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Abstract. The seismic data taken in California and Japan
are mapped to growing random networks. It is shown in the
undirected network picture that these earthquake networks
are scale-free and small-work networks with the power-law
connectivity distributions, the large values of the clustering
coefficient, and the small values of the average path length.
It is demonstrated how the present network approach reveals
complexity of seismicity in a novel manner.

1 Introduction

Seismicity is governed by yet unknown dynamics of the earth
crust as a complex system. Although seismology has a long
tradition, only a few universal laws have been discovered.
The celebrated examples are the Omori law (Omori, 1894)
for the temporal pattern of aftershocks and the Gutenberg-
Richter law (Gutenberg and Richter, 1954) for the scaling re-
lation between frequency and magnitude. Although there are
some discussions about the theoretical bases of these laws,
it seems fair to say that essentially they still remain empiri-
cal. The situation shows how understanding physics of earth-
quakes is far from maturity. And, there may be much to be
explored even at the empirical level. This in turn suggests
a possibility that approach from the viewpoint of science of
complexity may shed new light on seismicity.

In the recent investigations (Abe and Suzuki, 2003,
2005a), we have analyzed the spatio-temporal properties
of seismicity from the viewpoint of nonextensive statistical
mechanics (Abe and Okamoto, 2001). Nonextensive sta-
tistical mechanics is constructed based on the Tsallis en-
tropy (Tsallis, 1988) and generalizes Boltzmann-Gibbs sta-
tistical mechanics in order to treat complex systems. We
have found that both the spatial distance and time interval
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between two successive earthquakes are well described by
the q-exponential distributions, which are characteristics of
nonextensive statistical mechanics and maximize the Tsal-
lis entropy under appropriate constraints. The fact that two
successive earthquakes obey such definite statistical laws im-
plies that successive events are indivisibly correlated, no mat-
ter how large their spatial distance is. In fact, there is a
report (Steeples and Steeples, 1996), which shows that an
earthquake can be induced by a foregoing earthquake more
than 1000 km away. This means that the seismic correlation
length may be enormously large, indicating a strong similar-
ity to phase transition phenomena and making it inappropri-
ate to put spatial windows in analysis of seismicity, in gen-
eral. Thus, we are naturally led to a conclusion that the earth
crust always stays in a critical state.

In this article, we discuss a novel method of describing
complexity of seismicity, which has recently been introduced
in the literature (Abe and Suzuki, 2004b, c). This method
uses the concept of complex networks (Albert and Barabási,
2002; Dorogovtsev and Mendes, 2003), in particular, scale-
free networks (Albert and Barabási, 2002) and small-world
networks (Watts and Strogatz, 1998). We define the map-
ping of the seismic data to a growing random graph and then
study its topological properties. Such a network representa-
tion ideally realize the above-mentioned fact that two succes-
sive events are indivisibly correlated, irrespectively of their
spatial distance.

The article is organized as follows. In Sect. 2, the method
of constructing earthquake networks is explained. In Sect. 3,
the results are presented for the connectivity distributions (or,
the degree distributions) of the earthquake networks, which
manifest the fact that the networks are scale free. In Sect. 4,
an aspect of the earthquake networks as the small-world net-
works is discussed employing the data in both California and
Japan. We calculate the values of the clustering coefficient,
and then perform full analysis of the average path length over
the whole data, which improves and expands the previous
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Fig. 1 

Fig. 1. A schematic description of the earthquake network. The
vertices represent the cells, in which earthquakes occurred, and the
edges replace the patterns of complex event-event correlation.A,
B, andC are the cells containing main shocks and have the large
values of connectivity, playing role of hubs.

analysis using the method of random sampling only for the
data in California (Abe and Suzuki, 2004c). Section 5 is de-
voted to concluding remarks.

2 Mapping seismic data to a growing random graph

Seismic data basically consists of the series of a set of val-
ues of occurrence time, hypocenter (or, focus), and magni-
tude of each earthquake. It can therefore be seen as a field-
theoretical system, in which magnitude as a field strength
is defined on discrete spacetime points. Unlike ordinary
field theories, however, both the field strength and spacetime
points are inherently probabilistic in the case of seismicity.

A basic idea here is to represent seismic data by a growing
random graph.

Our proposal for constructing an earthquake network is
quite simple. A geographical region under consideration is
divided into a lot of small cubic cells. A cell is regarded as a
vertex if earthquakes with any values of magnitude occurred
therein. Two successive events define an edge between two
vertices. If two successive events occur in the same cell, they
form a loop. This procedure enables us to map the seismic
data to a growing random graph. This graph, referred to as
the earthquake network, represents dynamical information of
seismicity in a peculiar manner.

Several comments on this construction are in order. First
of all, it contains a single parameter: the cell size, which is a
scale of coarse graining. Once the cell size is fixed, the earth-
quake network is unambiguously defined. However, since
there exist no a priori operational rule to determine the cell
size, it is of importance to examine how the properties of
the earthquake network depend on this parameter. Secondly,
it should be noticed that edges and loops efficiently repre-
sent correlation between successive earthquakes, the crucial
importance of which is emphasized in the preceding sec-
tion. Thirdly, the earthquake network is a directed graph
in its nature. Directedness does not bring any difficulties
to statistical analysis of connectivity (degree, the number of
edges attached to the vertex under consideration) since, by
construction, in-degree and out-degree (Pastor-Satorras and
Vespignani, 2004) are identical for each vertex. We shall
not distinguish in-degree and out-degree from each other in
the analysis of the connectivity distributions. However, di-
rectedness becomes essential when the path length (i.e., the
number of edges) between a pair of connected vertices, i.e.,
the degree of separation between the pair, is considered (Abe
and Suzuki, 2005b). In the directed network picture, the path
length corresponds to natural time of the newer vertex mea-
sured from the older one. Recent investigations (Varotsos et
al., 2002; Abe and Suzuki, 2004a; Tirnakli and Abe, 2004;
Abe et al., 2005) show how the natural time representation
plays a prominent role in analyzing complex time series. Fi-
nally, directedness has to be ignored in the small-world pic-
ture, and the path length in this case should be defined as the
smallest value among the possible numbers of edges connect-
ing the pair of vertices. Also, loops have to be removed and
multiple edges are replaced by single edges. That is, an undi-
rected simple graph has to be considered in the small-world
picture.

3 Scale-free nature of the earthquake networks

An earthquake network thus constructed is schematically de-
picted in Fig. 1. There, one sees that there are a few special
vertices, labeled byA, B, andC, which have large values
of connectivity. Such vertices are termed “hubs”. A striking
feature we discovered from data analysis is that aftershocks
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Fig. 2 
 
Fig. 2. The log-log plots of the connectivity distributions of
the earthquake networks in California for the cell sizes(a)
10 km×10 km×10 km, and(b) 5 km×5 km×5 km. The total num-
bers of vertices are (a)N=3869, and (b)N=12 913, respectively.

associated with a main shock tend to return to the locus of the
main shock, geographically, making the vertex of the main
shock a hub. This has an analogy with the preferential at-
tachment rule for a growing network (Albert and Barabási,
2002; Dorogovtsev and Mendes, 2003; Pastor-Satorras and
Vespignani, 2004). That is, a newly created vertex is con-
nected to theith vertex with connectivityki with probability

5 (ki) =
ki∑
j kj

. (1)

This rule is known to generate a scale-free network charac-
terized by the power-law connectivity distribution:

P (k) ∼ k−γ , (2)

whereγ is a positive exponent.
A scale-free network is in contrast to the Erdös-Ŕenyi clas-

sical random graph (Erdös and Ŕenyi, 1959; Bollob́as, 2001;
Dorogovtsev and Mendes, 2003), the connectivity distribu-
tion of which is Poissonian.

The observation of the above-mentioned feature of after-
shocks may lead to the reasoning that the earthquake network
is a scale-free network. Below, we shall see that this is indeed
the case.
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Fig. 3. The log-log plots of the connectivity distributions
of the earthquake networks in Japan for the cell sizes(a)
10 km×10 km×10 km, and(b) 5 km×5 km×5 km. The total num-
bers of vertices are (a)N=27 599, and (b)N=57 768, respectively.

We have constructed the earthquake networks from the
seismic data taken in California and Japan. The data
sources are i) the Southern California Earthquake Data Cen-
ter (http://www.data.scec.org/), and ii) the Japan Univer-
sity Network Earthquake Catalog (http://kea.eri.u-tokyo.ac.
jp/CATALOG/junec/monthly.html). The time intervals are
i) between 00:25:8.58 on 1 January 1984 and 22:21:52.09
on 31 December 2003, and ii) between 01:14:57.63 on
1 January 1993 and 20:54:38.95 on 31 December 1998.
The regions covered are i) 29◦06.00′ N–38◦59.76′ N latitude
and 113◦06.00′ W–122◦55.59′ W longitude with the max-
imal depth 175.99 km, and ii) 25.730◦ N–47.831◦ N lati-
tude and 126.433◦ E–148.000◦ E longitude with the maximal
depth 599.9 km. The total numbers of events are i) 367 613,
and ii) 123 390. The data in California contains no threshold
for magnitude, but we exclude artificial “quarry blasts” from
the data. On the other hand, the data in Japan contains only
the events with magnitude larger than 2.

The connectivity distributions in California and Japan are
shown in Figs. 2 and 3, respectively. There, we compare the
results with two cell sizes: (a) 10 km×10 km×10 km, and
(b) 5 km×5 km×5 km. The minimal case (b) is legitimate
from the geophysical viewpoint regarding the typical size of
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Fig. 4 

 

Fig. 4. Reduction of the network in Fig. 1 to the corresponding
undirected simple graph.

a fault. From them, we conclude that the earthquake net-
works are scale-free networks characterized by the connec-
tivity distributions of the form in Eq. (2). As mentioned in
Sect. 2, in-degree and out-degree are not distinguished here
since they are identical for each vertex. The smaller the cell
size is, the larger the exponent,γ , is. This is natural since
the number of vertices with large values of connectivity de-
creases as the cell size becomes smaller. However, the trend
remains unchanged for the different cell sizes. We have also
examined the effect of threshold for magnitude on the con-
nectivity distributions by using the data in California. As
expected, again the trend does not change for the threshold
values:Mth=0∼3.

The result may physically be interpreted as follows. As
already mentioned, aftershocks associated with a main shock
tend to be connected to the vertex of the main shock, re-
alizing preferential attachment. On the other hand, the
Gutenberg-Richter law states that frequency of earthquakes

with large values of seismic moment decays slowly as a
power law with respect to the value of moment. This implies
that there appear quite a few giant components, and accord-
ingly the network becomes highly inhomogeneous. How-
ever, see also the comment on hierarchical organization in
Sect. 5.

4 Small-world structure of the earthquake networks

Small-worldness is also an important ingredient of complex
networks. To examine the small-world structure of earth-
quake network, it is essential to notice the following point:
loops have to be removed and multiple edges should be re-
placed by single edges, and then directedness is ignored.
This is because, in the small-world picture, we are concerned
only with static pattern of whether vertices are connected or
not. Consequently, the original earthquake network has to be
reduced to an undirected simple graph. In Fig. 4, we show
the reduction of the original network in Fig. 1.

Two important characteristics (Watts and Strogatz, 1998)
of a small-world network are a large value of the cluster-
ing coefficient compared to the Erdös-Ŕenyi classical ran-
dom graph and a small value of the average path length (i.e.,
the number of edges connecting two vertices).

The clustering coefficient is defined as follows. Let
A=(ai j ) be the adjacency matrix of a simple graph.ai j=1
if the ith andj th vertices are connected by an edge, whereas
ai j=0 if they are not directly connected.ai i=0 because of
the absence of loops. Using the adjacency matrix, the clus-
tering coefficient,C, is given by

C =
1

N

N∑
i=1

ci, (3)

ci =
1

ki (ki − 1)/2
(A3)i i, (4)

whereN is the total number of vertices. This quantity shows
tendency of two neighboring vertices of a given vertex be-
ing connected to each other. It is known (Watts and Strogatz,
1998; Albert and Barab́asi, 2002; Dorogovtsev and Mendes,
2003) that the clustering coefficient of a small-world network
is much larger than that of the classical random graph of
Erdös and Ŕenyi given by

Crandom=
< k >

N
� 1, (5)

where<k> is the average value of connectivity.
We have analyzed the same data as those in the discussion

about the connectivity distributions in Sect. 3. In Table 1,
we present the results obtained by performing full analysis
(in contrast to the previous limited study of the average path
length based on the method of random sampling only for
the data in California; Abe and Suzuki, 2004c). (However,
because of its heavy combinatorial-problem nature, still we
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Table 1. The values of the number of vertices,N , the clustering coefficient,C, (compared with those of the classical random graphs,
Crandom) and the average path length,L. Because of the large number of vertices, the average path length of the earthquake network in Japan
with the cell size 5 km×5 km×5 km could not be evaluated (see the text).

cell size 10 km×10 km×10 km 5 km×5 km×5 km

California N=3869
C=0.630 (Crandom=0.014)
L=2.526

N=12 913
C=0.317 (Crandom=0.003)
L=2.905

Japan N=27 599
C=0.045 (Crandom=0.298×10−3)

L=3.825

N=57 768
C=0.015 (Crandom=7.111×10−5)

L= − −−

could not obtain the definite value of the average path length
for the data in Japan with the cell size 5 km×5 km×5 km, un-
fortunately.) From it, one clearly appreciates that the values
of the clustering coefficient are much larger than those cor-
responding to the associated classical random graphs. The
values of the average path length are also seen to be very
small, between 2 and 4, taking into account the numbers of
vertices. Thus, the earthquake networks are in fact small-
world networks.

5 Concluding remarks

We have discussed the complex-network approach to seis-
micity and have shown how such an approach sheds new
light on complexity of the phenomenon. We have analyzed
the topological properties of the earthquake networks con-
structed from the seismic data in California and Japan. We
have shown that the earthquake networks are scale-free net-
works characterized by the power-law connectivity distribu-
tions and have given a physical interpretation to this result
based on network growth with the preferential attachment
rule together with the Gutenberg-Richter law. Then, we have
studied the small-world structure of the earthquake networks
reduced to undirected simple graphs. Improving and general-
izing the previous study using only the data in California, we
have performed full analyses of the clustering coefficient and
the average path length for the data not only in Californian
but also in Japan. The values of clustering coefficient are
found to be much larger than those of the classical random
graphs. In addition, the values of the average path length are
found to be very small. Thus, the earthquake networks are
scale-free small-world networks.

There may be a number of important issues still to be
addressed. Recently, we have studied the period distribu-
tion of the directed earthquake network in California (Abe
and Suzuki, 2005b), which show after how many events the
earthquake returns to the initial vertex. This is of interest in
view of earthquake prediction. There, we have found that
the period distributions obey a power law, suggesting a fun-

damental difficulty of predicting the period. Such investiga-
tions using data in other regions are of obvious importance.
More recently, we have investigated the hierarchical structure
as well as the mixing property of earthquake networks (Abe
and Suzuki, 2006). We have discovered that the earthquake
networks possess hierarchical organizations and assortative
mixing. Assortative mixing means that vertices with large
values of connectivity tend to be connected to each other.
That is, a main shock induces other main shocks. These fea-
tures are important due to the following reason: the hierarchi-
cal organization cannot be realized by a simple combination
of network growth and the preferential attachment rule, and,
therefore, still there must be more physical mechanisms to
be revealed.

The complex-network approach also enables one to exam-
ine seismological models from a peculiar viewpoint. Recent
works (Peixoto and Prado, 2004, 2006) discuss the complex-
network approach to a self-organized-criticality model. It
was shown that under certain conditions a scale-free network
can in fact be realized by the model.

It is our expectation that the present complex-network ap-
proach may lead to deeper understanding of physics of sis-
micity.
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