[Article]

July

www.whxb.pku.edu.cn

$PANI/AMTES-TiO_2$ 纳米复合材料的制备及其光催化性能

敏世雄* 王芳 张振敏 韩玉琦 冯 雷

(河西学院化学系,西部资源环境化学重点实验室,甘肃 张掖 734000)

摘要: 首先用偶联剂苯胺基甲基三乙氧基硅烷(AMTES)对纳米 TiO₂ 进行表面修饰(AMTES-TiO₂), 然后通过苯 胺单体在 AMTES-TiO₂ 表面的原位化学氧化接枝聚合, 制备了基于共价键结合的聚苯胺(PANI)/AMTES-TiO₂ 纳 米复合光催化材料. 用红外光谱(FTIR), X 射线衍射(XRD), 热重分析(TGA), 紫外-可见漫反射光谱(UV-Vis-DRS) 和荧光发射光谱(PL)等技术对复合材料进行了表征. 以亚甲基蓝(MB)为目标降解物, 研究了 PANI/AMTES-TiO₂ 复合材料在太阳光和紫外光下的光催化性能. 结果表明:聚苯胺敏化拓宽了 TiO₂ 的光谱响应范围, 复合材料在 紫外和可见光区都有较强的吸收, 提高了光能的利用率和光生载流子的分离效率, 使复合材料表现出较高的光 催化活性; 苯胺与 AMTES-TiO₂ 的质量比(*w*)对复合材料的光催化活性有较大影响, 当*w* 为 0.025 时, 复合材料 在两种光源下的催化性能均优于 TiO₂和 AMTES-TiO₂.

关键词: 光催化; TiO₂; PANI/AMTES-TiO₂纳米复合微粒; 亚甲基蓝 中图分类号: O643.3

Preparation and Photocatalytic Activity of PANI/AMTES-TiO₂ Nanocomposite Materials

MIN Shi-Xiong^{*} WANG Fang ZHANG Zhen-Min HAN Yu-Qi FENG Lei (Key Laboratory of Resources and Environmental Chemistry of West China, Department of Chemistry, Hexi University, Zhangye 734000, Gansu Province, P. R. China)

Abstract: After TiO_2 nanoparticles were surface modified by the coupling agent anilinomethyltriethoxysilane (AMTES-TiO₂), polyaniline (PANI) was grafted onto the surface of the AMTES-TiO₂ nanoparticles by *in situ* chemically oxidative polymerization resulting in a PANI/AMTES-TiO₂ nanocomposite photocatalyst. PANI and TiO₂ are linkaged by chemical bonds. The nanocomposites were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), UV-Visible diffuse reflectance spectrum (UV-Vis-DRS) and photoluminescence (PL). The photocatalytic activity was evaluated by the degradation of methylene blue (MB) in aqueous solution under UV and solar light irradiation. Results show that the sensitizing effect of PANI can improve the light response of TiO₂ and enhance the separation efficiency of electron and hole pairs which in turn promotes the photocatalytic activity of nanocomposites. The mass ratio (*w*) of aniline to AMTES-TiO₂ has a significant effect on the photocatalytic activity of nanocomposites and the optimal activity is obtained when the *w* is 0.025.

Key Words: Photocatalysis; TiO₂; PANI/AMTES-TiO₂ composite nanoparticle; Methylene blue

半导体 TiO₂ 具有较高的催化活性、良好的化学 稳定性、价廉易得、无毒等特点,已成为有机污染物 处理和太阳能转化等方面的研究热点^[1]. 然而, TiO₂ 是一种宽带隙半导体(*E*₂=3.2 eV), 对光的吸收仅限

河西学院西部资源环境化学重点实验室基金面上项目(XZ0706)资助

© Editorial office of Acta Physico-Chimica Sinica

Received: February 16, 2009; Revised: March 27, 2009; Published on Web: April 22, 2009.

^{*}Corresponding author. Email: msxwf@yahoo.com.cn; Tel: +86-936-8282066.

The project was supported by the General Program of the Key Laboratory of Resources and Environmental Chemistry of West China, Hexi University, China (XZ0706).

于紫外区,导致光能的利用率不高,且光生载流子的 复合率高,因此光催化的效率较低^[2].研究表明,通 过无机掺杂和有机修饰等方法均能不同程度地改善 TiO₂的光能利用率和光催化性能^[3-5].染料敏化是拓 展 TiO₂半导体光谱响应范围,提高光电转化和光催 化效率的一种有效方法^[67].然而,染料的选择和制备 比较困难,且染料存在着易溶解、易发生光催化降解 的缺点,使这类复合材料在光催化领域的应用受到 限制.

导电聚合物聚苯胺、聚噻吩、聚吡咯及其衍生物 具有良好的环境稳定性,在可见光区有很强烈的吸 收,是强的供电子体和优良的空穴传输材料,当其与 TiO₂在纳米尺度复合后,可使复合材料的光谱响应 范围拓宽到可见光区,还可以提高光生电荷的分离 效率,从而使复合材料表现出优良的光电转换性能, 目前已成为太阳能电池应用研究的热点[8-13]. 然而, 对于导电聚合物敏化宽带隙半导体复合材料光催化 性能的研究才刚刚起步[14,15]. 本课题组[10]曾利用苯胺 在 TiO, 纳米微粒表面的原位化学氧化聚合制备了 聚苯胺敏化的 TiO,纳米复合微粒,发现聚苯胺对 TiO₂有很好的光敏化效应,复合材料对光的吸收拓 宽至可见光区,光催化活性较纳米 TiO,有很大程度 的提高. Wang等[17,18]采用类似的方法制备了 PANI/ TiO₂复合材料,研究发现 PANI 的修饰可以明显增 强 TiO₂在可见光和紫外光下的光催化活性. Zhu 等¹⁰⁹采用化学吸附的方法制备了单层分散 PANI 修 饰的 TiO₂ 复合材料, PANI 和 TiO₂ 的协同效应使复 合材料对亚甲基蓝(MB)和罗丹明 B(RhB)的降解有 很高的光催化活性.但在以上的报道中,TiO2表面 的 PANI 是以物理吸附的形式存在, TiO₂ 和 PANI 的相容性较差,影响复合材料的均一性,进而影响材 料的光催化性能. Tang^[20]和 Yanagida^[10]等用硅烷偶 联剂对 TiO2进行了表面改性, 然后在其表面通过苯 胺单体的接枝聚合,制备了聚苯胺敏化的 TiO₂复合 材料,复合材料中 PANI 和 TiO2 之间是基于共价键 结合在一起的,这有效地增加了相间的接触面积,改 善了复合材料的化学稳定性能,从而表现出良好的 光电转化性能和光催化性能.

本文首先用偶联剂 AMTES 对 TiO₂ 进行表面 修饰,然后利用苯胺的原位化学氧化接枝聚合,制备 了两相间以共价键结合的 PANI/AMTES-TiO₂ 纳米 复合光催化材料.通过FTIR、XRD、TGA、UV-Vis-DRS和PL等技术对复合材料的结构和光吸收性能 进行了表征,较为系统地研究了复合材料在紫外光和太阳光条件下降解亚甲基蓝的光催化活性,并与纯TiO₂、AMTES-TiO₂进行比较,期望通过 PANI的敏化拓展TiO₂的光吸收范围和提高复合体系的光生电荷的分离效率,从而提高TiO₂的光催化性能,进一步拓宽导电聚合物/TiO₂复合材料在光催化领域的应用范围.

1 实验部分

1.1 材料和试剂

TiO₂ 催化剂 P25, 德国 Degussa 公司生产; 苯 胺, 分析纯, 天津市化学试剂一厂生产, 使用前二次 减压蒸馏; (NH₄)₂S₂O₈, 分析纯, 天津市巴斯夫化工有 限公司生产; *N*-甲基吡咯烷酮, 分析纯, 天津市化学 试剂六厂三分厂生产; 苯胺基甲基三乙氧基硅烷 (AMTES), 分析纯, 金坛市华东偶联剂厂生产; 亚甲 基蓝(MB), 分析纯, 天津市天新精细化工开发中心 生产; 无水乙醇、冰醋酸和浓盐酸均为分析纯. 实验 用水为去离子水.

1.2 PANI/AMTES-TiO2 纳米复合光催化材料的 制备

将 TiO₂ 在水蒸气条件下处理 30 min, 在 120 ℃ 烘干,得到表面富含羟基的纳米 TiO2^[20]. 准确称取 20g水蒸气处理过的纳米 TiO2,将其分散到 250 mL 无水乙醇、3 mL水、3.5 mL的乙酸水溶液(5%)和5 mL AMTES 的混合溶液当中, 超声分散 1 h, 室温下 继续搅拌反应 24 h. 将分散液过滤, 用无水乙醇超声 洗涤,过滤,重复上述操作5次,洗去没有反应的 AMTES, 50 ℃烘干, 得到硅烷偶联剂改性的纳米 TiO₂, 记为 AMTES-TiO₂. 搅拌下将 2 g 的 AMTES-TiO₂分散在100 mL溶有一定质量苯胺的1 mol·L⁻¹ 的HCl水溶液中,超声分散30 min.将一定量的 (NH4)2S2O8溶解在 20 mL、1 mol·L-1 的 HCl 中, 逐滴 滴加到上述固体分散液中,所有的反应体系中保持 (NH4)2S2O3与苯胺的摩尔比为 1, 混合体系在室温下 搅拌反应 12 h. 将产物过滤, 反复用 1 mol·L⁻¹ 的 HCl 洗涤, 然后依次用蒸馏水和乙醇洗涤, 再用 N-甲基吡咯烷酮抽提 20 h, 洗去物理吸附的聚苯胺, 最 后用无水乙醇抽提 20 h, 50 ℃烘干, 得到 PANI/ AMTES-TiO₂纳米复合材料.按此制备方法,改变苯 胺与AMTES-TiO₂的质量比合成PANI/AMTES-TiO₂ 复合粒子,记为PANI/AMTES-TiO₂(w),其中 w 表示 复合材料制备过程中苯胺与 AMTES-TiO₂ 的质量

图 1 PANI/AMTES-TiO₂ 纳米复合材料的合成路线 Fig.1 Preparation routes of PANI/AMTES-TiO₂ nanocomposites

比.

1.3 测试表征

红外光谱在 FTS 3000 型(美国 DIGILAB 公司) 傅立叶变换红外光谱仪上测定, KBr 压片; XRD 晶 相分析在RU-200B型X衍射仪上进行(日本 Rigaku 公司), Cu K_α辐射,管电流 100 mA,管电压 40 kV; UV-Vis 漫反射光谱在 Shimadzu UV-2550 型紫外-可见光谱仪上测定; UV-Vis 吸收光谱在 PE Lambda 35 型紫外-可见光谱仪上测定; 热重分析在 PE-PYRIS Diamond TG/DTA 热重分析仪上进行,升温 速率 10 ℃•min⁻¹,空气气氛; PL 光谱在 PE LS-55 荧 光光谱仪上测定,激发波长为 300 nm.

1.4 光催化实验

光催化反应在自制的光催化反应器中进行,反 应器为双层同心圆筒形装置.将 50 mg 催化剂加入 到 50 mL、40 mg·L⁻¹的亚甲基蓝溶液中,避光条件 下搅拌 30 min,使染料在复合材料的表面达到吸附-脱附平衡,开启紫外灯光源(6 W, λ_{max}=365 nm),进行 光催化反应.定时取样,用 721 型分光光度计在662 nm检测反应过程中染料浓度的变化.太阳光下的光 催化实验在 2008 年 8 月的 10:30–13:30 进行,其他 过程同上.

2 结果和讨论

2.1 复合材料的结构表征

2.1.1 FTIR 和 XRD 分析 PANI/AMTES-TiO₂复合粒子的制备过程如图 1 所示. TiO₂ 表面的羟基可以与偶联剂水解后的羟 基缩合,使偶联剂接在无机粒子表面,另外偶联剂分 子上的活性基团又可以和苯胺单体进行共聚反应, 使PANI接枝在TiO₂上^[1020].图2给出了纯TiO₂, PANI, AMTES-TiO₂和 PANI/AMTES-TiO₂复合粒子的红 外光谱图.纯TiO₂的红外光谱中(曲线a),3433和 1633 cm⁻¹处的吸收峰对应于 TiO₂ 表面羟基的吸收 峰;627和508 cm⁻¹处为TiO₂中Ti—O的特征振动 吸收.与之相比,AMTES-TiO₂的红外光谱中(曲线b), 在 2928、2811及1443 cm⁻¹处出现了—CH₂的吸收 峰^[10];1603、1502和3053 cm⁻¹的吸收峰说明了苯环 的存在;1280 cm⁻¹处为C—N的吸收峰;1040–1130 cm⁻¹范围内为Si—O—Si和Si—O—C的吸收峰;

另外,对应于羟基的吸收峰强度明显减弱,且向低波数位移.以上结果说明,AMTES 通过水解缩合反应,成功地键合在 TiO₂ 的表面^[10,20].在 PANI/AMTES-TiO₂(0.20)(曲线 c)的红外光谱中出现了对应于聚苯胺的吸收峰,分别为1595、1504、1305和1147 cm⁻¹,表明聚苯胺已被成功接枝并部分包覆在TiO₂的表面.与纯的聚苯胺相比(1565、1485、1296和1122 cm⁻¹)(曲线 f),复合材料中吸收峰均向高波数位移,说明聚苯胺高分子链和 TiO₂之间存在强的相互作用力^[16,20].随着苯胺与AMTES-TiO₂质量比的降低(曲线d、e),复合材料中对应于聚苯胺的吸收峰强度逐渐减弱.根据文献报道的方法^[21],由TGA分析得到PANI/AMTES-TiO₂(0.025)中 PANI 的接枝率为 1.18%左右.

XRD 测试结果表明, TiO₂ 为锐钛矿和金红石的 混晶结构(图 3a). PANI 的 XRD 图中(图 3d)在 2*θ*= 5°-30°范围内出现了 2 个相对明显的衍射峰, 分别 为 22.43°和 25.46°, 这说明 PANI 是部分结晶的^[23], 但衍射峰强度较弱, 宽度较大, 说明其结晶度较低. AMTES-TiO₂(图3b)和PANI/AMTES-TiO₂(0.025)(图 3c)复合材料的 XRD 图与 TiO₂ 一致, 说明 AMTES 对 TiO₂ 的表面有机改性和强氧化剂引发苯胺的氧 化聚合对 TiO₂ 的晶相组成没有影响, 同时也说明 TiO₂ 的存在影响了聚苯胺的结晶. 在原位接枝聚合 过程中, 当 PANI 吸附、沉积于 TiO₂ 的表面时, 由于 PANI 和 TiO₂ 之间相互作用力的存在, PANI 分子链 的运动和生长均受到限制, 从而使其结晶度减小^[23]. 2.1.2 UV-Vis-DRS 和 PL 光谱分析

图 4 为纯 TiO₂、AMTES-TiO₂和 PANI/AMTES-TiO₂复合纳米粒子的紫外-可见漫反射光谱图. 纯 TiO₂只能吸收波长低于 400 nm 的紫外光; AMTES-

图 3 纯 TiO₂ (a), AMTES-TiO₂ (b), PANI/AMTES-TiO₂(0.025) (c)和 PANI (d)的 XRD 图

Fig.3 XRD patterns of pure TiO₂ (a), AMTES-TiO₂ (b), PANI/AMTES-TiO₂(0.025) (c) and PANI (d)

Fig.4 UV-Vis-DRS spectra of pure TiO₂ (a), AMTES-TiO₂ (b) and PANI/AMTES-TiO₂ (w) (c-f) w: (c) 0.10, (d) 0.033, (e) 0.025, (f) 0.020

TiO₂在400-600 nm 之间有一定的吸收,但强度较弱,最大吸收峰位于460 nm;而 PANI/AMTES-TiO₂纳米复合材料在200-800 nm 范围内都有较强的吸收,第一个吸收带在200-400 nm,是 TiO₂的特征吸收峰,第二个吸收带在400-800 nm,最大吸收峰位于610 nm 左右,由PANI分子内电子的*π-π**跃迁所致^{1016]}.随着 *w* 的增加,复合材料对光的吸收强度增加,这说明 TiO₂表面 PANI 的增加,形成的包覆层较厚.以上结果表明,通过 PANI 对 TiO₂的敏化,可以将纳米 TiO₂的光谱响应范围从紫外拓宽至可见光区,这为 PANI/AMTES-TiO₂纳米复合材料以太阳光作为激发光源进行光催化降解有机污染物提供了可能.

另外, PANI 作为敏化剂的能力还可由 TiO₂ 对 其荧光性的淬灭来说明. 如图 5 所示, 纯 PANI 其荧 光发射光谱在 400-550 nm 范围内有多个峰值, 当 PANI 接枝于 TiO₂ 表面上时, 其荧光发射光谱的发 射强度大幅度降低, 说明 PANI 受光激发后向 TiO₂ 导带注入了电子, 这将有效地促进电子-空穴对的分 离, 进而增强复合材料光催化性能.

- 2.2 PANI/AMTES-TiO₂复合材料的光催化性能
- 2.2.1 紫外光下 PANI/AMTES-TiO₂复合粒子光催化降解亚 甲基蓝

图 6 为紫外光条件下, 纯 TiO₂、AMTES-TiO₂和 PANI/AMTES-TiO₂(0.025)复合材料光催化降解亚 甲基蓝的动力学曲线. 对应的动力学数据见表 1. 由 表 1 可以看出, 一级动力学曲线相关系数都在 0.996 以上, 说明光催化降解亚甲基蓝的反应符合一级动 力学反应规律. 由图 6 和表 1 可知, 无催化剂时, 紫

图5 PANI和PANI/AMTES-TiO₂(0.025)的荧光发射光谱 Fig.5 Photoluminescent (PL) spectra of PANI and PANI/AMTES-TiO₂(0.025)

外光对亚甲基蓝的光降解很慢; 纯 TiO₂ 的催化活性 远优于 AMTES-TiO₂ 的,可能的原因是 AMTES 的 修饰占据了大部分 TiO2 表面, 削弱 TiO2 粒子对光 的吸收和利用,减少了催化剂表面与染料分子直接 接触的活性位,从而降低了 MB 的催化降解速率; PANI/AMTES-TiO₂(0.025)作催化剂时,催化活性优 于纯 TiO2,复合粒子光催化降解 MB 的速率常数 (kapp)为 1.55×10⁻² min⁻¹, 而纯 TiO₂ 和 AMTES-TiO₂ 降解 MB 的速率常数则分别为 1.17×10⁻² 和 0.32× 10⁻² min⁻¹. 在复合材料中, PANI 和 TiO, 之间以共价 键结合,这将有效地增加 PANI 敏化层和 TiO₂ 之间 的接触面积, 克服相分离现象的发生, 增强复合材 料的化学稳定性能^[20],从而使激发PANI产生的电子 能较易传输和快速地注入 TiO2 的导带, 提高光能的 利用率和电子-空穴的分离效率, 增强 TiO₂ 的光催 化性.

2.2.2 太阳光下 PANI/AMTES-TiO₂复合粒子光催化降解 亚甲基蓝

图 7 为太阳光下分别以纯 TiO₂、AMTES-TiO₂

图 6 紫外光条件下不同样品对 MB 的光催化降解 Fig.6 Photocatalytic activities of different samples for degradation of MB under UV light irradiation

表 1 紫外光和太阳光下不同样品光催化降解 MB 的动力学参数

Table 1Kinetics parameters of different samples for
degradation of MB under UV light and solar
light irradiation

Photocatalyst	UV light		Solar light	
	$\frac{10^2 k_{\rm app}}{\rm min^{-1}}$	R^2	$\frac{10^2 k_{\rm app}}{\rm min^{-1}}$	R^2
pure TiO ₂	1.17	0.99917	3.21	0.99586
AMTES-TiO ₂	0.32	0.99633	1.43	0.99773
PANI/AMTES-TiO ₂ (0.025)	1.55	0.99799	4.31	0.99901
MB self-photolysis	0.084	0.99679	0.058	0.99887

和 PANI/AMTES-TiO₂(0.025)为催化剂时,光催化降 解亚甲基蓝的动力学曲线,对应的动力学数据见表 1. 与紫外光相似,太阳光下亚甲基蓝的光催化降解 反应也符合一级动力学反应规律.由图 7 和表 1 来 看,在无催化剂仅太阳光照下,亚甲基蓝溶液降解非 常缓慢,经过 2 h 光照后溶液浓度基本不变.但在太 阳光下,纯TiO₂、AMTES-TiO₂和PANI/AMTES-TiO₂ (0.025)纳米复合催化剂对亚甲基蓝具有明显的降解 效果.另外,太阳光下复合材料的光催化活性与纯 TiO₂和 AMTES-TiO₂相比较有较大幅度的提升.由 此可见, PANI 敏化可以明显增强复合材料对太阳 光谱中可见光部分的响应,增强了材料的光催化性 能.

此外,我们对复合材料的催化稳定性能进行了 测试,所得结果如图 8 所示.每次反应结束后,催化 剂离心分离,不经任何处理直接使用.当反应时间为 120 min 时,经过 3 次重复使用后,催化剂的活性仍 然较高,但进一步增加使用次数,催化剂明显失活, 这是由于复合材料本身存在着自降解反应(TiO₂光催 化降解 PANI)^[23],这会导致复合催化剂敏化层结构 被破坏,可见光响应能力减弱,从而导致催化剂活性

图 7 太阳光条件下不同样品对 MB 的光催化降解 Fig.7 Photocatalytic activities of different samples for degradation of MB under solar light irradiation

TiO₂(0.025)光催化降解 MB 的影响 Fig.8 Effect of cycle number on MB degradation

over PANI/AMTES-TiO₂(0.025) under solar light irradiation

降低.

2.2.3 苯胺与 AMTES-TiO₂ 质量比对 PANI/AMTES-TiO₂ 光催化性能的影响

考察了苯胺与 AMTES-TiO₂ 的质量比 w 对 PANI/AMTES-TiO₂ 纳米复合材料在紫外光和太阳 光下的光催化活性的影响,结果如表 2 所示.可以看 出,与 TiO₂ 和 AMTES-TiO₂ 相比,适量 PANI 的修 饰可以明显提高 TiO₂ 纳米粒子的光催化活性.两种 光源下,复合粒子催化活性随 w 的变化具有相同的 趋势.随着 w 的增大,复合粒子的光催化活性先增 大后减小,当 w=0.025 时复合纳米粒子的光催化活 性最高.这可能是因为当苯胺用量较少时,TiO₂ 纳 米粒子表面包覆 PANI 的量较少, PANI 在单位时间 内注入给 TiO₂ 纳米粒子的电子较少, TiO₂ 生成的电

表 2 苯胺与 AMTES-TiO₂ 质量比(*w*)对 PANI/AMTES-TiO₂ 光催化性能的影响

Table 2 Effect of mass ratio (*w*) of aniline to AMTES-TiO₂ on the photocatalytic activity of PANI/AMTES-TiO₂ nanocomposites

w -	UV light		Solar light		
	$10^2 k_{\rm app}/{\rm min}^{-1}$	R^2	$10^2 k_{\rm app}/{\rm min}^{-1}$	R^2	
0.020	1.46	0.99433	3.24	0.99939	
0.025	1.55	0.99799	4.31	0.99901	
0.033	1.47	0.99680	4.13	0.99696	
0.10	1.38	0.99620	2.91	0.99733	
0.20	0.96	0.99916	1.57	0.99780	

子-空穴对相应较少,因此其光催化活性较低;随着 w 的增大,TiO₂纳米粒子表面包覆 PANI 的量增多, 其光催化活性增大;但苯胺用量超过一定值时,大 量的 PANI 包裹在 TiO₂粒子的表面,使 MB 分子不 能有效地接触到催化剂上的活性位^[14,15],从而降低了 MB 的催化降解速率.

2.2.4 亚甲基蓝溶液的光催化降解

图 9 是在太阳光和紫外光照射下, PANI/ AMTES-TiO₂(0.025)复合催化剂对 MB 溶液光催化 降解过程的 UV-Vis 吸收光谱随光照时间的变化关 系. 从图可知, 太阳光照射下(图9a), 随着光照时间的 增加, 染料溶液在可见和紫外区的吸收峰强度明显 减弱, 光照 75 min, 可见吸收峰由 664 nm 蓝移至 621 nm, 这与亚甲基蓝分子脱甲基作用有关^[24];紫外 吸收峰由 291 nm 蓝移至 286 nm, 这与脱胺基作用 有关^[24], 说明亚甲基蓝在复合催化剂上发生了光催 化降解反应.紫外光照射下(图 9b), 光照 120 min, 可

图 9 太阳光(a)和紫外光(b)下 PANI/AMTES-TiO₂(0.025)对 MB 降解过程的 UV-Vis 吸收光谱 Fig.9 UV-Vis absorption spectra of MB during the photodegradation process in the presence of PANI/AMTES-TiO₂(0.025) under solar light (a) and UV light (b) irradiation

Insets show the wavelength shifts of the MB spectra at 664 and 291 nm with irradiation time.

图 10 PANI/AMTES-TiO₂ 纳米复合材料光催化降解 MB 的机理

Fig.10 Possible mechanism of photodegradation of MB in the presence of PANI/AMTES-TiO₂ nanocomposites

CB: conduction band, VB: valence band

见区吸收峰也发生了明显的蓝移,但与太阳光相比, 吸收峰强度减弱得较慢,且蓝移的幅度也较小.

2.3 光催化降解亚甲基蓝的机理

大量的研究表明^[2,3], 拓展 TiO₂ 的光谱响应范围 和提高光生电子-空穴对的分离效率是增强 TiO₂ 的 光催化活性的关键.在 PANI/AMTES-TiO,复合材 料中, PANI 在光催化过程中作为 TiO, 的敏化剂, 从 而增强 TiO₂ 光催化活性的具体过程如图 10 所示. 一方面 PANI 与 TiO, 之间是以共价键结合在一起 的,有效改善了TiO,与PANI之间的接触界面,有 利于能量的转换,提高了光能的利用效率¹⁸;另一方 面 PANI 是一种窄带隙有机半导体,具有类似于无 机半导体的能带结构,光学禁带宽度 Eg=2.88 eV^[25], 在能量大于其带隙的光照射下, PANI 能充分吸收 光能使处于最高占据轨道(HOMO)的电子被激发到 最低空轨道(LUMO),因为PANI的导带(E_e=-2.7 eV) 位于 TiO₂ 导带(E_e=-4.0 eV)之上, 所以光激发聚苯 胺产生的电子很容易迁移到 TiO2 的导带[10,17-20,25], 起 到敏化作用,这对于提高光能的利用效率十分有利: 与此同时, TiO2价带电子一部分激发到导带, 一部 分注入到 PANI 的最高占据轨道与空穴复合, 这对 于载流子的有效分离是非常有利的[9-11].另外, TiO2 被 PANI 部分地包覆, TiO2和 PANI 两者都可以直 接与染料溶液接触, PANI和 TiO2中的光生空穴可 以转移到 PANI、TiO₂ 与溶液的界面,这些光生空穴 可以与表面吸附的有机物种直接反应或形成活泼自 由基与染料分子反应,使染料分子被氧化发生降解. 因此,用 PANI 对 TiO2 进行表面敏化将有效促进复

合材料对光的利用率,提高光生电子-空穴对的有效 分离效率,降低复合的几率,使复合材料表现出较高 的催化活性^[14-16].

3 结 论

采用原位化学氧化接枝聚合的方法制备了基于 共价键结合的 PANI/AMTES-TiO₂ 纳米复合光催化 材料.研究了其在紫外光和太阳光照射下光催化降 解亚甲基蓝溶液的活性.结果表明, PANI 的敏化作 用可以拓宽 TiO₂ 纳米粒子的光响应范围, 提高光能 的利用率, 促进光生电子和空穴的分离效率, 增强复 合材料的光催化活性.具有一定 PANI 含量的 PANI/AMTES-TiO₂ 纳米复合微粒在紫外光和太阳 光下的光催化活性均优于纯 TiO₂ 和 AMTES-TiO₂; 随着苯胺与 AMTES-TiO₂ 质量比的增大, 这两种光 源下复合材料的光催化活性先增大后减小, 这与复 合材料中聚苯胺的含量有关.

References

- Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C-Rev., 2000, 1: 1
- 2 Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. *Chem. Rev.*, **1995**, **95**: 69
- 3 Choi, W.; Termit, A.; Hoffmann, M. R. J. Phys. Chem., 1994, 98: 13669
- 4 Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Phys. -Chim. Sin., 2004, 20: 138 [吴树新, 马 智, 秦永宁, 齐晓周, 梁 珍成. 物理化学学报, 2004, 20: 138]
- 5 Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science,
 2001, 293: 269
- 6 Regan, B. Ò.; Grätzel, M. A. Nature, 1991, 353: 737
- 7 Guo, J. H.; He, X. Y.; Guo, M.; Cai, S. M.; Chen, X. Y.; Pen, X. J. Acta Phys. -Chim. Sin., 2004, 20: 849 [过家好, 何晓英, 郭 敏, 蔡生民, 陈秀英, 彭孝军. 物理化学学报, 2004, 20: 849]
- 8 Savenije, T. J.; Vermeulen, M. J. W.; de Haas, M. L. P.; Warman, J. M. Solar Energy Materials and Solar Cells, 2000, 61: 9
- 9 Luzzati, S.; Basso, M.; Catellani, M.; Brabec, C. J.; Gebeyehu, D.; Sariciftci, N. S. *Thin Solid Films*, 2002, 403–404: 52
- 10 Senadeera, G. K. R.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Photochem. Photobiol. A-Chem., 2004, 164: 61
- Yanagida, S.; Senadeera, G. K. R.; Nakamura, K.; Kitamura, T.; Wada, Y. J. Photochem. Photobiol. A-Chem., 2004, 166: 75
- 12 Cao, F.; Oskam, G.; Serason, P. C. J. Phys. Chem., 1995, 99: 17071
- 13 Grant, C. D.; Schwartzberg, A. M.; Smestad, G. P. J. Electroanal. Chem., 2002, 522: 40
- Zhu, Y. F.; Pan, K. L.; Dan, Y. Polym. Mat. Sci. Eng., 2008, 24:
 102 [朱云峰, 潘柯良, 淡 宜. 高分子材料科学与工程, 2008,

24: 102]

- Wang, Y. H.; Wang, D. S.; Li, X. Y.; Luo, Q. Z.; An, J.; Yue, J. X. J. Mat. Sci. Eng., 2008, 26: 284 [王彦红, 王德松, 李雪艳, 罗青 枝, 安 静, 岳建霞. 材料科学与工程学报, 2008, 26: 284]
- 16 Min, S. X.; Wang, F.; Han, Y. Q. J. Mater. Sci., 2007, 42: 9966
- Li, X. Y.; Wang, D. S.; Cheng, G. X.; Luo, Q. Z.; An, J.; Wang, Y.
 H. Appl. Catal. B, 2008, 81: 267
- Li, X. Y.; Wang, D. S.; Luo, Q. Z.; An, J.; Wang, Y. H.; Cheng, G. X. J. Chem. Technol. Biotechnol., 2008, 83: 1558
- 19 Zhang, H.; Zong, R. L.; Zhao, J. C.; Zhu, Y. F. *Environ. Sci. Technol.*, 2008, 42: 3803
- 20 Li, J.; Zhu, L. H.; Wu, Y. H.; Harima, Y.; Zhang, A. Q.; Tang, H. Q. Polymer, 2006, 47: 7361
- 21 Pan, K. L; Zhu, Y. F.; Jiang, L.; Yang, M. J.; Liu, S. Y.; Dan, Y.

Polym. Mat. Sci. Eng., 2007, 23: 163 [潘柯良, 朱云峰, 江 龙, 杨明娇, 刘舒扬, 淡 宜. 高分子材料科学与工程, 2007, 23: 163]

- Li, X. W.; Wang, C. G.; Li, X. X.; Lu, D. M. Appl. Surf. Sci., 2004, 229: 395
- 23 Zhang, L. X.; Liu, P.; Su, Z. X. Polym. Degrad. Stab., 2006, 91: 2213
- Zhang, T. Y.; Oyama, T.; Horikoshi, S.; Hidaka, H.; Zhao, J. C.;
 Serpone, N. Solar Energy Materials and Solar Cells, 2002, 73:
 287
- 25 Liu, M. S; Hao, Y. Z.; Qiao, X. B.; Yang, M. Z.; Cai, S. M. *Electrochemistry*, **1998**, **4**: 246 [柳闽生, 郝彦忠, 乔学斌, 杨迈之, 蔡生民. 电化学, **1999**, **4**: 246]