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A quarterly series of short articles explaining statistical issues and methodologies relevant to ONS and other data. As well as defining the topic 
areas, the notes explain when, why and how these methodologies are used. Where relevant, we also point the reader to further sources of 
information.

Data reduction and model selection techniques
Graeme Chamberlin
Office for National Statistics

SUMMARY

Researchers and analysts now have access to increasingly large data 
sets. This article outlines some of the problems of dealing with a 
large number of variables and explains some of the techniques that 
can be used to reduce the number of available indicators to a more 
manageable size. This can be helpful in analysing the data or in 
modelling and forecasting work

Due to a proliferation of business and consumer surveys, 
the development of panels and better access to financial 
market data, large dimensional data sets have in recent 

years become increasingly available to statisticians and social 
scientists. While this undoubtedly offers better opportunities 
for empirical work, dealing with a large number of variables can 
present problems for data users. First, there are analytical issues of 
having to reckon with a large number of competing indicators, all 
of which measure the underlying variable of interest imperfectly. 
Second, as the number of variables approaches or exceeds the 
number of time observations, the problems of degrees of freedom 
and multicolinearity arise when using the data for modelling and 
forecasting purposes. 

For example, suppose interest was in developing a model to explain 
the dependent variable y using a total of n available indicators. In 
principle, the following simple linear model could be estimated: 

y = β1x1 + β2x2 + β3x3 .....+  βnxn  +  u                                                       (1)

Degrees of freedom are the number of independent bits of 
information that can be used to estimate each parameter. If the time 
series has t observations, and there are n coefficients β1, β2,.....,βn then 
there are t-n degrees of freedom.

When the number of indicators exceeds the number of observations 
(n>t), there is insufficient information to uniquely determine the 
coefficients in (1) and the model cannot be estimated. Even if n<t, as 
n approaches t, the distributions used for hypothesis testing become 
so wide that it is almost impossible to judge statistical significance. 
This can be seen in Figure 1 which plots the required t-test 
statistic to reject a null hypothesis at the 10 per cent and 5 per cent 
significance levels. At low degrees of freedom, this test-statistic is 
unlikely to reject a null hypothesis that any coefficient is significantly 
different from zero even if it is the case that the variable concerned is 
a genuine causal factor.

A second potential problem with estimating (1) is multicolinearity. 
A high degree of correlation between competing indicators makes 
it difficult to select the relevant variables based on t-tests alone, as 
standard errors become large. Some of the resulting issues are:

n	 small changes in the data produce wide swings in parameter 
estimates

n	 coefficients may have the ‘wrong’ sign or implausible 
magnitudes

n	 coefficients have very high standard errors and low significance 
levels even though they are jointly significant and the R2 for the 
regression is quite high 

A lack of degrees of freedom and the presence of multicolinearity 
mean that multivariate models are usually restricted to lower 
dimensions. However, how should the best combination of indicator 
variables from a potentially very large collection be selected? For 
example, a set of 30 indicators can be arranged into more than 1 
billion different models. 

This article approaches the problem in two ways: 

n	data reduction – factor analysis is based on the notion that 
many variables are driven by a reduced number of common 
factors or shared trends. These can be extracted from the 
underlying data set using principal components analysis or 
dynamic factor analysis

Figure 1
Required t-test statistic to reject a null hypothesis 
at different numbers of degrees of freedom 
t-test statistic

Note:
Alpha is the level of significance required
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n	model selection – as a relatively large number of different 
models can be formed from a small number of indicators, 
identifying the most significant combination of variables is 
subject to high search costs. However, recent developments in 
general-to-specific modelling techniques have reduced these, 
improving the efficiency of model selection

To demonstrate the usefulness of these techniques, examples are 
based on a number of business survey indicators of the output of 
UK manufacturing industry, as presented in Table 1. Although the 
methods described are general, the applications discussed in this 
article relate to time series models.

Table 1
Business survey indicators of UK manufacturing 
output (1991Q1 to 2007Q1)

Organisation	 Survey	 Indicator

Chartered Institute of 	 Report on Manufacturing	 Output
Purchasing and Supply (CIPS)		  Deliveries

Confederation of British Industry (CBI)	 Quarterly Industrial Trends Survey	 Output 
		  Home deliveries
		  Export deliveries

British Chambers of Commerce (BCC)	 Quarterly Economic Survey	 Home deliveries
		  Export deliveries 

Data reduction techniques using factor analysis

The basic insight is that strong co-movements between time series 
offer the opportunity to summarise the information from a large set 
of data by a smaller number of common factors.

For example, if the set of n indicator variables in (1) can be 
replaced with a set of m<n factors 1, 2,.....m which account for the 
underlying common trends, then model (2) represents a feasible 
alternative: 

y =O1 1  + O2 2 + O3 3 + ..... + Om m + v                                             (2)

There are two main approaches to extracting factors from a set of 
data. These are principal components and dynamic factor analysis.

Principal components

The basic methodology was developed by Hotelling (1933) and later 
applied by Stone (1947) to show that most of the variation in a large 
number of national accounts series could be interpreted by just three 
components: trend, cycle and rate of change of cycle. 

A principal component (PC) is simply a linear combination of the 
variables in the data set, where each is designed in turn to account 
for the maximal variance of that data. So, for a set of n indicators, 
there will be n corresponding PCs, where the first PC is constructed 
to account for maximal variance, the second to account for maximal 
variance of that not accounted for by the first PC, and so on. If the 
underlying data are driven by a small number of factors, then most 
of the variance in that data will be accounted for by a relatively small 
number of PCs. Furthermore, PCs are designed to be orthogonal to 
each other, so the problem of multicollinearity that might otherwise 
beset estimation of (1) is reduced. 

The methodology is based on the eigenvalues and eigenvectors for 
the variance-covariance matrix of the set of indicators. Eigenvalues 
and eigenvectors essentially describe the transformation properties 
of a matrix, where the eigenvector describes the direction of the 
transformation and the corresponding eigenvalue the strength. 
Hence, the first PC reflects a combination of indicators based on the 
eigenvector associated with the largest eigenvalue of the variance-
covariance matrix. The second PC is based on the eigenvector 
associated with the second largest eigenvalue, and so on. If the data 
exhibit strong co-movements between indicators (that is, sets of 
indicators are strongly correlated with each other), then it will be the 
case that the transformation properties of the matrix are dominated 
by relatively few eigenvectors. This will be apparent if the first few 
eigenvalues are relatively large.

Table 2 shows the PC analysis of the set of seven indicators listed in 
Table 1. Here, the first PC accounts for over 65 per cent of the total 
variance in the set of indicators, whereas the first two PCs together 
account for almost 80 per cent of the total. 

Table 2
Principal component analysis of the set of seven 
manufacturing indicators from Table 1

Principal	 Eigenvalue	 Variance	 Cumulative 
component		  proportion	 variance 
		  explained	 proportion

1	 4.562	 0.652	 0.652
2	 0.982	 0.140	 0.792
3	 0.782	 0.112	 0.904
4	 0.444	 0.063	 0.967
5	 0.147	 0.021	 0.988
6	 0.054	 0.008	 0.996
7	 0.029	 0.004	 1.000

In selecting the number of relevant PCs, a conventional rule of 
thumb is to look for a step change in the eigenvalues, which in 
this case occurs between the first and second PCs. Alternatively, 
when the data have been standardised as in this case, another rule 
of thumb is to select the PCs corresponding to eigenvalues greater 
than one. This suggests that the first PC on its own is an adequate 
representation of the set of seven indicators.

The composition of the first PC can be observed in Table 3 by 
looking at the eigenvector associated with the largest eigenvalue. 
If all the data are driven by a common factor, it is normally the 
case that the factor loadings in the first PC are fairly equal. The 
evidence here suggests that the CIPS data, particularly that relating 
to deliveries, is less correlated with the rest of the sample. Because it 
has more independent variation from the rest, the second principal 

Table 3
The normalised eigenvectors associated with the 
two largest eigenvalues, forming the basis for the 
first two PCs

Variable	 Eigenvector 1	 Eigenvector 2

CIPS output	 0.1198	 0.3657
CIPS deliveries	 0.0551	 1.3570
CBI output	 0.1714	 –0.1507
CBI home deliveries	 0.1669	 0.0029
CBI export deliveries	 0.1588	 –0.1788
BCC home deliveries	 0.1670	 –0.1759
BCC export deliveries	 0.1610	 –0.2203
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component would be expected to be quite correlated with this 
variable, which is confirmed by looking at the factor loadings of the 
second eigenvector in Table 3. 

In Figure 2, Figure 3 and Figure 4, the first two principal 
components are plotted against the CIPS, CBI and BCC survey data, 
respectively. Here, it can be seen that the first principal component 
is strongly correlated with the CBI, BCC and CIPS output data, 
whereas the second principal component mirrors the movements 
in the CIPS deliveries data. It can be concluded that the original 
set of seven indicators can be summarised by one or two principal 
components.

The power of the PC approach is greatest when the indicator set 
is very large. A recent article by this author (Chamberlin 2007) 
showed that a set of over 400 business survey and financial markets 
indicators could adequately be described by eight PCs. The approach 

is also very good at isolating sources of idiosyncratic movements and 
potential outliers, as these are often identified as individual PCs and 
can therefore be discarded. 

The main problem is that a PC which explains a very small 
proportion of the variation in the set of indicators might explain a 
large part of the variation of the dependent variable y in the model 
of interest. For example, if interest were in constructing a set of 
variables to model and forecast the official Index of Manufacturing 
published by the Office for National Statistics (ONS), then it cannot 
be discounted that the CIPS data, or specifically the CIPS delivery 
data, might outperform the first PC. The variable-specific parts to the 
CIPS data set that reduces its correlation with other surveys might 
just be an important ingredient in explaining movements in y.

Recent work by Forni et al (2003) has extended this basic approach. 
Traditional factor analysis looks to partition variables into common 
and variable-specific parts, but it is assumed that there is no 
cross-correlation at any lead or lag between the variable-specific 
components. This could be a problem. Suppose two industries are 
represented by an input-output relationship, possibly with a lag so 
that an idiosyncratic shock to B may eventually propagate to A. 
Their generalised technique, often referred to as dynamic principal 
components, allows a limited degree of cross-correlation between 
the idiosyncratic components, allowing more information to be 
extracted from large panels. 

Dynamic factor models

This is essentially a generalisation of the PC approach and is 
designed to take account of the dynamic interrelationships between 
variables. Stock and Watson (1989) pioneered the method which 
has subsequently been widely applied and updated: for example, see 
Garratt and Hall (1996) for a UK application. The aim is to extract 
from a set of variables a latent variable which can be interpreted 
as the underlying common trend in the data. Therefore, each 
standardised data series can be expressed as a combination of this 
common variable, known as the state (St) and a variable-specific 
component ei,t: 

CIPS output = St + e1,t	 [Var (e1) = C1]		 (3)
CIPS deliveries = St + e2,t 	 [Var (e2) = C2]		 (4)
CBI output = St + e3,t	 [Var (e3) = C3]		 (5)
CBI home deliveries = St + e4,t	 [Var (e4) = C4]		 (6)
CBI export deliveries = St + e5,t	 [Var (e5) = C5]		 (7)
BCC home deliveries = St + e6,t	 [Var (e6) = C6]		 (8)
BCC export deliveries = St + e7,t	 [Var (e7) = C7]		 (9)
St = St-1 + wt	 [Var (w)= 1]		  (10)

Equations (3) to (9) are measurement equations, describing the 
relationship between the observed manufacturing indicators and 
the unobserved state variable. Equation (10) describes the dynamic 
process that represents movements in the state variable. In this case it 
is a simple random walk. If the dynamic term in (10) were removed, 
so that St = wt, this model would become static and produce a similar 
outcome to the first PC in the above analysis. For this reason, the PC 
methodology is often referred to as static factor analysis.

The system of equations (3) to (10) can be estimated using the 
Kalman filter. This is a recursive algorithm which updates its 
estimates of the unobserved state variable as each new data point 

Figure 2
Principal components and the CIPS survey
Standardised units

Figure 3
Principal components and the CBI survey
Standardised units

Figure 4
Principal components and the BCC survey
Standardised units
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arrives. A good description of the Kalman filter is given in Harvey 
(1991). Because almost any linear model can be expressed in the 
required state-space form, this constitutes a very flexible modelling 
approach. The above system is just one example. In practice, 
the modeller has almost free range to determine the number of 
unobserved variables, the dynamic structure of the state equations 
and the form of the measurement equations. 

The key elements in this system are the noise-to-signal ratios. As the 
variance of the error term in the state equation is normalised to 1, 
these are given by the coefficients Ci, for i = 1 to 7, which determines 
for each indicator how much of the variable is driven by the common 
trend and how much by the variable-specific part. The lower the 
noise-to-signal ratio, the more the series is represented by the 
underlying common trend, and less by its own idiosyncratic features. 
These hyperparameters can be imposed or, as in this case, estimated 
using maximum likelihood methods.

Figure 5 plots the estimated state variable compared with the first 
PC from above. There is a fairly close association between the two 
which is unsurprising given the limited dynamics in the model. 

Figure 5
Comparing static and dynamic factor analysis 
of business survey indicators of manufacturing 
output
Standardised units

Analysing the noise-to-signal ratios (Table 4) implies that the 
common trend is strongly related to the CBI data on output, home 
deliveries and the BCC data on home deliveries. The CIPS data, 
especially those on deliveries, are again given a lower weight, with 
more of the variance in these series explained by the indicator-
specific component. As a factor extraction technique, the same 
criticisms made of the PC approach apply here.

Table 4
Noise-to-signal ratios for the system (3) to (10), 
estimated by maximum likelihood

Variable	 Coefficient	 Standard error	 Z-statistic	 Probability

C(1)	 0.916	 0.113	 8.106	 0.000
C(2)	 1.384	 0.254	 5.445	 0.000
C(3)	 0.035	 0.012	 2.996	 0.003
C(4)	 0.070	 0.021	 3.254	 0.001
C(5)	 0.469	 0.105	 4.475	 0.000
C(6)	 0.122	 0.027	 4.506	 0.000
C(7)	 0.484	 0.130	 3.728	 0.000

Factor reduction techniques offer a convenient way of summarising 
the main features of a data set. This can be useful when a lack of 
degrees of freedom or multicolinearity make estimation of a model 
such as (1) infeasible, but in doing so potentially useful independent 
sources of information are often discarded, so the alternative model 
(2) may not be best-fitting. The next section on model selection 
suggests how this problem might be addressed. 

Model selection

When dealing with a large number of indicators, a common 
approach is to attempt to select a subset that best explains the 
variable of interest. The general-to-specific (GETS) modelling 
approach consists of starting from a very general statistical model, 
which captures the essential characteristics of the underlying 
data set, and then using standard testing procedures to reduce its 
complexity by eliminating statistically insignificant variables. At 
each stage of deletion, the validity of the reductions made should be 
checked to ensure the selected model continues to pass diagnostic 
tests (that is, it is congruent). 

The main criticism of GETS is that it suffers from high ‘search costs’ 
and path dependence, meaning that it is very difficult to retrieve the 
best model from among all the possible combinations of variables. 
A study by Lovell (1983) of trying to select a small relation (0 to 5 
regressors) hidden in a large database (40 variables) found a low 
success rate. 

High search costs can easily be understood from the theory of repeated 
testing. Conducting 40 independent tests at the 5 per cent significance 
level means that there is only a (1–0.05)40 = 0.13 chance that no tests 
reject by chance. A type one error is the probability of rejecting a 
hypothesis that is true; in this case there is a 1–0.13 = 0.87 chance that 
in 40 tests one or more irrelevant variables will be maintained in the 
model. This is quite large and shows how repeated testing can generate 
spurious results. Failing to reject irrelevant variables means that they 
may stay in the regression and act as proxies for variables that do 
matter, and which are subsequently omitted. Therefore, under repeated 
testing, the probability of retaining variables that should not enter a 
relationship would be high because a multitude of tests on irrelevant 
variables must deliver some significant outcomes by chance. 

A possible solution is to raise the size of the test by using larger 
critical values. For example, at a 0.5 per cent significance level, there 
is a (1–0.005)40 = 0.89 chance that no tests reject simply by chance. 
Raising the size of the test lowers the probability of type 1 errors 
from 0.87 to 0.11. Unfortunately, more stringent criteria for avoiding 
rejections when the null is true lower the power of rejection when it 
is false. That is, in attempting to lower the probability of maintaining 
irrelevant variables by raising critical values, the chance probability 
of rejecting the relevant ones is increased (a type 2 error). The size 
versus power trade-off is a well-known phenomenon in econometric 
modelling.

Path dependence refers to the fact that the order in which the 
variables are deleted generally matters, so the final model is 
dependent on the path taken to get there. Hence, a multitude of 
terminal models can result from the same starting point, making it 
difficult to identify the best underlying model. 

Recent advancements in automating GETS procedures have reduced 
the search costs associated with exploring multiple deletion paths 
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from a general model and choosing between alternative terminal 
models. Krolzig and Hendry (2001) have significantly aided this with 
the development of their PcGets software, which has built upon the 
earlier innovations by Hoover and Perez (1999). 

Starting with a general unrestricted model (GUM), the PcGets 
algorithm works like a series of sieves, searching multiple deletion 
paths, checking that congruence is maintained at each stage and then 
using encompassing tests to select between terminal models. The 
rationale for these steps is as follows:

n	 search many reduction paths – this is designed to mitigate 
the problem of path dependence, leading to misspecification, 
as important variables are deleted and irrelevant variables 
are retained as proxies. Exploring several paths gives the 
opportunity for error correction in the light of wrong 
decisions. Searching all feasible paths increases the probability 
that some models will retain the variables that matter while 
eliminating those that do not 

n	 maintaining congruence – the algorithm only undertakes 
reductions which leaves diagnostic tests as insignificant. 
Diagnostics act as a constraint on reduction and the choice of 
diagnostics and their significance levels adds to the size of the 
selection process

n	 selection of the terminal model by encompassing – each 
search path is terminated when there are no further possible 
reductions or when deletion induces a diagnostic test failure. 
Encompassing is the notion of being able to account for the 
results obtained by rival models given one's own findings. 
Therefore, if model A encompasses model B, then model A 
accounts for all of the variance in the dependent variable 
explained by model B. In this sense, encompassing implies 
variance-dominance, that is, a badly-fitting model cannot 
account for the variance of a well-fitting model 

In the encompassing stage of the PcGets algorithm, all distinct non-
nested models are collected and encompassing is used to eliminate 
those which are dominated. If a unique choice does not result, it 
implies that the remaining models are incomplete, that is, each 
explains some variance in the dependent variable not accounted for 
by other models, but no model is dominant. The PcGets algorithm 
then forms the union of resulting models which becomes the new 
starting point for path searches. The algorithm repeats until the 
union is unchanged between successive rounds. 

Simply choosing the best-fitting model offers no protection against 
picking a spurious relationship. When a given path eliminates a 
variable that matters, other variables proxy such an effect, leading 
to spuriously large and misspecified models. However, some other 
paths will retain that variable and in the encompassing tests the 
proxies will be frequently revealed as conditionally redundant, 
inducing a smaller final model focused on the genuine causal factors.

Although PcGets is an automatic procedure, there is still a role to 
be played by the practitioner. This predominately involves choosing 
the form of the GUM and the significance levels of the variable 
deletion and diagnostic tests, which act as constraints on the paths 
the algorithm explores and therefore have an important bearing on 
the terminal models produced. If required, the practitioner can also 

initiate forced searches that maintain certain variables of interest in 
the model.

In Table 5 and Table 6, the PcGets software is used to find a 
relationship between the set of business survey indicators and ONS’s 
Index of Manufacturing. Estimation of the GUM is shown in Table 
5, and the final dominant model in Table 6. In Table 7, a number of 
different measures of ‘goodness of fit’ are presented for each model.

Table 5
GUM: dependent variable – ONS Index of 
Manufacturing, three-month on three-month 
growth rate (1991Q1 to 2007Q1)

Variable	 Coefficient	 Standard 	 t-value	 t-probability 
		  error

Constant	 –5.264	 2.164	 –2.433	 0.018**

CIPS output	 0.072	 0.036	 2.000	 0.051*

CIPS deliveries	 0.032	 0.023	 1.401	 0.167
CBI output	 0.016	 0.031	 0.506	 0.615
CBI home deliveries	 0.010	 0.028	 0.359	 0.721
CBI export deliveries	 –0.009	 0.017	 –0.517	 0.607
BCC home deliveries	 –0.005	 0.020	 –0.222	 0.825
BCC export deliveries	 0.005	 0.018	 0.287	 0.776
Seasonal Q1	 –0.025	 0.295	 –0.084	 0.933
Seasonal Q2	 –0.146	 0.280	 –0.521	 0.604 
Seasonal Q3	 0.241	 0.284	 0.849	 0.400

Table 6
Final model estimated by PcGets from the GUM in 
Table 5

Variable	 Coefficient	 Standard 	 t-value	 t-probability 
		  error

Constant	 –4.231	 1.554	 –2.722	 0.008**

CIPS output	 0.083	 0.029	 2.856	 0.006**

CBI output	 0.019	 0.007	 2.737	 0.008**

Table 7
Information criteria for goodness of fit and 
parsimonious specification of the model

	 GUM (Table 5)	 Final model (Table 6)

Residual sum of squares	 32.35	 35.58
R2	 0.37	 0.31
Adjusted R2	 0.26	 0.28
Akaike Information Criterion	 –0.36	 –0.51
Schwartz Criterion	 0.01	 –0.41

In terms of the residual sum of squares and R2 statistics, the original 
GUM is a better-fitting model. However, these statistics can never 
deteriorate when more variables are added to the model, so a 
judgement based on these criteria could lead to over-fitting. This 
might lead one away from the best forecasting model because adding 
variables can increase the variance of the forecast error. 

Alternative measures such as adjusted R2, the Akaike Information 
Criterion and the Schwartz Criterion are measures of goodness 
of fit that increasingly penalise the loss of degrees of freedom that 
results from adding more variables to the model. These statistics 
suggest that the reduced-form final model can be accepted as a more 
parsimonious representation of the GUM.

Although PcGets is a powerful tool aiding model selection, there are 
some obvious limitations in its use. Because it starts with estimating 
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a GUM, then all the problems identified in estimating (1) still apply. 
The GUM will be indeterminate if there are insufficient degrees 
of freedom, and the presence of multicolinearity can reduce the 
efficiency of the algorithm leading to a proliferation of final models. 

Recent work by Castle and Hendry (2006) has started to explore how 
PcGets might deal with these problems. They find that the procedure 
is still quite successful if the set of indicators is divided into smaller 
subgroups, where in each the variables are selected to reduce the 
incidence of multicolinearity. PcGets is then run on these models 
and a union of the final models formed as a new GUM.
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