厌氧颗粒污泥对水中铅离子的吸附与解吸附

陈晓^{1,2}, 唐艳葵^{1,2}, 童张法¹, 韦星任¹, 梁达文³

(1. 广西大学化学化工学院, 广西 南宁 530004;

2. 广西环境工程与保护评价重点实验室, 广西 桂林 541004; 3. 玉林师范学院化学与生物系, 广西 玉林 537000)

摘 要:采用厌氧颗粒污泥对废水中的 Pb²⁺进行了吸附和解吸附研究.结果表明,影响 Pb²⁺吸附的主要因素是溶液 pH、 污泥投加量、Pb²⁺的初始浓度及接触时间.处理 25 mL Pb²⁺浓度为 100 mg/L 的(pH 4~5)模拟废水时,投加 0.1 g 污泥, 污泥吸附容量为 121.1 mg/g,对废水中 Pb²⁺的吸附率可达 99.5%.未经烘干处理的颗粒污泥有更强的吸附能力,其吸 附过程符合 Lagergren 二级动力学方程,吸附等温线可由 Langmuir 和 Freundlich 方程很好地拟合,相关性良好.吸附 Pb²⁺后的厌氧颗粒污泥用 0.1 mol/L 硝酸经 3 次解吸后,解吸率可达 93.11%.

关键词: 厌氧颗粒污泥; Pb²⁺; 吸附; 解吸附

中图分类号: X506 文献标识码: A 文章编号: 1009-606X(2009)03-0492-06

1 前 言

铅是分布广、有蓄积性的重金属环境污染物,其性质稳定,对人体极为有害. 我国水体中铅污染严重^[1].生物吸附法对重金属吸附效果显著且对环境友好,报道过的吸附剂有木质素、壳聚糖、海藻、各种细菌、真菌及其死体和颗粒污泥等^[2-4]. 厌氧颗粒污泥是由厌氧微生物通过自凝聚作用形成的密度较高、活性较大的微生物聚集体,具有多孔性、良好的沉降性及稳定性^[5]. 其作为一种生物吸附剂对重金属有一定的吸附能力,吸附平衡后固液分离较容易,周围环境(尤其是 pH)对吸附效果影响较小.

目前, 厌氧反应器在高浓度有机废水处理领域应用 广泛, 反应器内厌氧污泥颗粒化技术日臻成熟^[6]. 厌氧 反应器废弃的颗粒污泥廉价易得,不需改性.本工作为 探索废弃厌氧颗粒污泥综合利用的新途径, 以某啤酒厂 厌氧反应器内的颗粒污泥为吸附剂, 吸附水溶液中的 Pb²⁺,并对吸附后的厌氧颗粒污泥(以下简称污泥)进行 解吸附, 通过电镜观察和能谱分析对吸附机理进行初步 探讨.

2 材料和方法

2.1 材料

2.1.1 吸附实验材料

实验模拟废水是用 Pb(NO₃)₂(分析纯)配制成的含 1000 mg/L Pb²⁺的贮备液,再根据实验要求稀释成所需 浓度. 污泥取自某啤酒厂 UASB 反应器,其结构致密, 形态完整,灰褐色,椭圆形,含水率 70.46%,沉降速 率 80.5 m/h. 污泥的其他理化性质见表 1 和 2, 污泥外 观见图 1.

表 1 厌氧颗粒污泥的理化性质

Table1	Properties	of	oranul	ar	slud	σe
rabler	riopernes	UI.	granu	ai	siuu	ge

A	8
Parameter	Value
Specific gravity (kg/m ³)	1 0 2 0
VSS ¹ /TSS ²)	0.6076
MLVSS ³⁾ /MLSS ⁴⁾	0.7686

Note: 1) Volatile suspended solids; 2) Total suspended solids; 3) Mixed liquid volatile suspended solids; 4) Mixed liquid suspended solids.

表 2 厌氧颗粒污泥直径分布

Table 2	Diameter distribution of	raw anaerobic	c granular	sludge

Diameter (mm)	≥2.0	1.5~2.0	1.0~1.5	0.5~1.0	≤ 0.5
Percentage (%)	5.7	18.9	37.8	28.3	9.0

图 1 厌氧颗粒污泥外观 Fig.1 Photo of anaerobic granular sludge

2.1.2 解吸附实验材料

去离子水,硝酸、盐酸、EDTA 均为分析纯.

2.2 设备与仪器

HZS-H 型恒温水浴振荡器(哈尔滨市东联电子技术 开发有限公司), H1650 型高速台式离心机(长沙湘仪离

收稿日期: 2008-12-23, 修回日期: 2009-04-02

基金项目: 广西环境工程与保护评价重点实验室基金资助项目(编号: 桂科能 0804K017)

作者简介:陈晓(1981-),女,山东省济南市人,硕士研究生,环境工程专业;童张法,通讯联系人,E-mail:zhftong@sina.com.

心机仪器有限公司), pHS-3C 型精密 pH 计(上海雷磁仪器厂), Optima 5300DV 型电感耦合等离子体发射光谱 (ICP, Perkin-Elmer 公司), S-3400N 型扫描电子显微镜(日本日立公司).

2.3 吸附及解吸附实验

2.3.1 吸附实验

分别取一定浓度的 Pb²⁺溶液 25 mL 置于 250 mL 锥 形瓶中,投入一定量污泥,在室温(25 °C)、125 r/min 水 浴振荡器中静态吸附一定时间,静置 30 s,取上清液经 高速台式离心机 7000 r/min 离心 10 min,用 ICP 测定溶 液 Pb²⁺浓度,每个样品做 3 次平行,结果取平均值.分 别按下式计算 Pb²⁺吸附率 R(%)和污泥的吸附容量 Q(mg/g).

$$R = (1 - C_e/C_0) \times 100\%, \tag{1}$$

$$Q = (C_0 - C_e) V/m, \qquad (2)$$

式中, C_0 , C_e 分别为吸附前后溶液中 Pb²⁺浓度(mg/L), V为溶液体积(L), m为污泥干重(g).

2.3.2 解吸附实验

将吸附后的污泥分别加入 25 mL 去离子水、0.1 mol/L 硝酸、盐酸、EDTA,在室温(25℃)、125 r/min 水浴振荡器中静态解吸附 10 h,静置 30 s,取上清液经高速台式离心机 7000 r/min 离心 10 min,用 ICP 测定 Pb²⁺浓度,每个样品做 3 次平行,结果取平均值.

2.3.3 电镜及能谱分析

将吸附前后的污泥分别用戊二醛固定后用乙醇梯 度脱水,干燥喷金后用扫描电镜观察形貌,并用电镜自 带 X 射线能谱进行表面元素分析.

3 结果与讨论

3.1 污泥的烘干温度对吸附效果的影响

各取于 30, 40, 50, 75, 105 ℃烘干 3 h 的污泥 0.16 g(干重)投入初始浓度为 500 mg/L 的含 Pb²⁺的模拟废水 中,溶液 pH=5.0,吸附 5 h 后的实验结果见图 2. 结果 表明,原污泥对 Pb²⁺的吸附容量最大,随着烘干温度升 高,吸附容量逐渐减小.原污泥的含水率高达 70.46%, 水分支撑污泥的整个架构,加热后失水,污泥颗粒表面 积缩小,吸附容量减小.另一原因可能与 EPS 有关,EPS 是污泥表面细菌分泌的粘性物质,主要成分是水和一些 蛋白质、糖类等大分子,其表面富含具强络合能力的阴 离子基团,是吸附 Pb²⁺的关键成分^[7].加热致使 EPS 水 分流失,并可在一定程度上改变分子间的结构形态,使 蛋白质等物质变性,破坏表面官能团^[8],从而降低表面

3.2 污泥投加量的影响

分别称取不同质量(干重)污泥(0.05, 0.07, 0.1, 0.3, 0.5, 1.0, 2.0 g)投加到不同浓度的含 Pb²⁺模拟废水中, 溶 液 pH=5.0, 吸附 5 h.

图 3 中 Q_e为平衡吸附容量.相同 Pb²⁺溶液浓度下,随着污泥投加量增加,平衡吸附容量减小,对 Pb²⁺的吸 附率增加.这主要是因为污泥投加量较小时,其吸附位 点被充分利用,故吸附量大^[10];污泥投加量增大,其总 比表面积增大官能团增多,对 Pb²⁺的吸附率升高,但高 浓度的污泥会在其外围形成屏蔽效应,阻止 Pb²⁺与吸附 位点结合,此外静电作用和反应基团间的相互干扰等原 因,使污泥投加量成倍增加时,对 Pb²⁺的吸附率却不成 倍增加^[11].图 3 中 Pb²⁺初始浓度越高,污泥最大吸附容 量越大,因为周围溶液对污泥颗粒存在浓度梯度,产生 驱动力,促使 Pb²⁺向污泥颗粒内部渗透^[12].

Fig.3 Effect of sludge content on Pb^{2+} adsorption at different initial Pb^{2+} concentrations

因此,在废水中 Pb²⁺浓度一定的条件下,通过控制 一定的污泥投加量,可在保持污泥高吸附容量的前提 下,提高污泥对 Pb²⁺的吸附率,从而既能保证出水水质 的要求,还能减少吸附剂用量.本实验中处理 Pb²⁺浓度 为 100 mg/L 的模拟废水 25 mL 时,投加 0.1 g 污泥,可 得最大吸附容量为 121.1 mg/g,对 Pb²⁺的吸附率可达 99.5%.

3.3 水样 pH 值的影响

为考察水样的 pH 对吸附过程的影响,投加 0.25 g 污泥到初始浓度为 200 mg/L 的 6 个不同 pH 值(2.0, 3.0, 4.0, 5.0, 6.0, 7.0)的含 Pb²⁺模拟废水水样中吸附 5 h,实 验结果见图 4, 5.

图 4 表明,水样 pH 处于 4~5 时,污泥对 Pb²⁺的平 衡吸附容量和吸附率均较高; pH≥6 时,趋势变化不明 显,此时溶液明显浑浊,说明溶液中大量 Pb²⁺以氢氧化 物微粒的形式存在,此时吸附不能看成唯一的去除 Pb²⁺ 的方式. pH<3 时,污泥对 Pb²⁺的吸附容量和吸附率均迅 速下降,此变化趋势与文献[13]所述大致相同,不同的 是本实验的变化趋势不太明显.

水样 pH 同时影响污泥表面金属吸附位点和 Pb²⁺的 化学状态.水样 pH 较低时,溶液中 H₃O⁺浓度较高,络 合基团与 H₃O⁺有更大的亲和性,吸附位点被大量占据; 且 pH 很低时污泥中菌体细胞壁质子化,增加细胞表面 的静电斥力,阻碍 Pb²⁺向细胞靠近,pH 越低,阻力越 大,致使吸附能力降低,随 pH 升高,污泥表面逐渐暴 露出大量有机官能团(—NH₂,—COOH,—OH 等),这些 基团上的氢键易丢失,表现出电负性,增强了官能团与 Pb²⁺之间的结合能力和反应机率,污泥吸附容量增大^[14].

由图 5 可见, 一方面初始 pH<5 的水样, 吸附后 pH 均有所升高, 说明 H⁺确实参与了吸附位点的竞争, 一 些络合基团与 H⁺结合, 导致 Pb²⁺的吸附率下降, 溶液 的 pH 升高^[15]. 另一方面初始 pH 为 2.0~7.0 的各水样吸 附后的 pH 均为 5.0 左右,可见污泥对周围溶液 pH 有一 定缓冲作用,所以本实验中吸附剂在低 pH 时的吸附能 力不像文献中下降那么明显,这是厌氧颗粒污泥的一个 优势.

3.4 吸附时间的影响

投加 0.25 g 污泥至初始 Pb²⁺浓度为 200 mg/L 的溶 液中, pH=5.0,考察其吸附动力学,结果见图 6. 实验 开始 5 min 时就有 90%的 Pb²⁺被吸附, 5~60 min 剩余 Pb²⁺ 继续减少,趋势趋于平缓,60 min 后吸附达到平衡.

污泥对 Pb²⁺的吸附分为前期快速吸附和后期慢速 吸附,以前期快速吸附为主. 第一阶段,在污泥产生的 电场中,Pb²⁺被吸引,促成了 Pb²⁺与污泥表面的微生物 和无机物质接触^[16];到达污泥表面的 Pb²⁺以络合或鳌合 的方式被吸附到快速吸附位点. 第二阶段,快速吸附位 点基本达到饱合后,表现出中速吸附位点的特性直至反 应以慢速吸附位点为主,同时还伴随 Pb²⁺逐渐向污泥颗 粒的内部渗透^[17]. 整个过程吸附和解吸附同时进行,60 min 后达到平衡.

用动力学方程描述 Pb²⁺生物吸附过程.

Lagergren 方程:

$$t/Q = (kQ_e^2)^{-1} + t/Q_e,$$
 (3)

Elovich 方程:

 $Q=a+b\ln t, \tag{4}$

双常数速率方程:

$$\ln Q = a + b \ln t, \tag{5}$$

式中, *t* 为反应时间(min), *k* 为表观速率常数, *a* 为常数 (mg/g), *b* 为常数[mg/(g·min)]. 对本实验数据用 3 个动 力学方程进行拟合, 结果见表 3.

表 3 动力学方程拟合结果

Table	3 Fitting results of kinetics equations	
Equation	Parameter	R^2
Lagergren	$Q_{\rm e}$ =24.04 mg/g, k=0.0166	0.9998
Elovich	a=21.66 mg/g, b=0.3173 mg/(g·min)	0.3182
Two-constant	a=3.076 mg/g $b=0.013.8 mg/(g,min)$	03106

结果表明, Lagergren 二级动力学方程拟合的相关 系数达到 0.9998, 实验获得的平衡吸附容量(24.05 mg/g) 与拟合方程得到的平衡吸附容量(24.04 mg/g)基本吻合, 因此厌氧颗粒污泥对 Pb²⁺的吸附可用 Lagergren 二级动 力学方程描述.

3.5 吸附等温线

室温(25℃)时不同初始浓度 Pb²⁺溶液的吸附等温线 如图 7 所示. 分别用 Langmuir 和 Freundlich 吸附等温线 进行拟合,结果见表 4. 其中 Q_m 为最大吸附容量(mg/g), c 为常数(L/mg).

Langmuir 等温式:

Freundlich 等温式:

$$Q_{\rm e} = k C_{\rm e}^{1/n}$$
. (7)

Fig.7 Adsorption isotherms

表 4 吸附等温线拟合结果

Table 4	The parameters of adsorption isotherm			
Equation	Parameter	R^2		
Langmuir	Q _m =181.8 mg/g, c=0.292 6 L/mg	0.9934		
Freundlich	<i>k</i> =44.44, <i>n</i> =3.165	0.9257		

实验结果对 Langmuir 和 Freundlich 吸附等温线拟 合的相关系数都很高(分别为 0.9934 和 0.9257),但更符 合 Langmuir 吸附等温线.

3.6 电镜和能谱分析

由图 8 可见,吸附前污泥表面粗糙且含有大量孔隙,表面微生物主要是杆状菌;吸附 Pb²⁺后,污泥颜色变浅,粗糙程度降低,有白色片状结晶沉积在表面.

图 8 吸附前后厌氧颗粒污泥的扫描电镜图 Fig.8 SEM images of original and saturated sludge

对吸附前后的污泥和白色片状结晶进行能谱 (X-ray Photoelectron Spectroscopy, XPS)分析,结果见图 9. 结果表明,吸附前污泥表面主要有 C, O, Al, P, Na, Si, Ca, Fe 元素,吸附后污泥表面增加了大量的 Pb,同时 P 增多,这可能是因为细胞在溶液中因渗透等作用发生溶 胀,导致其部分细胞结构发生破损而使细胞膜内的磷脂 外泄^[18]; 污泥表面 Al, Ca, Fe 减少,可见污泥对 Pb²⁺的 吸附有一定的离子交换作用; 污泥表面的白色片状结晶 主要是 Pb 和 P、少量 Al, Si, C, O 等,这可能是 Pb²⁺与 细胞壁上的多聚糖、胞外分泌的蛋白质、外泄的磷脂等 生物大分子发生螯合作用,形成的不溶性颗粒物^[19].

图 9 污泥表面能谱元素分析 Fig.9 XPS and SEM analysis of sludge

3.7 吸附后厌氧颗粒污泥的解吸附

解吸实验发现,解吸效果最好的为硝酸溶液,经过 3次解吸后,解吸率为93.11%.

图 10 中解吸次数为 0 代表用去离子水解吸的 Pb²⁺的解吸率.结果表明, Pb²⁺很难被去离子水解吸(解吸率 只有 0.08%),可见本工作的物理吸附不是主要吸附;经 过硝酸 3 次解吸,大部分 Pb²⁺被解吸,可见可逆的化学 吸附为主要吸附;最后仍有 6.89%的 Pb²⁺不能被解吸, 可能是由于生物的生命活动使 Pb²⁺被运送到了细胞内 部^[20].

4 结论

(1) 与经烘干的厌氧颗粒污泥相比,未经烘干处理的厌氧颗粒污泥对模拟废水中的 Pb²⁺具有更强的吸附能力,表明污泥吸附 Pb²⁺的过程与污泥的结构和其中微生物的 EPS 有关.

(2) 污泥投加量对厌氧颗粒污泥吸附水中 Pb²⁺有影 响,处理 25 mL Pb²⁺浓度为 100 mg/L 的模拟废水时, 投加 0.1 g 污泥,可得最大的污泥吸附容量(121.1 mg/g), 且污泥对废水中 Pb²⁺的吸附率可达 99.5%.

(3) 模拟废水的初始 pH 是影响厌氧颗粒污泥吸附 水中 Pb²⁺的重要因素,初始 pH 在 4~5 内能保证得到较 好的吸附效果.本实验中厌氧颗粒污泥对溶液 pH 有一 定的缓冲作用,对溶液 pH 的要求不像其他生物吸附剂 那么苛刻.

(4) 对厌氧颗粒污泥吸附水中 Pb²⁺的吸附过程进行 动力学拟合,表现出分阶段的吸附特征,开始后 60 min 内达到平衡. Lagergren 二级动力学方程能很好地描述吸 附的动力学过程.

(5) Freundlich 和 Langmuir 方程均能较好地拟合厌 氧颗粒污泥吸附水中 Pb²⁺在室温(25℃)时的吸附等温 线,相关系数分别为 0.9934 和 0.9257.

(6) 吸附过程中主要有金属络合和生物鳌合吸附, 离子交换吸附也起一定作用.

厌氧颗粒污泥的吸附容量大、稳定、易沉降、廉价 易得等优点决定了其在重金属吸附方面广阔的应用前 景,为使其对 Pb²⁺的吸附实现真正的工业应用,吸附过 程的详细机理还需进一步深入研究.

参考文献:

- Martine L, Rene O, Jean G. Uptake of Lead, Cadmium and Zinc by a Novel Bacterial Exopolysaccharide [J]. Water Res., 1997, 31(5): 1171–1179.
- [2] Bailey S E, Olin T J, Bricka R M, et al. A Review of Potentially Low-cost Sorbents for Heavy Metals [J]. Water Res., 1999, 33(11): 2469–2479.
- [3] 李爱阳, 宋楚华, 蔡玲. 改性木质素磺酸盐对水中 Cr⁶⁺的吸附 [J]. 过程工程学报, 2008, 8(5): 877-881.
- [4] Alaa H H, Catherine N M. Biosorption of Lead(II), Cadmium(II), Copper(II) and Nickel(II) by Anaerobic Granular Biomass [J]. Bioresour. Technol., 2006, 97: 692–700.
- [5] Baloch M I, Akunna J C, Kierans M, et al. Structural Analysis of Anaerobic Granules in a Phase Separated Reactor by Electron Microscopy [J]. Bioresour. Technol., 2008, 99: 922–929.
- [6] 常海荣,张振家,王欣泽. 厌氧膨胀颗粒污泥床(EGSB)在高浓度

工业废水处理中的应用 [J]. 环境工程, 2004, 22(3): 14-16.

- [7] Guibaud G, Hullebusch E V, Bordas F, et al. Sorption of Cd(II) and Pb(II) by Exopolymeric Substances (EPS) Extracted from Activated Sludges and Pure Bacterial Strains: Modeling of the Metal/Ligand Ratio Effect and Role of the Mineral Fraction [J]. Bioresour. Technol., 2009, 100: 2959–2968.
- [8] 徐红亮,武小鹰,郑平. 胞外多聚物及其对废水生物处理的影响 [J]. 环境科学与技术,2005,28:121-124.
- [9] 蔡春光. 胞外多聚物对污泥絮凝性能、颗粒化及重金属吸附的基础研究 [D]. 上海: 上海交通大学, 2004. 47.
- [10] 王菲,王连军,李健生,等.大孔螯合树脂对 Pb²⁺的吸附行为及
 机理 [J]. 过程工程学报,2008,8(3):466-471.
- [11] Alaa H H, Catherine N M. Heavy Metals uptake Mechanisms in a Fixed-bed Column by Calcium-treated Anaerobic Biomass [J]. Process Biochem., 2006, 41(1): 187–198.
- [12] 姚磊,叶正芳,王中友,等.好氧颗粒污泥对 Pb²⁺的吸附特性研究 [J].科学通报,2007,52(20):2434-2438.
- [13] Vitor J P V, Cidalia M S B, Rui A R B. Influence of pH, Ionic Strength and Temperature on Lead Biosorption by Gelidium and Agar Extraction Algal Waste [J]. Process Biochem., 2005, 40: 3267–3275.

[14] Marques P A, Pinheiro H M, Teixeira J A, et al. Removal Efficiency

of Cu²⁺, Cd²⁺ and Pb²⁺ by Waste Brewery Biomass: pH and Cation Association Effects [J]. Desalination, 1999, 124: 137–144.

- [15] Gupta V K, Rastogi A. Biosorption of Lead from Aqueous Solutions by Green Algae *Spirogyra* Species: Kinetics and Equilibrium Studies [J]. J. Hazard. Mater., 2008, 152: 407–414.
- [16] Aksu Z. Determination of the Equilibrium, Kinetic and Thermodynamic Parameters of the Batch Biosorption of Nickel(II) Ions onto *Chlorella vulgaris* [J]. Process Biochem., 2002, 38: 89–99.
- [17] Aysegul S, Talal S, Ahmet E E, et al. Equilibrium, Thermodynamic and Kinetic Studies for the Biosorption of Aqueous Lead(II), Cadmium(II) and Nickel(II) Ions on *Spirulina platensis* [J]. J. Hazard. Mater., 2008, 154: 973–980.
- [18] 葛小鹏,潘建华,刘瑞霞,等.重金属生物吸附研究中蜡状芽孢 杆菌菌体微观形貌的原子力显微镜观察与表征 [J].环境科学学报,2004,24(5):753-760.
- [19] Bruno L M, Claudio C V C, Aderval S L, et al. Sorption and Desorption of Pb²⁺ Ions by Dead Sargassum sp. Biomass [J]. Biochem. Eng. J., 2006, 27: 310–314.
- [20] Gong R, Ding Y, Liu H J, et al. Lead Biosorption and Desorption by Intact and Pretreated *Spirulina maxima* Biomass [J]. Chemosphere, 2005, 58: 125–130.

Adsorption and Desorption of Lead(II) from Aqueous Solution by Anaerobic Granular Sludge

CHEN Xiao^{1,2}, TANG Yan-kui^{1,2}, TONG Zhang-fa¹, WEI Xing-ren¹, LIANG Da-wen³

(1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China;

2. Guangxi Key Laboratory of Environmental Engineering Protection and Assessment, Guilin, Guangxi 541004, China;

3. Department of Chemistry and Biology, Yulin Normal University, Yulin, Guangxi 537000, China)

Abstract: Anaerobic granular sludge is used to remove Pb^{2+} from aqueous solution. The results show that pH, sludge content, initial Pb^{2+} concentration in aqueous solution and contact time are the main factors affecting the adsorption of Pb^{2+} . It is found that adsorption capacity 121.1 mg/g and adsorption rate 99.5% are achieved when initial Pb^{2+} concentration is 100 mg/L, pH 4~5 and sludge content 4 g/L, adsorption equilibrium is reached in 60 min. The viable sludge shows higher adsorption capability compared to the nonviable sludge. The adsorption process fits to the Lagergren kinetics equation. Adsorption of Pb^{2+} on the anaerobic granular sludge follows Lagergren kinetics expression and the experimental data are correlated reasonably well by Langmuir and Freundlich isotherm models. Using 0.1 mol/L HNO₃ as desorption reagent, the desorption rate is 93.11% after three times of desorption processing.

Key words: anaerobic granular sludge; Pb²⁺; adsorption; desorption