ISSN 1673-9418 CODEN JKYTAS E—-mail : fest@public2.bta.net.cn
Journal of Frontiers of Computer Science and Technology http : //www.ceaj.org
1673-9418/2008/02(04)-0418-13 Tel : +86-10-51616056
DOI:10.3778/j.issn.1673-9418.2008.04.008

A Testing and Evaluation Approach for Discovering and Ordering of
Software Entities for Internetware’

CAT Shubin'?, MING Zhong*, LI Shixian'
1. Department of Computer Science, SUN Yat-Sen University, Guangzhou 510275, China
2. Faculty of Information Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China

+ Corresponding author: E-mail: mingz@szu.edu.cn

AR P i e 1A 2 BLFNHIETY 16 TEA Ji ik

B W e, B
1. PLhRF HEMAF R, M 510275
2. WINKF FAEIAEFER, A FI 518060

\

i B ABBRMN RS R ET R S EF S RO ZIRR T, CA G AEH R A A A6 a2 S AR KT
M A B E R G X EZEX T, TR FAA T E R B R R, 2 — AN F AL AT 1
A7 XA B AR XA AR R R MM R A6 B S B AT RN K Ty ik B4 AR PR T A SRR A R A
HE o4 ik 7 ik, 3l T MR Ao iR 4E 5 ik TEA, M AERAF R fnil 1% 2k 3 2K 00 T2, B i 3E 4T B S L e 347
B X, TEA T A3 LA B 3 R 269 FR B MM —4F, BB R TAEBATHNRE 8 S 44,
WAL I E RIFAE R FARAIN LR, TEA TARTF LI EAR T ARG R ZF M, TEA o944k
AR E AR AR AN TR B 6 T MY B A R 6] X Ao iR AE 45 RAZ 8, T A E A AE T R B HE S 00 ARG A AR
MEI P TEA = & 098 55 FRAT AT 0 1- 45 54

ML) AR 5 B SRR ;3B AT B K B A ; T SE M

SCHkAR LS A Sy B TP31L

5

CAI Shubin, MING Zhong, LI Shixian. A testing and evaluation approach for discovering and ordering
of software entities for internetware. Journal of Frontiers of Computer Science and Technology,

2008,2(4):418-430.

* the National Natural Science Foundation of China under Grant No.60673122 (X HRFFFR4); the Technology Plan Pro—
ject of Shenzhen City under Grant No.200731 (EIITIRHLITR)).
Received 2008-03, Accepted 2008-06.

AN & AR P SR R I HE T B TEA 7 % 419

Abstract: Internetware is built upon the collaboration of autonomous software entities distributed in the open,
dynamic and ever—changing internet. It is very difficult to find out software entities with needed quality in
the dynamic connection pattern of internetware. Automated runtime testing is proposed after runtime testing
and automated testing techniques are investigated. Several approaches to discover and order software entities
for internetware are discussed before the Testing and Evaluation Approach (TEA) is proposed. Since qualities
of candidate entities of internelware remain unknown, automated runtime testing is performed in TEA to
select entity with higher quality. The autonomous composing entities may change their structure at runtime as
well as internetware. Each invocation result is evaluated in TEA by validation assertions, to find out quality
problems caused by entity changes as soon as possible. Software entity registry in TEA gathers feedback
information of testing and evaluation results from each distinct internetware, and generates the ordered-list of

entities by estimated quality. The ordered —list generated by TEA has the best scores in the simulation

experiment.

Key words: internetware; automated testing; runtime testing; correctness; reliability

1 Introduction

As the internet keeps rapid and continuous de—
velopment, it becomes more and more popular and
important in persons, organizations and societies’
daily life. Usually speaking, nomads are a nation on
horse back, U.S.A is a country on wheel. Now, the
Earth is becoming a globe on internet. Facing the
open, dynamic and ever—changing internet, a new
software paradigm named internetware, is proposed'™.
Frontier researches®* have been carried out and in-
ternetware is coming into being.

From the point of view of software develop—
ment, basic entities, which compose a software sys—
tem, change from functions to objects, from objects
to components and from components to services. The
granularity grows bigger and bigger. Better open and
dynamic features of a system often result in lower
computational performance. The bigger granularity
enables a worthy preference for open and dynamic
features. Compared with traditional software system,

internetware has a self-adaptive ability to change it—

self dynamically according to environment changes.

The composing entities of internetware, mainly indi—
vidual services, are openly published and au-
tonomously maintained at different internet nodes.
Internetware coordinates these entities to form a
Software Web, similar with the current Information
Web, to satisfy user’s requirements. These lead to
new features of internetware mentioned as Collabo—
ration, Autonomy, Context—awareness, Evolution and
Polymorphism!'.

(1)Collaboration. Traditional software has a static
connection pattern among its composing entities in a
closed and centralized environment. In addition to
this pattern, internetware can have a dynamic con—
nection pattern to accommodate the open and dy-
namic internet environment. It is the dynamic con-
nection pattern that enables the autonomy feature.

(2)Autonomy. Entities of internetware can be
developed, published and maintained independently
and autonomously at different internet nodes. Tradi-
tionally, a software composing entity has already

been well recognized before the whole system comes

into being. However, internetware can dynamically

420 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

choose a newly—published entity owned by third party
to satisfy user’s new requirements, or to adapt the
ever—changing internet environment.

(3)Context—awareness. This feature makes it po-
ssible for internetware to evolve according to envi—
ronment changes. When runtime environment, such
as network condition, or autonomous composing en—
tity, or predicted and permitted user requirement
changes, internetware shall perceive these changes
and provide appropriate information for evolution.

(4)Evolution. It is this feature that gives inter—
netware the ability to accommodate the open, dy-—
namic and ever—changing internet environment. In—
ternetware evolves according to requirement and en—
vironment changes. It is incarnated at changeable
composing entities, adjustable architecture relation—
ships and configurable architecture shapes.

(5)Polymorphism. Polymorphism in OOP means
a function with different implementations. Polymor—
phism of internetware means an internetware with
different runtime implementations. The “same” inter—
netware can have different entities at different inter—
net nodes to satisfy different user requirements. The
implementation differences are probably caused by
evolutions, or in other word, self-adaptability.

To sum up, the dynamic connection pattern of
collaboration enables the autonomy feature of inter—
netware, collaboration and autonomy together lead to
evolution according to context changes, and self -
adaptive evolution brings polymorphism. With these
features, internetware solidly grounds itself in the
open, dynamic and ever—changing internet.
software internetware

As a new paradigm,

brings many challenges for software development

methods and techniques. Architecture—based compo—
nent composition (ABC) approach® is introduced to

ABC s

support the engineering of internetware.

mainly concerned with the dynamic connection pat—
tern and component composition. It has the ability
to structure the chaotic software entities to ordered
internetware in a bottom—up style and enable the de—
velopment of self —adaptive internetware. Testing is
the most important part of software quality assur—
ance, but it is very difficult to test the ever—evolv—
ing internetware with traditional testing techniques!.
Thus a very important problem arising for internet—
ware is the correctness and reliability problem. In
order to develop internetware with high correctness,
reliability and customer satisfaction, pioneer re—
searches have been carried out. An application se—
mantic based relaxed transaction model™ is proposed
to make the composition more reliable. The candi-
date software entities for internetware form a chaos.
It is not easy to choose entity with needed quality
from such a chaos. Employing a trust measurement
and evolution model™ to select more trustable software
entities, will improve the reliability of internetware
at lower level. Furthermore, new fault tolerance
technologies for internetware”® can be adopted to im-
prove the reliability at higher level.

How to judge an invocation success as expected
at runtime, is the fundamental part of the trust
model™ but has not been addressed. In this paper, a
Testing and Evaluation Approach (TEA) is proposed.
Automated runtime testing is employed in TEA, and
testing and evaluation information from every inter—
netware is gathered by entity registry to generate a
recommendation ordered-list of entities. Being the most
fundamental approach to select software entity with
needed quality, TEA can be integrated with all the
above solutions to solve the correctness and reliabi—
lity problem of internetware.

The rest of the paper is organized as follows.

Section 2 introduces several runtime testing and au-—

B % FAER o SR R I An 7 B9 TEA 77

421

tomated testing techniques, which can be combined
as automated runtime testing for internetware. De—
spite of technical details, Section 3 and 4 discuss
conceptual approaches to discover and order candi-
date software entities. Section 5 gives simulation ex—
periment design and the experiment results. Section

6 concludes the paper.

2 Automated Runtime Testing

Testing is often performed at development—time
in traditional software development, since the make
up of a system is more or less fixed at that time.
With the progress of component—based software de—
velopment, however, the notion of testing “the sys—
tem” as an integrated whole at development—time is
no longer applied in the traditional sense, because
the structure of a component —based system can
change even in runtime. Development —time testing
alone is not enough to make sure that the system
can run as expected. Runtime testing is proposed to
deal with this problem. One of the most promising
ways in runtime testing is the notion of Built-In
Testing (BIT)B, first suggested by Wang®, later
refined in Component+ project”, and now evolved in
MORABIT project. The basic idea behind this ap-
proach is to give components the ability to test their
environments at runtime so that they can perform
much of the required system validation work “them-—
selves.” For internetware, which can be regarded as
an ever—changing component—based system, runtime
testing is very beneficial. For example, suppose an
entity A is going to be replaced by entity B or C,
when internetware evolves automatically according to
environment change, by performing runtime testing
on B and C, internetware can choose entity with
higher success—rate and provide more reliable service.

However, without support from automated testing,

runtime testing will ask for human interaction and is
not suitable for self-adaptive internetware.
Traditionally human engineers are responsible
for putting the system into an appropriate state,
judging when tests can and should be executed, an—
alyzing the results to identify unexpected behavior
and working out how to respond. In order to per—
form automated runtime testing for internetware,
highly automated testing techniques should be adopted.
Recent years progress has been seen with the ad-

24 swhich can be roughly

vent of automated testing!
classified into two aspects of automation: automated
test cases and oracles generation, where oracles are
the criteria to determine whether a test run has suc—
ceeded, and automated test execution and manage—
ment.

Automated generation of test cases and oracles!>"
is often enabled by the design by contract approach.
Contracts use pre—condition, post—condition and in—
variant to state what conditions the software must
meet at certain points of the execution. In practice,
pre—conditions tend to be exhaustive, while post—con—
ditions and invariants are more or less extensive de—
pending on the developer’s style, i.e., contracts are
partial. There may be cases, which satisfy the con
tracts but are incorrect from the users’ point of view.

B focus on test

Automated testing frameworks!
management and execution. Given a testing descrip—
tion, which contains test cases and oracles, the
frameworks perform the testing process automatically.
Failure recovery, which allows testing to continue
even if a test case causes execution to fail, is an
important issue in the framework. Automated regres—
sion testing, i.e., to rerun an appropriate subset of
earlier recorded test cases after a change happened,

is very useful to deal with software evolution and ma—

intenance.

422 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

Combining runtime testing®'" and automated test—
ing!"”™ together, the automated runtime testing for
internetware becomes possible. Because of the limi—
tation of time and resources, and the large amount
of candidate entities, it’s not practical and valuable
to test every entity extensively. If an entity or its
provider is trustable®, i.e., internetware believes that
the entity has undergone extensive development—time
testing in which the normal coverage and other cri—
teria were used to define test cases, typical test
cases can be designed with a view to uncovering
the most likely causes of misunderstandings between
entity provider and consumer. Since the goal of this
testing is to check whether entity meets internet—
ware’s expectations rather than its specification, the
testing is driven more from the perspective of vali-
dation than of verification, and can be called as
automated runtime validation testing. It is easy for
internetware developer or automated technique to de—
sign typical test cases from requirement specifica—
tions, scenarios or use cases of the internetware.
Otherwise, if trust of an entity or its provider is
unknown, automated runtime verification testing,
where time and resources cost should be carefully
considered, should be carried out. Fault injection
and other testing techniques may be adopted in au-—
tomated runtime verification testing.

With the support from Built—In Testing!®"! or
transaction”, automated runtime testing framework can
be designed straightforwardly and integrated into in—
ternetware’s runtime environment. It should be noted
that however, if E—Business related software entity,
such as hotel reservation, flight—ticket and book pur—

chase etc, supports neither BIT nor transaction, the

automated runtime testing can’t be performed.

3 Discovering and Ordering Software En-
tities for Internetware

Since software entities of internetware are dis—
tributed in the internet, there is an entity discover
and retrieval problem. Firstly, an entity description
language EDL should be designed to represent enti—
ty, such as WSDL for web service. But the design
of an expressive EDL is far beyond the scope of
this paper, we simply assume that EDL exists. The
self —adaptive internetware asks its runtime environ—
ment for software entities described in EDL, and
the runtime environment will use the description to
discover matching entity in the internet. As there
will be many matching entities with the progress of
internetware, the concentration is paid to the gener—
ation of an ordered-list of matching entities by esti—
mated quality.

Despite of technical details, existing approaches
to deal with the discovering and ordering (or select—
ing) problem can be roughly summarized as below.
3.1 Registry

Using software entities registry, as well as ser—
vice registry, is the most direct way to discover
software entities in the internet. Software entity is
published and indexed at software entity registry. As
shown in Fig.1(a), when internetware need some soft—
ware entities, it communicates with the registry to
find matching ones. Then it binds and invokes the
needed one to accomplish the task. This approach is
widely adopted in Service—Oriented Architecture. But
the problem of how to select the “right” one from
the matching entities remains unsolved.

3.2 Registry and Tester
By performing testing on registered entity, entity

quality can be estimated and ordered —list can be

B % FAER o SR R I An 7 B9 TEA 77

423

generated. Generally speaking, the third party reg—
istry or tester has little specific knowledge about the
entities, only automated assertion testing™™¥ can be
carried out. Though the given assertions are partial,
they are still very helpful to estimate and order en—
tity quality. As shown in Fig.1(b), the automated
assertion testing is performed before internetware
queries the registry for matching entities. Internet—

ware retrieves the ordered—list of matching entities

from registry, and chooses the needed one according

Software Entity\'*
Producer
3.coordin 2.discover

(a)Registry
(a)TEMHL

Registry

5.ordering
7.coordinate 6.discover

(b)Registry and tester
(b IhABLEY ML

Runtime
Environment

4.ordering

6.coordinate l.test cases

5.discover

Internetware

(¢)Runtime environment
(c)IBfTHE
Fig.1 Registry, registry and tester,

runtime environment approaches

Pl 1 FEMEDL. DAL TEMEDLRNE T 7 IR BE Ty ik

to its requirement of reliability and cost etc. This app—
roach can be improved with “real” runtime environ—
ment, where the entities are going to settle in, and
“real” user requirement, where the entities are go—
ing to satisfy.
3.3 Runtime Environment

Let runtime environment manage all the candi-
date software entities is another approach™!. In this
case, software entities are submitted to runtime en-—
vironment, control on software entities to some extent
is earned”. Thus internetware using this approach can
be called as half-autonomy internetware. As shown
in Fig.1(c), internetware gives test cases and oracles
to its runtime environment. Automated testing on
matching entities is carried out by the environment.
The very shortcoming of this approach is the lack of
a registry. Though every internetware can minimize

B since they don’t share

the testing cost themselves'
information of testing result, an entity can be tested
many times by different internetware, the overall
cost is too high. By employing a registry to gather
and share feedback information of testing result, the

overall testing cost can be greatly reduced.

4 Two New Approaches

In product—purchasing market, consumers check
the product before purchasing and evaluate the
product after using. By gathering consumers’ feed—
back information, the market can estimate the qual-
ity of the product and finally form an ordered-list
of products of the same kind by estimated quality.
Consumers can benefit greatly from the ordered-list
when they are going to purchase new products.
Feedback information is very important for the mar—
and beneficial for

ket to form the ordered —list

consumers’ product—purchasing. The same things will

424 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

probably happen in the inter netware and entity
“market”. Applying the product—purchasing idea in
the generation of ordered-list of entities by estimat—
ed quality of registry, approaches in Section 3.2
and 3.3, and feedback information are combined to
form a hybrid testing approach below.
4.1 Hybrid Testing Approach

As shown in Fig.2(a), registry and tester are
adopted to produce the original ordered-list by esti—
mated quality of software entities at first. Internet—
ware still gives test cases and oracles to its runtime
environment. When internetware asks the environ—
ment for a certain entity, the environment will dis—
cover ordered—-list of matching entities from registry
firstly. Then the environment will use test cases to
test and reorder the entities by the newly—tested
success—rate of some entities in the ordered-list, e.g.,
the top 5 entities. The overall success rate of entity
e may be calculated as

SR. (e)=axtested—success—rate(e)+(1-a)xSR, (e)
where SR (e) is success-rate from registry, ae[0,1]
and usually « =0.5. Thirdly, entity with needed
quality will be forwarded to internetware. Sometimes

the top 1 entity won’t be forwarded when other fac—

tors, such as cost are considered in the entity se—

Software Entity
Registry
5,13.ordering

11.coordinate

8.discover| |12.test result

Internetware
6.test cases

7.request

(a)Hybrid testing
(a) TR

Runtime
Environment

10.ordering

11.coordinate

12.evaluate

lection policy. Finally, the environment will report
test results to registry to update the ordered-list. As
for registry, the overall success rate may be cal-
culated as

newSR (e)=Bxtested—success—rate(e)+

(1-B)xo0ldSR, (e)

where B=1/N, N is the number of distinct internet—
ware feeding back test result. Different weight of
tested—success—rate 1is given by runtime environment
and entity registry. After gathering enough feedback
result, the ordered —list of registry becomes stable
and looks more like the “real one”, which can only
be seen in simulation experiment but not in prac-
tice. Usually, the ordered-list in registry is unstable
at first. But when more feedback information is
gathered from distinct internetware, N grows bigger
and the ordered-list becomes stable.
4.2 Testing and Evaluation Approach

Keeping in mind that composing entities are
autonomous, they can also change their own struc—
ture at runtime as well as internetware. Though the
entities have successfully passed the testing before,
there is no guarantee that they will not change and

will always run as expected. Performing an automat-—

ed runtime testing from time to time seems a way

4 test result

ish Software Entity
Registry

5, 16.ordering

Internetware

6.test cases
T.request
13.evaluate result

(b)TEA approach
(b)TEA J5i%

10, 14.ordering

Fig.2 Hybrid testing and TEA approaches
Bl 2RI TEA Jiik

B % FAER o SR R I An 7 B9 TEA 77

425

out. However, the choice of time interval is a dilem—
ma. If time interval is set too long, changes of en—
tity may cause a lot of problems before next testing.
Otherwise, resource consumed in testing is insuffer—
able. Of course there may be a trade—off, but a
better way out is proposed by TEA: a normal invo—
cation can be treated as a test case, i.e., invoca—
tion result is evaluated with validation assertions.
Though assertions in contracts can serve as val—
idation assertions, we don’t recommend it. Valida—
tion assertion concerns more from specific require—
ments and users’ point of view than the contracts,
e.g. an entity sums integers in an input Excel file,
internetware invokes this entity to sum Asian popu—
lation amount from population amount of each coun-—
try in Asian stored in an Excel file, which may as—
sert that global population amount is greater than a
billion. If the entity implements the integers as java.

lang.Integer, though the contract assertion ‘“result==

’

int_1+int_2+--+" still holds, the validation assertion
is violated.

The design of validation assertions has a “sim-
ple and useful” principle. Simple means the asser—
tion should be easily calculated, i.e., the assertion
is not resource and time costly. Useful means the
assertion should be sensitive to perceive an error.
For example, an execution lime assertion can be
designed for many entities. Though a room reserva—
tion entity keeps on sending “keepALive” message,
to indicate that it is reserving a hotel room in the
past 5 minutes, it is probably that the entity has
failed. If an entity is invoked to solve an equation,
the result is easily evaluated by calculating the
equation substituted with the result. Business vali—
dating rules are other good sources to produce vali—

dation assertions. However, designing effective eval-

uation assertions is not an easy job in many cases.

As shown in Fig.2(b), evaluation result will
finally pass to registry. Registry can generate better
ordered-list with feedback testing and evaluation re—
sults. Steps needed in TEA are sketched as below:

Step 1-5 is performed when new software entity
is published.

Step 1 Software Entity Producer publishes enti—
ties to Software Entity Registry.

Step 2 Software Entity Registry asks the Auto—
matic Tester to test the newly—registered entity.

Step 3 Automatic Tester invokes the entity to
perform a contract—based assertion testing.

Step 4 Automatic Tester returns test result to
Software Entity Registry.

Step 5 Software Entity uses test result to order
the entity by estimated quality.

Step 6~16 is performed when internetware be—
gins to run.

Step 6 Internetware gives test cases and oracles
to its Runtime Environment.

Step 7 Internetware requests its Runtime Envi-
ronment for a certain entity described in EDL.

Step 8 Runtime Environment discovers ordered—
list of matching entities in Software Entity Registry.

Step 9 Runtime Environment uses test cases
given in step 6 to test candidate entities in the or-
dered-list.

Step 10 Runtime Environment calculates and
orders overall testing success rate of candidate enti—
ties.

Step 11 Internetware selects needed entity ac-
cording to the overall success rates, and then uses it.

Step 12 Internetware evaluates each normal in—
vocation result.

Step 13 Internetware sends evaluation results to

Runtime Environment, when a validation assertion is

426 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

violated or all invocations to the entity are finished.
In the former case, jump back to step 9.

Step 14 Runtime Environment reorders the or—
dered-list of matching entities.

Step 15 Runtime Environment passes tesling
and evaluation results to Software Entity Registry.

Step 16 Sofiware Entity Regisiry reorders the

ordered-list of software entities.

S Simulation Experiment
5.1 Design

For all the approaches proposed above, it is
the different strategies that registry uses have signif—
icant effect on the generation of the ordered-list of
software entities. Simulation experiment to evaluate
these strategies is designed and described below.
The results show that TEA is the best among the
strategies to order the entities.
5.1.1 Simulation of software entity, tester and
invoker

The correctness of software entity is the essen—
tial part of the problem. But unfortunately, real
correctness can’t be measured directly. We simply
assume that the distribution of the correctness of
uniform distribution. This

software entities is a

means a random ¢, €[0,1] is adopted as the real

correctness for a software entity e. If an input in e
[0,1] for entity e satisfying in<<c¢,, it is assumed
that e will execute correctly as expected. But since
¢, is unknown in practice, this assumption is only
used directly in the testing where test cases and or—
acles are provided, i.e., the testing is performed by
runtime environment.

As has been argued, contract—based assertions
of a software entity are partial. Thus for a software

entity e, the probability to satisfy its partial assertions,

denoted as a,, is assumed to uniformly distribute in
[e, ,1]. Similarly, if an input in €[0,1] for entity e
satisfying in <a,, it is assumed that output for in
will satisfy the assertions. Since whether output data
satisfies the assertions or not can be calculated di-
rectly, this assumption is used by automated asser—
tion tester. Assertion tester randomly generates input
in uniformly distributed in [0,1]. If in<a,, the out-
put for in is assumed to satisfy the post—assertions.
Obviously, more inputs will result in a closer asser—

tion success rate to a, .

Several parameters are simulated for an invoker.
The number of test cases is randomly generated
in €[0,MaxTestNum]. For each test case, an input
in €[0,1] is randomly generated. Since different en—
tities have different correctness, a test case which
fails in one does not necessarily to fail in another.
The number of invocations is randomly generated in
[0, MaxInvoke Num]. For each invocation, a random
input in €[0,1] is also generated. But whether the
invocation is successful or not remains unknown.
The evaluation assertions are adopted to tell the
success of the invocation. The number of evaluation
assertions is randomly generated in [0, MaxEvaNum).
For each evaluation assertion, an estimation magnified
factor 1/s is randomly generated, where s € (MinEva—
Factor,1]. The correctness of an entity ¢, is magni—
fied to ¢,/s, which means when input in satisfies
in<c,/s, the output will be evaluated as correct. If
all the evaluation assertions evaluate input in as
correct, in is called evaluated success. It can be
seen that if s is closer to 0, ¢,/s becomes bigger
enough to evaluate most input as correct. In the
simulation experiment, a MinEvaFactor of 0 and 0.5
is compared.

Entity with higher estimated quality is easier to

B % FAER o SR R I An 7 B9 TEA 77

427

be invoked in practice. This is simulated by calculat-
ing Proportion(e) for entity e, and multiply Propor—
tion(e) with the total number of invokers, which is
set to 1 000 in the simulation experiments, as the
number of invokers for e.

estimatedQuality(e)

Proportion(e)=
Z estimatedQuality (e,)

eck

5.1.2 Ordering strategies of registry

As stated above, registry can adopt different
ordering strategies to generate ordered-list of matching
entities. The strategies are summarized in Table 1.

Equally steady means after the execution of a
number of invoker, though the success rate may
change, the ordering position remains unchanged.
5.1.3 Evaluating the strategies

Actually, it is the ordering position, but not
the success rate, that has more importance. Since
front positions in the matching list are more important
than back positions, a simple position calculation
function, named PosScore(s), is proposed to evalu-
ate the performance of the strategies. Strategy has
smaller PosScore(s) is better than those have bigger

ones.

Table 1
1

PosScore(s)=

2 ‘Pos(el.)—calcPos (e,) ‘ x(cardinality(E)—Pos(e,))
e.ek

where Pos(e) is the ordering position of e by “real”
quality, and calcPos(e) is the position of e by esti—
mated quality. The reverse ordering of “real” quality
has the largest PosScore, and is named as worst score.
Standardized ordering score is given as follow:

score(s)
worstScore (cardinality(E))

StdScore(s)=(1-)x100%

5.2 Experiment Results

Table 2 is the average score and average devi—
ation of score of 100 runs of MaxTestNum =10,
MaxEvaNum=10, MaxInvoke Num=1000, MinEvaFactor=
0.5 for 10 software entities. Table 3 increases the
number of entities to 20.

R Registry coordinated each entity in the first
0 position, thus score =165 for 10 entities and
score=1 330 for 20 entities at each simulation. Aver—
age score of P Registry should be similar with R
Registiry as can be proved in probability theory,
and comfirmed by the simulation results. Partial as—
sertion tests improve the ordering result, which has

about 1.6 times stdScore than the random strategy.

Ordering strategies

HEFF RS

Name of Registry

Ordering Strategy

R Registry Randomly ordering, which means all entities are coordinated at the first position
P Registry By Publish time of entities
A Registry By Assertion success Rate (AR) of Automatic Tester
AT Registry By AR firstly, then by test case success rate
AE Registry By AR firstly, then by evaluation success rate
ATE Registry By AR firstly, then combining TR and ER to an overall success rate

AU(T) Registry As AT Registry firstly, keep on updating TR with more test cases until become equally steady

AU(E) Registry As AE Registry firstly, keep on updating ER with more invocations until become equally steady

As ATE Registry firstly, keep on updating TR and ER with more test cases and invocations

AU(TE) Registry

until become equally steady

428

Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

Table 2 Average results of 100 simulations for 10 candidate software entities

A2 M 10 MREEFRAFIRETT 100 EHL -3 45 1
RReg P Reg A Reg AT Reg AE Reg ATE AU(T) AU(E) AU(TE)
Avg 165 164.40 97.96 67.28 51.06 55.01 36.78 32.80 25.32
AvgDev 0 32.92 28.76 27.98 33.20 23.83 20.80 17.56 15.06
StdScore/% 40 40 64 76 81 80 87 88 91
(the worst score is 275)
Table 3 Average results of 100 simulations for 20 candidate software entities
A3 %20 MRS IFIAK 100 B - 45 R
R Reg P Reg A Reg AT Reg AE Reg ATE AU(T) AU(E) AU(TE)
Avg 1330 1354.10 699 536.11 445.47 397.36 181.75 225.24 137.27
AvgDev 0 195.70 161.14 176.68 271.17 148.80 79.11 104.84 54.01
StdScore/% 37 36 67 74 79 81 91 89 93

(the worst score is 2 100)

AT, AE and ATE keep on establishing better or—

MaxEvaNum =10 experiment,

almost all evaluations

dering. AU(T), AU(E) and AU(TE) refine the or—

dering when invokers keep on coming. Providing av-

are successful and AE, AU(E) registry becomes very

similar to R registry.

erage 5 test cases for an invocation is an easy job, 140+
while the outcome is mnotable when there are a 1207 A
number of invokers. AU(T), though a litter worse 100f - i;
801 -
than AU(TE), has very effective ordering with std— ~ ATE
60r ~ AU(T)
Score around 80 out of 100. Providing average 5 400 « AU(E)
useful evaluation factor, where MinEvaFactor =0.5, 207 — AU(TE)
may not as easily as providing 5 test cases, but as 0 . 2 3 4 5 6 7 8 9 10
can be seen, the outcome of AU(TE) is remarkable. Fig.3 10 runs of MaxTestNum=10
AU(TE) registry has stdScore more than 90, which Pl 3 g KRIAECH 10 1 10 KisTr&i)
means it has established the ordered-list very simi— 160 -
lar with the “correct” one. 140
. 120
Fig.3 is 10 runs of the simulation experiment of 100-
Table 2. A, AT and AE are in the upper class, while 80}
60 -
AU(T), AU(E) and AU(TE) compose the lower 10l
class and are separated by ATE. Fig.4 increases 20t
0

MaxTestNum to 20. It shows that AU(T) becomes

12 3 4 5 6 7 8 9 10

much better. On the other hand, loosen the MinEva— Fig.d4 10 runs of MaxTestNum=20
Factor to 0 is a disaster for AE and AU(E), in the B4 g RMERECH 20 1Y 10 Riafras it

B % FAER o SR R I An 7 B9 TEA 77

429

6 Conclusion

With the progress of internetware¥, the correct—
ness and reliability problem of internetware are draw—
ing more and more attentions among researchers.
Several pioneer researches™® have been carried out
to improve the correctness and reliability of internet—
ware.

In this paper, we propose a Testing and Eval-
uation Approach (TEA) to further improve the cor—
rectness and reliability of internetware. Testing is
the most important activity in software quality assur—
ance. Since the qualities of candidate software enti—
ties are unknown at development time, it is natural
for us to propose an automated runtime testing
based on Built-In Testing and contract!*™ for inter—
netware to select entity with higher quality. Further—
more, composing entities are autonomous and can
change their structure at runtime as well as inter—
netware, normal invocation result should be evaluat—
ed by validation assertions to find out quality
change of the invoked entity as soon as possible
with acceptable cost. As in product—purchasing mar—
ket, feedback information of every single consumer
is valuable for the market to form an ordered-list of
product of the same kind by estimated quality,
feedback information of testing and evaluation results
are gathered by software entity registry to generate
an ordered-list of entities. The ordered-list is bene—
ficial to the selection of candidate entities for
internetware. When the number of internetware grows
bigger, the generated ordered-list by estimated qua-
lity will become stable and very similar with the or—
dered-list by “real” quality. Being the most funda—
mental approach to the correctness and reliability
TEA can be integrated

problem of internetware,

with ABCP!, transaction model™, Trust Model® and

fault—tolerate technologies'® to form a solution to the

correctness and reliability problem of internetware.

References:

[1] Yang Fuqing, Mei Hong, Lv Jian, et al. Some thoughts
on the development of software technologies[J]. Acta Elec—
tronica, 2002,30(12A):1901-1906.

[2] Yang Fuqing. Thinking on the development of software en—
gineering technology[J]. Journal of Software, 2005,15(1):
1-7.

[3] Mei Hong, Huang Gang, Zhao Haiyan, et al. A software
architecture centric engineering approach for internetware[J].
Science in China Series F: Information Science, 2006,49
(6):702-730.

[4] Huang Tao, Ding Xiaoning, Wei Jun. An application—se—
mantics—based relaxed transaction model for internetware[J].
Science in China Series F: Information Science, 2006,49
(6):774-791.

[5] Wang Yuan, Lv Jian, Xu Feng, et al. A trust measurement
and evolution model for internetware[J]. Journal of Software,
2006, 17(4) :682-690.

[6] Wang Ping, Sun Changsong, Li Lijie. Primary research
on internetware reliability technology[C]//Proceedings of the
1st International Multi-Symposiums on Computer and Com—
putational Sciences (IMSCCS’06), 2006.

[7] Mao Chengying, Lu Yansheng. Research progress in testing
techniques of component-based software[J]. Journal of Com-
puter Research and Development, 2006,43(8):1375-1382.

[8] Wang Yingxu, Graham K, Hakan W. A method for
built-in tests in component-based software maintenance[CJ//
Proceedings of the 3rd European Conference on Software
Maintenance and Reengineering (CSMR’99). [S.l.]: IEEE
Computer Society Press, 1999:186-189.

[9] Hornstein J, Edler H. Test reuse in CBSE using built—in
tests[C}//Proceedings of the Workshop on Component—Based
Software Engineering, Composing System from Components.
[S.]: IEEE Computer Society Press, 2002:11-14.

[10] Vincent J, King G, Lay P, et al. Principles of built—in—

test for run—time—testability in component—based software

systems[]]. Software Quality Journal, 2002,10:115-133.

430 Journal of Frontiers of Computer Science and Technology ITENIBIZESHEE 2008,2(4)

[11] Brenner D, Atkinson C, Malaka R, et al. Reducing veri—
fication effort in component—based software engineering
through built-in testingJ]. Information System Front, 2007,
9:151-162.

[12] Jiang Ying, Xin Guomao, Shan Jinhui, et al. A method
of automated test data generation for web service[J]. Chi—
nese Journal of Computers, 2005,28(4):568-577.

[13] Meyer B, Ciupa I, Leitner A, et al. Automatic testing of
object—oriented software[C]//van Leeuwen J. LNCS 4362:
SOFSEM 2007, 2007:114-129.

[14] Haddox J M, Kapthammer G M, Michael C C. An ap-
proach for understanding and testing third party software
components[C}//Proceedings of Annal Reliability and Main—
tainability Symposium, 2002.

[15] Zhang Jia. An approach to facilitate reliability testing of
Web services components[C]//Proceeding of the 15th Int’l
Symposium on Software Reliability Engineering (ISSRE’04).

SCI.EL¥% 4 ko

[S.I.]: TEEE Computer Society Press, 2004:210-218.
[16] Jiang Ying, Xin Guomao, Shan Jinhui, et al. A method
of automated test data generation for web service[J]. Chi-

nese Journal of Computers, 2005,28(4):568-577.

ki ep 305 % 3K -

[1] B ZEE MR, B, 5 RIS RAR L R[] 253,
2002,30(12A):1901-1906.

[2] Bl i TR AR & e AR (). 5741k , 2005, 15(1) :
1-7.

[5] Fi, B, iR, 55— AN M T I AR (5 A B 8 R
AT)] AR A2417 , 2006, 17(4) : 682-690.

[7] BRI, /5 R A AR A I A AR 502 S). T AL
5 5%k ,2006,43(8):1375-1382.

[16] 3EBE, FHE S, PahE, £ —h Web IR 55000050305 H 3h

AR IR TR, 2005, 28(4) : 568-577.

CAI Shubin was born in 1979. He is a Ph.D. candidate at SUN Yat—Sen University. His research interests

include software engineering and ontology engineering, etc.

R (1979-), 55, TZRIIBE N, LIRS R0 AE , MR SR AR AR R ek

MING Zhong was born in 1967. He received the Ph.D. degree in Computer Software and Theory from SUN
Yet-Sen University. He is a professor at Shenzhen University. His research interests include software engi—
neering, ontology engineering, semantic web and information retrieval, etec.

B (1967-), 55 TTVE THERA, sl R R A2 30% , CCF R, SR 50 J7 10 A AR e TR R
X Web S5 T IR, 4R 2 B ARP G 2 T AR B ARP 4 1

LI Shixian was born in 1944. He is a professor and doctoral supervisor at SUN Yet—Sen University. His
research interests include software engineering and formal semantics, etc.

ZENSE(1944-), B TV THERN , LR SF20% , B A 900, CCF £2% , M50 T7) Ak TR SOE0E
SCE, EHFE R ETRERIIIE 2000, RSO E R, 3 20 #8.

