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Abstract. The problem of earthquake prediction and the
methods of identification of geophysical precursory signals
are discussed. To get information on the dynamics of earth-
quake preparation processes, fluctuations in geophysical time
series are analyzed with the method of flicker-noise spec-
troscopy. Integral indices – power spectra and various mo-
ments (“structural functions”) – are used as information re-
lations. We demonstrate that the method allows us to reveal
earthquake precursors.

1 Introduction

The present state of the art of earthquake prediction research
evidences that deterministic concept has exhausted its ca-
pabilities. This concept assumes that observed geophysical
temporal realizations are determined by the medium passive
response to its deformation due to certain external forces.
An adequate description of the observations by means of this
concept is not possible.

The crisis of the deterministic paradigm of earthquake pre-
diction has allowed the growth of other opinions. In particu-
lar, a model of the medium in a form of an active discrete hi-
erarchically structural geophysical system has received wide
recognition (Scholz, 1991; Turcotte, 1994; Lukk et al., 1996;
Descherevsky et al., 2000). Its principal difference from the
classical model of passive continuum is that the medium can
actively redistribute and release the energy. At the same time,
its elements could be sated to a different extent with heat,
elastic and “structural” energy (Timashev, 2001a, b). Due
to additional input of energy from outside (for example due
to tidal motions, tectonic shifts etc.) some elements of the
medium could reach an unstable state and throw off the en-
ergy surplus, which is absorbed by neighboring fragments or
separate pieces. Such processes of accumulation and redistri-
bution of this energy could gradually lead the whole system
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to instability and ultimately seismic catastrophe (Sadovsky
and Pissarenko, 1989).

Following this model, we have to change the paradigm
of earthquake prediction research. An analysis of prepara-
tion of each specific large seismic event as reflected in non-
stationarities of geophysical signals needs an application of
stochastic models which could be fundamental to search for
large earthquake precursors.

A degree of non-stationarity of geophysical medium can
be evaluated analyzing temporal variations in certain char-
acteristics of studied signals. The Hurst exponent obtained
from the analysis of temporal fluctuations in the inter-event
intervals of the earthquakes and exponent of the power spec-
trum, which behaves as a power-law function of the fre-
quency, was considered as an example of such characteristics
(Telesca et al., 2001). The time evolution of these parame-
ters was studied using overlapping time windows in order to
have a sufficient number of points to estimate the scaling ex-
ponents. The authors demonstrated that a tendency of both
parameters to converge toward a unity, which is typical for
self-organized critical dynamics, was evident before the oc-
currence of the major earthquake event recorded in the area
during the observation period. A subionospheric VLF/LF
(very low frequency/low frequency) propagation was also
investigated to detect the seismo-ionospheric perturbations
(Hayakawa, 2000). The author studied day-to-day sequence
of diurnal variation in the transmitted signal phase, and a sig-
nificant change in the terminator times before several earth-
quakes was discovered. The terminator time was defined
while diurnal phase variations exhibit a minimum around
sunrise and sunset.

In accordance with the ideas presented we should expect
the occurrence of precursors, associated in particular with
changes in the fluctuation behavior of the monitored param-
eters with respect to their enrichment with a high frequency
component instead of traditional, for example bay-like, pre-
cursors. The problem we run into is how to extract the re-
quired information a priori, knowing that analyzed time se-
ries have a boundless volume of information, because the
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number of freedom degrees in natural systems is infinite.
This leads us to a conclusion that a noise component of the

variations in geophysical parameters for the majority of cases
could not be related to the measurement errors. The analy-
sis shows that these chaotic variations can often be identi-
fied as such a natural phenomenon as flicker noise or “l/f
noise”. On the basis of these results we propose a new ap-
proach to earthquake prediction research, the flicker noise
spectroscopy (FNS) (Timashev, 2001a, b).

The FNS methodology allows the total information con-
tained in chaotic series to be classified discernibly in the
most general phenomenological form. In this case, an ar-
bitrary desirable number of parameters with clear physical
meaning can be extracted from arbitrary chaotic series of dy-
namic variables. The problem is formulated in such a way as
to identify unambiguously the state of the investigated com-
plex system during its evolution or its structural peculiarities
from the totality of parameters, whose number should be de-
termined by a special analysis. The method makes it pos-
sible to reveal different qualities and to distinguish between
the peculiarities of different levels of the system structural
hierarchy.

In this paper, the fundamentals of FNS are briefly dis-
cussed and principal capabilities of the approach to reveal
earthquake precursors are demonstrated.

2 Flicker noise structure of geophysical temporal vari-
ations and consequences

In our previous research we established that a two-
component model including a seasonal and a flicker-noise
components, seems to be more adequate to model statistical
structure of time series of long-term geophysical observation
data. After the variations are filtered from regular seasonal
component, their relation to a flicker-noise class is beyond
question (Descherevsky et al., 1997, 2000).

The examples of geophysical time series, characterized by
a flicker-noise structure, are given in Fig. 1a, and their spectra
– in Fig. 1b.

For all the considered realizations the amplitude spectrum
can be approximated by a power functionA ∼ f −k, whereA
is the spectrum amplitude;f is the frequency and the spec-
trum parameterk is fluctuating within the range 40.5 ≤ k ≤

1.0. In this case, we consider the amplitude spectrum as
a square root of the power spectrum, i.e. a value propor-
tional to the amplitude but not to initial signal dispersion. We
should bear in mind that the spectrum slope in bilogarithmic
coordinates would be twice less then the slope of the power
spectrum.

The established statistical structure of geophysical field
variations is significant not only from the point of view of
selection of adequate techniques for geophysical data anal-
ysis, but these techniques could also lead to understanding
of processes taking place in the geophysical medium. Thus,
the values and techniques directly or indirectly assuming the
signal stationarity, for example application of the correlation

coefficient, appear to be incorrect. Contrary to white noise,
which means that the values of the signal absence are totally
uncorrelated, asymptotics of power spectrum reveal that such
a correlation exists in the system. The observed dynamic pro-
cesses exhibit properties of a scaling invariance: at any time
scales the series’ properties remain the same.

It seems natural to relate the self-similarity of statistical
properties of geophysical signals to the self-similarity, frac-
tality of the geophysical medium on different scales. In this
case self-similar geophysical parameter time variations could
evidence the presence of deterministic chaos in the geophys-
ical system evolution.

The application of stochastic (not deterministic) models of
preparation of a specific large seismic event, based on iden-
tification of non-stationarities signals, could be a very effec-
tive tool in searching for large earthquake precursors. We
expect the presence of precursors associated with changes in
the temporal fluctuations of the monitored parameters due to
their enrichment with the high frequency component.

However, high frequency fluctuations of the monitored
values are only one of a number of possible manifestations of
nonstationary processes occurring in the active geophysical
medium prior to a seismic event. A more general approach
to the problem is a formalized search in the geophysical mon-
itoring time series for a wide spectrum of non-stationarities
and collective effects of different sorts.

We offer a promising approach which, however, has not
been virtually tested yet in geophysical practice. The FNS
approach consists of giving an informational significance to
sets of different discernible irregularities – bursts, jumps, and
derivative discontinuities of different order – occurring on all
space-time hierarchical levels of the system. The capacity
spectra and various moments (transient structural functions)
of different orders are used as information relations of inte-
gral indices of the analyzed signals.

3 Fundamentals of flicker-noise spectroscopy

(1) The hierarchy of space-time organization levels of com-
plex open dynamical dissipative systems is introduced. For
the sake of clarity, we consider chaotic temporal dynamics of
such systems, which is expressed in terms of the measured
dynamic variableV (t), wheret is the time.
(2) Information carriers in the measured chaotic series,
specifically in time seriesV (t), are sets of different dis-
cernible irregularities – bursts, jumps, and derivative discon-
tinuities of different orders - occurring at all space-time hi-
erarchical levels of the system. The “discernibility” of the
irregularities means that parameters characterizing the prop-
erties of irregularities are discernibly extracted from power
spectraS(f ) and difference moments8(p)(τ ) of the order
p(p = 1, 2, 3, . . .):

S(f )
−−−−−→
T → ∞

∣∣∣∣∣∣∣
T/2∫

−T/2

< V (t)V (t + t1) > · exp(2πif t1)dt1

∣∣∣∣∣∣∣ (1)
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Fig. 1. The initial time series of some geophysical parameters the monitoring of which was realized at the Garm test-site in Tadjikistan(a)
and normalized to the maximum amplitude spectra of the realizations filtered from a seasonal component bf (b). 1 – the potential (mV) of
an electrode pair copper-lead (ECP) at the Garm geophysical observatory; 2 – the potential (mV) of the electrotelluric field (ETF) at the
Khazor-Chashma observatory; 3 – apparent electrical resistivity(ρa , Ohm·m), measured by a method of vertical electrical sounding (VES)
at AMNB array of AB = 50 m and MN = 2 m; 4 – apparent electrical resistivity (Ohm·m), measured by the VES method at AMNB array of
AB = 3000 m and MN = 500 m; 5 – a series of values of the ground water level (cm) near the Khazor-Chashma observatory; 6 – a series of
air temperature (◦C) at the Garm observatory.

< (...) >
−−−−−→
T → ∞

1

T

T/2∫
−T/2

(...)dt,

8(p)(τ ) =<
[
V (t) − V (t + τ)

]p
> . (2)

In this case,8(p)(τ ) is formed only by jumps of the dy-
namic variable for different space-time hierarchical levels of
the system, andS(f ) by bursts and jumps.
(3) The “certification data”, which are extracted fromS(f )

and8(p)(τ ) represent correlation times and parameters char-
acterizing a loss of “memory” (correlation); these data refer
to irregularities like “bursts” and “jumps”. For irregulari-
ties like “derivative discontinuities”, the parameters are ex-
tracted from power spectra and difference moments based
on time series of the form1m

n V (tk)/1nt
m(m ≥ 1), where,

1m
n V (tk) = 1m−1

n V (tk) − 1m−1
n V (tk−n) and1nt = (tk −

tk−n) is the sampling interval for the dynamic variable mea-
sured at points in timetk. A degree of reproduction of values
of the main “certification data” determined from the corre-
sponding power spectra and difference moments when vary-
ing the intervals1nt = (tk − tk−n) serve as the adequacy
criterion of these procedures of formation of different time

series.

When analyzing chaotic time series obtained in the course
of experimental measurements for the different discretization
frequencies, the problem of smoothing the initial series often
arises. There are many ways of digitized signals filtration
to separate the “low frequency” component: by the use of
smoothing multinomials, wavelets, etc. We use a method
of splitting the signal into the “low frequency”VR(t) and
“high frequency”VF (t) components which was proposed in
(Timashev and Vstovsky, 2003). In accordance with this pa-
per, the extraction of “high frequency” components is based
on a “relaxation procedure” by analogy with a solution of
diffusion (heat conductivity) equation presented in the form
of a finite difference equation, corresponding to a simplest
explicit difference scheme of numeric solution of diffusion
(heat conductivity) equation. In fact, the smoothing proce-
dure corresponds to a sequential decrease in the gradients
of local values with their mutual closing to each other in
each of taken triples. In this way we obtain the “low fre-
quency” componentVR. The use of a diffusion equation per-
mits us to speak about “evolution of dynamic variable val-
ues” of the chaotic series under the chosen smoothing proce-
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Fig. 2. An example of identification of “certification data” of a
dynamic process – electric potential fluctuations in the electromem-
brane system – from a standard power spectrumS(f ) and a differ-
ence moment of the second orderQ2. In spite of closeness of the
variation structure of two initial realizations at different time inter-
vals (1a and 2a) and their power spectra (1b and 2b) a significant
difference of the values of different moments (1b and 2b) testify-
ing in favor of existence of differences in the process dynamics at
various time intervals is observed.

dure as a realization of minimum high frequency” informa-
tion in theVR(t) component. This means that a defining part
of the high frequency information is contained in the func-
tion VF (t) ≡ V (t) − VR(t). The described splitting of the
initial signalV (t) into the two componentsVR(t) andVF (t)

enables us to calculate the dependenciesS(f ) and8(p)(τ ),
introduced above, for each of the functionsVJ (t)(J = R, F

or G), where subindexG is used in the cases when the initial
signalV (t) is also used for calculations. The cumulative ex-
perience of FNS analysis of chaotic signals of different phe-
nomena clearly shows justification of its use for the search of
otherwise hidden information (see examples below).

4 Results of application of FNS

An example of extraction of the “certification data” of a
dynamic process (electrical potential fluctuations in elec-
tromembrane system) is given in Fig. 2. Chaotic series of

two time realizationsVi(t) of this process in a field of the
“beyond the limits” current fixed at a distance from the sur-
face of cation changeable membrane by two adjacent elec-
trodes were analyzed.

The initial time seriesVi(t) obtained directly from the ob-
servations of the membrane potentials are shown in the upper
part of the figure. The frequency of discretization of the an-
alyzed series is 100 Hz, and the number of observations is
4096 for each series. The relationsS(f ) and 8(p)(τ ) for
p = 2, are shown in Fig. 2b and 2c. It is clear that the differ-
ence moment82 demonstrates discernibility of the measured
signals to a much greater extent in comparison with the usual
power spectra.

Not all the “certification data” are shown in the figure –
only an illustration of selective possibilities of one of the pro-
posed criterion82 is given compared to the standard spectral
statisticsS(f ). Additional criterion relations make it possi-
ble not only to classify the observed signals depending on
the structure of their nonstationarities, but also to evaluate
dynamics of the nonstationarities in an explicit form.

While studying nonstationary processes, dynamics of
S(f ) and8(p)(τ ) have been analyzed varying time with av-
eraging interval[k1T, tk] andT extension, wherek = 0, 1,
2,... andtk = T + k1T , with the constraintTtot (T + 1T <

Ttot ), Ttot being the total time period. The time intervalsT

and1T should be selected on the basis of a physical sense
of the problem revealing the typical time of a process which
determines the most important internal structural reconstruc-
tion of the studied evolution. Therefore, if some “secondary”
processes with typical timesτi slightly influencing the main
nonstationary process of the structure reconstruction occur,
we have to selectT so thatτi � T . In general, if a complex
system is involved in a nonstationary evolution, it is charac-
terized by a set of typical timesTsr (called times of “struc-
tural reconstruction”), for a corresponding set of scales of the
system’s spatial organization, and a problem of prognosis be-
comes multi-parametric. Therefore, not single but a number
of “precursors” of a catastrophic event has to be examined.
Each of these “precursors” can be revealed by analyzing the
dynamic variables describing the system, selecting the aver-
aging intervalT < Tsr .

It is obvious to associate a phenomenon of a “precursor”
with the sharp variations ofS(f ) and 8(p)(τ ) when ap-
proachingtk to the timetc of a catastrophic event when a
reconstruction takes place at all the possible spatial scales
in the system. It should to be expected, that the timetk of
the precursor should be from the momenttc not less than the
interval 1T , i.e. 1Tcn = tc − tK ≥ 1T , at the realiza-
tion of the inequality1Tcn � Ttot . In this sense we can
speak about a “precursor”. When revealing a “precursor”,
it is important to distinguish when sharp variations inS(f )

and8(p)(τ ) are caused by significant signal variations on the
“front” or “back” boundary of the intervalT , by approach-
ing the “front” boundarytk to a momenttc of the expected
event. The given problem can be solved by the analysis of
the time behavior of the corresponding criteria by varying
T : it is obvious that whenT increases by the value1T1 the
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Fig. 3. An example of separation of a signal-precursor prior to a devastating Dzhirgatal earthquake withM = 6.4 within the Garm test-site
from the time realizations of electro-chemical potential applying the FNS analysis. 1a – the potential (mV) of an electrode pair copper-lead
(ECP) at the Garm observatory (the curve 1 in Fig. 1); 2a – the same at the Khazor-Chashma observatory; 1b – a prognostic criterionC2
filtered from a low frequency component of a high frequency residual of the initial seriesV1(t); 2b – the same for a low frequency component
of the initial seriesV2(t).

nonstationarity effects associated with the signal behavior at
the “back” boundary should be displayed with the same time
delay1T1, when the factor display caused by sharp signal
variations in the area of the front boundary does not depend
so strongly on the averaged interval value.

We consider below the “precursors” based on the differ-
ence moments8(p)(τ ), that are turned out to be more infor-
mative. The relations8(p)(τ ) are reliably calculated in the
interval [0, 1T ] with α < 0.5. We introduce infinite rela-
tions:

CJ (tk+1) =

αT +(k+1)1T∫
(k+1)1T

Q
(p)
J (τ )dτ −

αT +k1T∫
k1T

Q
(p)
J (τ )dτ

αT +k1T∫
k1T

Q
(p)
J (τ )dτ

/
1T

T
, (3)

where we may consider8(p)(τ ) or their derivatives by
the “delay” parameterτ calculated using the functions
VJ (t)(J = R, F or G asQ

(p)
J (τ ). Here we relate the last

index to the initial relationV (t). The introduced relations
characterize “a nonstationarity measure” of the process at the

averaging intervalT by the time axis on a value1T , in par-
ticular, when approaching the upper boundary of the averag-
ing time intervaltk to a momenttc of a catastrophic event. If
the processes is stationary,CJ (tk+1) = 0.

In Fig. 3 an example is given of the identification of pre-
cursors prior to the devastating Dzhirgatal earthquake with
M = 6.4 (which occurred on 26 October 1984 within
the Garm test-site in Tadjikistan) using the method outlined
above. The time realizations of the electrical/chemical po-
tential (ECP) at two observation points with a sampling fre-
quency of 1 reading per day were used as the initial time se-
ries. HereV1(t) represents the time series of the daily values
of the potential (mV) of an electrode pair - copper-lead at the
Garm valley observatory (Fig. 1a), andV2(t) is the potential
at the Khazor-Chashma highland observatory (Fig. 2a) mea-
sured during the period 1979–1991. The time evolution of
theC2 criterion, obtained respectively for “high frequency”
and “low frequency” components of the initial seriesVi(t),
is calculated according to Eq. (3) (Fig. 1b and 2b).C2 cri-
terion has been calculated in a sliding time window of 846
days with a 20 days shift. In both cases we can note the pres-
ence of a signal-precursor prior to the Dzhirgatal earthquake
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– a more intensive positive burst of the criterionC2 approx-
imately 100–150 days before the earthquake is indicated by
a vertical arrow in one of the figures. The intensive negative
spikes are caused by back bound effects discussed above.

It is hard to see by inspection any change in the variation
of the initial series before the earthquake. So it is unlikely
that any significant prognostic information could be obtained
in a given case using standard methods of the initial series
processing. These results confirm the good possibilities of
the proposed FSN approach to reveal prognostic information
from chaotic series of geophysical observations.

5 Conclusions

The method of flicker-noise spectroscopy to derive informa-
tion on the dynamics of an earthquake preparation process
is proposed. Integral indices of analyzed time realizations,
in particular power spectra and various moments (“structural
functions”) of different character, are used as information
relations. The method of the analysis using extended un-
derstanding of information contained in chaotic signals has
shown some new approaches in the search for large earth-
quake “precursors”. The phenomenon of a “precursor” is as-
sociated with the reconstruction of the geological medium
structure at the analyzed scale, indicating that the medium is
“ready” to sharp changes of its state.

The proposed general view on the development of disas-
trous geodynamic events corresponds to the conceptual ideas
by S. Moiseev with colleagues (see Branover et al., 1999;
Edelman et al., 2000). This view suggests stability loss of
an open nonlinear system takes place after an increase in
small-scale dynamic fluctuations determining the following
growth of large-scale perturbations, i.e. an “inverse” trans-
fer of perturbations along the scale axis takes place – from
the smaller to the larger ones. In this case, the transfer of
excitations from large-scale fluctuations to small-scale ones
according to Richardson’s hypothesis accepted in the Kol-
mogorov’s theory of fully developed isotropic turbulence is
being understood as “a direct” transfer.

It should be noted that we can also arrive at a conclusion
on information-significant increase in small-scale (“high fre-
quency”) dynamic fluctuations in an open system prior to
large-scale (“low frequency”) structure transformation from
the computer analysis of a dynamics of structure rearrange-
ments in complex systems just before phase transitions. It
was demonstrated, in particular, in (Klochikhin et al., 2000).

It is obvious that more detailed information on the geolog-
ical medium conditions before a large earthquake may be ob-
tained if multi-point simultaneous measurements of dynamic
variablesVi(t)(i = 1, 2,......N) are realized in the area of an
impending earthquake. The analysis of multi-point correla-
tions permits one to make conclusions on spatial/temporal
dynamics of realized correlations in energetically stimulated
geophysical medium – on the direction of stimulation trans-
fer between the regions in which the signalsVi(t) are regis-
tered.
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