locality could be sufficiently low for the shell-model ap-
proach to remain valid.

Finally, the conservation of invariants of MHD, namely
the energy, cross helicity and magnetic helicity in three di-
mensions (or the anastrophy in two dimensions) gives a
unique determination of the coefficients (Giuliani and Car-
bone1998; seeBuchlin2004for a complete derivation):

αn+1,n+2 = −λαn−1,n+1 = (δ + δM)/2 (2)

αn+2,n+1 = −λ2αn−2,n−1 = (2 − δ − δM)/2 (3)

αn+1,n−1 = −λαn−1,n−2 = (δM − δ)/2λ (4)

whereδ andδM are coefficients depending onλ and on the
dimensionality of the model (2-D or 3-D).

Shell models have also been recently extended to Hall-
MHD (Hori et al., 2005; Galtier and Buchlin, 2007), but this
is out of the scope of this paper.

2.2.2 Shell models with Alfv́en waves propagation

In order to model a coronal loop (as well as other anisotropic
systems with a large-scale magnetic fieldB‖), one needs also
to take into account the propagation of Alfvén waves along
B‖, with an Alfvén speedb‖=B‖/

√
µ0ρ that depends on the

position z along the loop of lengthL and width`=2π/k0
(the aspect ratio of the loop isLk0/2π). This is done by
introducing a dependence of the variablesZ±

n as a function
of z, and by using, for each shell indexn, the equation of
linear propagation of Alfv́en waves in a stratified atmosphere
(Velli , 1993). This includes the reflection along gradients of
b‖ and the amplitude variations ensuring the conservation of
the energy flux, and, applied to the shell model variables, it
gives (Buchlin and Velli, 2007)2:(
∂tZ

±
n

)
wave = ∓b‖∂zZ

±
n ∓

1

4
Z±

n ∂z(ln ρ) ∓
1

2
Z∓

n ∂zb‖ (5)

Therefore, the final equation for the time derivative of
Z±

n (z) in the model is the sum of the nonlinear terms
expressed by Eq. (1) (with coefficients from Eq. (2–4)),
of the linear wave propagation expressed by Eq. (5), and
of dissipation terms that can take the form of a viscosity
(∂t+νk2

n)un=0 and of a magnetic diffusivity(∂t+ηk2
n)bn=0.

The only input of energy in the model is obtained thanks
to the boundary conditions at the footpoints of the loop: a
slowly varyingun is imposed there at the large scales (small
n), in a way compatible with the observed motions of the
photospheric granulation. This translates into a Poynting
flux, which is not imposed a priori as it depends both on the
boundary conditions and on the waves arriving at the bound-
aries.

2Nigro et al.(2004) also include the Alfv́en wave propagation,
but with no dependence ofb‖ as a function ofz.

Fig. 2. Cross-scale energy flux5n in the shell models (posi-
tive is towards the small scales) as a function of the perpendicular
wavenumber.

3 Results on turbulence and coronal heating

3.1 Spectra of turbulence

As in classical shell models, spectra of the perpendicular
fluctuations develop to power laws over a wide inertial range
of perpendicular wavenumbers (more than 4 decades, much
more than what can be attained by DNS), and with a slope
close to−5/3. In each cross-section of the coronal loop
(one individual shell model), the energy transfer rate towards
small scales is governed by the following equation, which
is obtained by computing the time-derivative of the energy
contained in the shellsm≥n due to the action of the nonlin-
ear terms (Eq.1) only:

5n = −
kn

4λ2
=

∑
s=±1

(δM − δ)Z−s
n−2Z

s
n−1Z

s
n

+(2 − δ − δM)Zs
n−2Z

−s
n−1Z

s
n

+λ
(
(δ + δM)Zs

n−1Z
s
nZ

−s
n+1

+(2 − δ − δM)Zs
n−1Z

−s
n Zs

n+1

)
(6)

This allows to control that the energy flux in the inertial range
is towards the small scales and almost independent on the
scale, as can be seen in Fig.2.

In the parallel direction, no nonlinear cascade is explicitly
included in the model equations. However, the propagation
of the perpendicular fluctuations produced by the perpendic-
ular cascade also produces a parallel spectrum of the perpen-
dicular fluctuations. We have found that the overall (k⊥, k‖)
spectrum is anisotropic (Buchlin and Velli, 2007), in a way
that could be compatible with the assumption of a “critical
balance” between the Alfv́en propagation and the perpendic-
ular nonlinear transfer (Goldreich and Sridhar, 1995). The
detailed analysis of this anisotropic spectrum will be done in
a future work.

3.2 Properties of the heating

Another important output of the model is the heating func-
tion (the power of energy dissipation per unit volume). First,
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Fig. 3. Profiles of heating rate per unit volume in a 10 Mm-long
model loop obtained by the shell model, in the case of: a loop strat-
ified in density (plain line); a loop stratified in both density and
magnetic field (dashed line); a loop with a temperature-dependence
of the dissipation coefficientsν andη (dotted line). The unit of heat-
ing is of the order of 0.1W/m3, and the unit of length is the length
of the loop.

the average heating in the model is sufficient to heat the
coronal loop if we compare the average heating per unit
area of the cross-section of the loop (102 to 103 W/m2 and
higher for smaller loops) to the requirements ofWithbroe and
Noyes(1977). This is confirmed by further developments
of the model, involving the coupling of this heating model
(nicknamed SHELLATM) with the HYDRAD hydrodynamic
model of Bradshaw and Mason(2003), as seen in Sect.4,
and it is quite remarkable as the power input in the model
is not imposed a priori (only the amplitude of photospheric
motions is).

Statistical properties of the heating can then be computed.
We have shown inBuchlin and Velli(2007) that the time se-
ries of the dissipated power in the model (the integral along
the loop of the heating function) is intermittent: the distri-
butions of the increments at different time scales of the time
series depend on the scale. Furthermore, the energies, dura-
tions and waiting-times of “events” of dissipation extracted
from the time series of heating are distributed as power laws;
however, as we have shown inBuchlin et al. (2005) that
such distributions depend on the definition used to extract
the events, this result should be taken with care.

Taking a loop lengthL=10 Mm and width 1 Mm,
an Alfvén speed of 10 Mm/s and a mass density of
10−12 kg/m3, the energy dissipated in each event is up to
1017 J, corresponding to small nanoflares. Larger flares are
likely to be produced in loops with different parameters, with
different mechanisms, or they can be seen as an unresolved
superposition of small nanoflares, as the repetition time of

the small dissipation events in the model is high (of the or-
der of one second) while the conduction and cooling times
(Cargill, 1993) are 180 and 4000 s respectively at a tempera-
ture of 1 MK for this loop.

3.3 Profiles of heating along a loop

The stratification of the atmosphere included in this model
can be used to study the dependence of the heating as a func-
tion of position along a coronal loop, which is controversial.
As seen in Fig.3, different profiles are obtained, depending
on the physical parameters of the loop (Buchlin et al., 2007).

The profile of mass density alone (with a uniform profile
of magnetic fieldB0) has little influence on the heating per
unit volume (in Fig.3 the loop is 30 times denser at the foot-
points than at the loop top), which remains quasi-uniform,
even though the Alfv́en speed profile is then non-uniform.
However, when a non-uniform profile of magnetic field is in-
cluded (the flux tube is expanding and is wider in the corona;
in Fig. 3 the apex width is 1.5 times the footpoint width), the
heating per unit volume scales roughly asB2

‖
(z) (Gudiksen

and Nordlund, 2005), but this effect is quite small in practice,
especially in small loops, as the magnetic field in coronal
loops only weakly depends on the position (Klimchuk et al.,
1992).

Furthermore, contrary to DNS, this model can take into
account the large non-uniformity in viscosity and magnetic
diffusivity than can be expected from the non-uniformity
of the temperature profile, despite the dramatic variation of
the magnetic Prandtl number between the footpoints and the
apex of the loop. This non-uniformity of the diffusion coef-
ficients has an effect on the heating profile, as can be seen in
Fig. 3 (dotted line), so it needs to be taken into account by
the models even though the absolute values of these coeffi-
cients have no effect on the total turbulent dissipation power
at the end of the nonlinear cascade (Gudiksen and Nordlund,
2005).

4 Towards a better comparison with observations

As inverting a physical quantity like the energy dissipated
during an event is difficult (Parnell, 2004) and as the sta-
tistical properties of events depend on the way we define
events (Buchlin et al., 2005), it would be advisable to per-
form forward-modellingof observed quantities instead of in-
versions (Patsourakos et al., 2004; Klimchuk, 2006).

To achieve this goal, we must first compute the plasma re-
sponse to the heating, and this can for example be done, as
already mentioned in Sect.3.2, by feeding the HYDRAD hy-
drodynamic model ofBradshaw and Mason(2003) with the
heating produced by the SHELLATM model. As can be seen
in Fig. 4 (top), a corona forms, with temperatures of sev-
eral hundred thousands Kelvin (temperatures>1.5 MK are
attained intermittently) and low density. More dissipation,
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and then higher temperatures may be obtained with a smaller
aspect ratio (a thinner loop), a higher density, a higher Alfvén
speed or higher footpoint velocities (see Eq. (17) ofBuchlin
and Velli 2007). There is a sharp transition region between
the corona and the chromosphere/photosphere.

Then we compute the line emissions, either using the abil-
ity of HYDRAD to compute non-equilibrium ionization states
and radiation (with atomic data from CHIANTI,Dere et al.,
1997), or by assuming ionization equilibrium and using the
CHIANTI atomic model directly. In Fig.4 (bottom) we show
the resulting profile of emission in the TRACE 171Å pass-
band in the case of this relatively cool loop.

These computations allow to perform a direct comparison
between observations and the results of models of coronal
heating, however such comparisons can yield scientific re-
turn on coronal heating problem only if they allow to dis-
criminate between heating mechanisms. For this reason,
observablesignaturesof the heating mechanisms have to
be determined: the observable variables produced by each
of the possible models of coronal heating should be com-
puted, and a good signature would then be a specific feature
that would allow to determine non-ambiguously the heating
model (hence the physical processes) that was actually used
in the computation. If such a signature is found in the anal-
ysis of observations, it would allow to determine the heating
mechanisms at play in the solar corona.

5 Conclusions

We have presented a model for a solar coronal loop based on
MHD and including the nonlinear transfer of energy across
scales and the propagation of Alfvén waves in a stratified
atmosphere. It allows to perform computations of turbulent
fields and their nonlinear evolution for much higher Reynolds
numbers (≈106) than with direct numerical simulations, and
the long time series obtained by this model make it suitable
for a statistical analysis in the framework of turbulence. It
has furthermore been coupled to a hydrodynamic model in
order to compute the plasma response to the heating and the
forward-modelled observable variables coming out from the
emission of radiation by the plasma. Further work include
the determination of suitable signatures of specific heating
mechanisms, and this would allow determining the heating
mechanisms at play in the real solar corona from the analy-
sis of observational data such as data from the new Hinode
and STEREO satellites. The STEREO/SECCHI/EUVI in-
strument can for example been used to determine UV loops
geometry; these loops would be modelled using different
types of heating mechanisms (including by the turbulence
model presented here); observable quantities would be com-
puted for these different heating mechanisms, and compared
to Hinode/EIS spectroscopic observations. This comparison
would give an indication on which of the modelled heating
mechanisms could be correct.

Fig. 4. Top: temperature and density profiles computed by HY-
DRAD with heating from the SHELLATM model in a 40 Mm-long
model loop (the coronal part of the loop is actually only 24 Mm long
in this case), at a given time of the simulation. Bottom: the corre-
sponding profiles of the counts per seconds per pixel in this loop as
it would be observed by TRACE in the 171Å passband (the plain
and dashed lines represent the contributions of the iron and oxygen
lines respectively).
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