La_{0.5}RE_{0.3}Sr_{0.2}FeO₃₋₆ (RE=Nd、Ce、Sm)体系双稀土阴极材料的 制备与电性能^{*}

陈永红^{1,2} 魏亦军² 仲洪海¹ 高建峰¹ 刘杏芹¹ 孟广耀¹ (中国科学技术大学材料科学与工程系,合肥 230026;²淮南师范学院实验信息中心,安徽淮南 232001)

摘要 采用甘氨酸-硝酸盐法(GNP)合成了La_{0.5}RE_{0.3}Sr_{0.2}FeO₃₋₆ (RE=Nd、Ce、Sm)系列复合氧化物粉体.用 X射线衍射(XRD)和 TG-DSC 分析了样品钙钛矿物相的形成过程,用 Archimedes 排水法测量体积密度并计算烧结样品的相对密度,用四端子技术测量电导率.结果显示,掺 Nd 的样品 1200℃烧结 2 h 成为单一立方钙钛矿结构,掺Ce 样品有明显的 CeO₂ 立方相析出,掺 Sm 样品主相为钙钛矿结构伴有微弱的杂峰.1250℃烧结 2 h 的La_{0.5}Nd_{0.3}Sr_{0.2}FeO₃₋₆ 在 600℃时电导率高达 100 S·cm⁻¹以上,明显高于 La_{0.5}Ce_{0.3}Sr_{0.2}FeO₃₋₆ 及 La_{0.5}Sm_{0.3}Sr_{0.2}FeO₃₋₆ 横品的电导率,预示着 La_{0.5}Nd_{0.3}Sr_{0.2}FeO₃₋₆ 可能是一种良好的中温固体氧化物燃料电池(SOFC)阴极材料.

关键词: La_{0.5}RE_{0.3}Sr_{0.2}FeO₃₋₆ (RE=Nd、Ce、Sm), 固体氧化物燃料电池, 钙钛矿, 阴极 中图分类号: O646, TQ174

固体氧化物燃料电池(SOFC)以其高的能量转 换效率,低污染排放和对燃料较强的适应性,被认为 是最有可能在近期推广应用的新型能源技术.传统 SOFC,由于在高温条件下操作(典型操作温度 950~ 1000 ℃),不仅使电池材料的选择受到了极大的限 制,提高了制造成本,同时还带来电池堆密封困难, 材料扩散和老化严重等技术问题,严重阻碍了该项 技术的推广应用.降低操作温度在 500~800 ℃范围, 不但可以使用廉价的铁基不锈钢作为连接材料,同 时也有利于电池堆密封、材料扩散和老化问题的解 决.因此,中温固体氧化物燃料电池(IT-SOFC)是目 前固体氧化物燃料电池技术发展的主流.

然而,降低 SOFC 的操作温度,首先必须解决的问题之一是阴极的催化活性.传统的锰酸锶镧 (LSM)阴极材料,高温下具有良好的电极性能,但不适用于中、低温条件下操作^[1].钙钛矿钴酸盐复合氧化物(如:La_{1-x}Sr_xCoO_{3-ð}, Sm_{1-x}Sr_xCoO_{3-ð}, La_{1-x}Ba_xCoO_{3-ð} 等),由于同时具有高的电子和离子电导率,高的氧还原催化活性,一度被认为是最有希望的中温固体 氧化物燃料电池阴极材料^[2-7].但是,进一步的研究发现,由于 Co 易扩散损失,电极长期稳定性极差^[4,89],热膨胀系数(~20×10⁻⁶ K^{-1[10]})远大于现有电解质的热膨 胀系数((10~11)×10⁻⁶ K⁻¹),存在着严重的热机械匹配 问题.

美国西北太平洋国家实验室(PNNL)采用钙钛 矿型铁酸盐复合氧化物(La_{0.8}Sr_{0.2}),FeO₃₋₈(LSF)作为 IT-SOFC 的阴极[11-13]. 研究结果显示. LSF 不但有与 电解质相近的热膨胀系数((12.50~12.65)×10⁻⁶ K⁻¹)和 令人满意的长期稳定性,同时有较高的氧还原催化 活性,既适用于 CeO2 基电解质,也适用于 ZrO2 基电 解质. 鉴于此, 目前的研究多集中在以 La 作为单一 稀土元素的钙钛矿氧化物的制备和性能研究上.由 于稀土元素在结构和理化性质上的相似性和连续 性,分离过程复杂,使用单一稀土复合氧化物作为阴 极材料是导致产品成本高的原因之一. 尤其对阴极 支撑的 SOFC, 因为对电极厚度有一定的要求, 价格 因素更显突出,使用混合稀土有利于降低成本.此 外,与La相比,Nd、Ce、Sm有着不同的变价特征,在 阴极材料中掺入此类元素,有可能进一步改善阴极 的催化活性.本文用甘氨酸-硝酸盐(GNP)法合成了 La_{0.5}RE_{0.3}Sr_{0.2}FeO₃₋₆(RE=Nd、Ce、Sm, 产物分别简写为 LNSF、LCSF、LSSF)双稀土系列粉体,重点对结构和 电学性能进行了研究,探索混合稀土复合氧化物作 为 IT-SOFC 阴极材料的可能性.

²⁰⁰⁵⁻⁰⁴⁻²¹ 收到初稿, 2005-06-24 收到修改稿. 联系人:刘杏芹(E-mail:xqliu@ustc.edu.cn; Tel:0551-3606249; Fax:0551-3631760). *安徽省教育厅自然科学基金(2004kj326)资助项目

1 实 验

1.1 试剂与仪器

试剂:硝酸镧[La(NO₃)₃·6H₂O],硝酸钕[Nd(NO₃)₃· 5H₂O],硝酸铈[Ce(NO₃)₃·6H₂O],硝酸钐[Sm(NO₃)₃· 6H₂O],均为分析纯,上海精科试剂研究所产品;硝 酸铁[Fe(NO₃)₃·9H₂O],硝酸锶[Sr(NO₃)₂],甘氨酸 (NH₂CH₂COOH),乙二胺四乙酸二钠 (EDTA),均为 分析纯,中国医药(集团)上海化学试剂公司产品.

仪器:SSX-12-16 箱式电阻炉(上海意丰电炉有限公司), AI-708P、AI-808P 型程序控温仪(厦门宇光电子技术有限公司), GDM-8055G 型台式万用电表(台湾固纬仪器公司).

1.2 样品制备与表征

按合成粉体的化学计量比,准确移取各硝酸盐 溶液于带柄蒸发皿中,加入 1:1(摩尔比, $n_{GV}: \sum n_{MZ+}$) 的甘氨酸,搅拌至完全溶解.加热蒸发混合液,直至 体系自助燃烧,生成初级粉体.初级粉体在850℃下 灼烧2h,降温后球磨,得超细粉体.在200 MPa压 力下干压成直径 13 mm、厚 1~2 mm 的圆形坯体及 长 40 mm、宽 6.5 mm、厚 1~2 mm 的条形坯体, 在程 序控温炉内进行烧结,温度范围 1100~1400 ℃,升温 速率 1~2 ℃·min⁻¹,系统到达设定终温后恒温 2 h.烧 结气氛为空气.用 Archimedes 排水法测量烧结陶瓷 样品的体积密度:用圆形坏体烧结前后的直径变化 计算收缩率,确定最佳烧成温度.用 Philips X'Pert Pro Super 型 X 射线衍射仪对样品的物相进行分析, X 射线为 Cu K_α辐射, λ=0.15418 nm, 电压 40.0 kV, 电流 50 mA, 扫描速度 10.0 (°)·min-1, 扫描范围 20~ 70°. 烧结陶瓷的显微结构分析用 Shimadzu 公司 SSX-550型扫描电子显微镜(SEM)进行.条形烧结 体磨平抛光后,以Ag丝为导线,用DAD-87银导电 胶在样品表面涂覆 Ag 电极, 在空气气氛中用直流

四探针法测量电导率,温度区间 450~800 ℃,先将炉 温升至 800 ℃,然后从高温到低温顺序测量,每隔 50 ℃为一个实验温度点,每个测温点恒温 30 min.

2 结果与讨论

2.1 XRD 物相分析

图 1 自左至右分别是 LNSF、LCSF、LSSF 粉体 在不同温度下焙烧2h后的X射线衍射图谱,图中 (a)、(b)、(c) 对应的焙烧温度依次为 800 ℃、1000 ℃、 1200 ℃. 从图可以看出, 各样品经 800 ℃焙烧后, 钙 钛矿相衍射峰清晰可见,表明 GNP 合成工艺产物成 相温度较低;随着焙烧温度的升高,衍射图谱基线越 来越平整, 衍射峰更加尖锐, 说明产物的结晶度在提 高. LNSF 样品经 1200 ℃焙烧后, 已形成了单一的 钙钛矿结构 (JCPDS 75-0439), 其 XRD 图谱与文献 [14]合成的 La₀ Sr₀ FeO₃₋₈ 结果一致, 说明 Nd 取代 La 进入了钙钛矿晶格. 而使用相同化学计量比的 Ce 取代La 却使 LCSF 体系呈现明显的两相共存, 其 XRD 图谱可指认出 CeO。立方萤石相(JCPDS 43-1002)与立方钙钛矿相(JCPDS 75-0439)的主要衍射 峰,说明 Ce 并未完全取代 La 进入钙钛矿晶格,即 实验条件下未能形成 La05Ce03Sr02FeO3-8 单相固溶 体. 这一结果的产生与 Ce 的变价特征有关, 由于+4 价 Ce的 4f 轨道没有电子填充, 是能量较低的稳定 状态,因此体系中的 Ce3+会自动转变为 Ce4+而形成 CeO₂. 比较 LCSF 体系的衍射图谱可见, 从 1000 ℃ 到 1200 ℃, 随煅烧温度升高, 萤石相衍射峰略有减 弱,而钙钛矿相衍射峰略有增强.LSSF样品经高温 煅烧后, XRD 图谱显示主相为立方钙钛矿结构, 但 基线没有 LNSF 及 LCSF 平整, 且除钙钛矿衍射峰 外,可见微弱未知相衍射峰.

2.2 TG-DSC 分析

(a) 800 °C; (b) 1000 °C; (c) 1200 °C

Fig.2 TG-DSC curves of the primary powders for (a) LNSF and (b) LCSF

图 2 (a)、(b)分别是 LNSF、LCSF 初级粉体的TG-DSC 分析结果.从 TG 曲线看,样品在测试温度范围 (30~1350 ℃)内失重不到总量的 10%. 说明 GNP 法 燃烧反应进行得较为完全. 低温段约有 1~2%的失 重, 是样品脱除吸附水所致, LNSF 在 470~550 ℃、 620~670℃、780~860℃三个温度区间内出现失重台 阶,分别有 2.5%、0.75%、2.6%的质量损失;LCSF 在 456~500 ℃及 750~860 ℃两个温度区间失重明显. 样品低温段的失重是产物中残留硝酸盐的热分解引 起的,高温段的质量损失对应杂质碳酸盐的热分解. 碳酸盐是前躯溶液燃烧成粉过程中产生的 CO。与 金属离子反应的产物.伴随样品失重,DSC曲线出 现相应吸热峰. 在高温段(≥900 ℃)LNSF 失重不明 显,表明产物钙钛矿物相已经形成,与 XRD 结果一 致;而LCSF一直处于缓慢失重状态,其原因有待进 一步研究.

2.3 粉体的烧结性能

粉体的烧结行为是鉴别粉体性能的重要参数,

图 3 LNSF 样品相对密度与烧结温度的关系

Fig.3 Relative density dependence of sintering temperature

1) 100% (w) (700 °C, 2 h); 2) 100% (w) (900 °C, 2 h); 3) 30% (w) (700 °C, 2 h) + 70% (w)(900 °C, 2 h); 4) 20% (w) (700 °C, 2 h) + 30% (w)(900 °C, 2 h)+ 50% (w)(1050 °C, 2 h)

烧结活性和烧结致密化程度可用相对密度、线收缩、 体积收缩或孔隙度变化等作为其表征参数,本文采 用相对密度及线性收缩随烧结温度的变化来描述样 品的烧结行为.为研究粉体预烧制度对烧结活性的 影响,在700℃、900℃、1050℃三个不同温度下分 别取初级粉体预烧 2 h, 再按 (1)700 ℃预烧粉, (2) 900 ℃预烧粉, (3) 700 ℃预烧粉 30%(w)、900 ℃预烧 粉 70% (w), (4) 700 ℃预烧粉 20% (w)、900 ℃预烧粉 30% (w)、1050 ℃预烧粉 50% (w) 等四种不同的物料 组成,分别压片后在1100~1400℃不同终温下烧结2 h. 图 3 和图 4 分别是 LNSF 样品的相对密度及线性 收缩率随温度变化的结果.从图可以看出,两类曲线 均呈现倒置的"U"型的特征,即相对密度及线性收 缩率先随温度的升高而增大,1250℃时达到最大值. 从实验结果看,1250℃以上,继续提高烧结温度,坯 体致密度呈现较快的下降趋势,可能是高温下体系 失氧产生孔洞所致.

为了解烧结温度对电极材料显微结构的影响, 利用扫描电镜对烧结陶瓷体的微观结构进行了观

图 4 LNSF 样品收缩率与烧结温度的关系

Fig.4 Shrinkage at different temperatures

100% (w) (700 °C, 2 h); 2) 100% (w) (900 °C, 2 h);
30% (w) (700 °C, 2 h) + 70% (w)(900 °C, 2 h);
20% (w) (700 °C, 2 h) + 30% (w)(900 °C, 2 h) + 50% (w)(1050 °C, 2 h)

(a) 1200 °C; (b) 1250 °C; (c) 1300 °C

察,图 5 是 LNSF 样品的断面显微照片.比较可见, 1200 ℃烧结样品晶粒形状比较规则,尺寸均匀,平 均粒度约为 2 μm 左右,晶界清晰,但晶粒间可见未 闭合的空隙,而 1300 ℃烧结得到的陶瓷材料则有明 显的过度烧结痕迹和组分挥发留下的少量孔洞;微 观结构上,晶粒与晶界形貌已模糊不清,结晶状态明 显变差.为了解高温下样品热稳定性,将粉体压片后 在 1100 ℃下烧结 2 h,冷至室温后称重,然后分别在 1150、1250、1350 ℃下再次烧结 2 h,冷至室温后再 次称重,比较两次烧结的质量变化,同时进行 X 射 线衍射分析.结果表明,样品在两个温度下反复烧结 后,虽有质量变化,但失重均在 0.5%范围内, XRD 谱图上也未显示有新物相产生.据此推断,高温区间 TG 曲线上样品的失重及 SEM 照片上出现的孔洞, 可能都是由于晶格氧的逸失而产生的.

比较图 3 相对密度随温度变化的曲线可知, 在 低温段, 预烧温度较低的坯体(a)致密速度快, 这是 因为预烧温度低的粉体比表面积大, 表面能量高, 有 相互聚结的热力学优势.由于在高温段不同温度预 烧的粉体(粉体粒径不同)颗粒相互填充, 有利于烧 结致密化, 上述第四种配料方式(d)坯体相对密度在 实验条件下最高. 从收缩率看, 预烧温度低的样品收 缩大, 混合配料样品(d)收缩率最小. 从以上分析可 知, 不同温度预处理的粉体混合配料有利于烧结致 密, 合适的烧结温度为 1250 ℃.

2.4 电学性能研究

电导率是 SOFC 对阴极材料要求的重要指标之一,其数值越大对电池获得大的输出电流和输出功率越有利.表1给出了 LNSF、LCSF、LSSF 样品在不同温度下的电导率.为了便于比较,同法制得的单稀土 LaugSru2FeO3-6 的电导率数值一并给出.

从表1可知,三种双稀土样品的电导率与单稀 土 La₀₈Sr₀₂FeO3-6 样品的电导率有差异. 650 ℃以下, LNSF 的电导率略大于 La_{0.8}Sr_{0.2}FeO₃₋₆ 的数值;700 ℃ 以上 La_{0.8}Sr_{0.2}FeO₃₋₅ 的电导率反而高于 LNSF, 且随 温度的升高,两者差值明显增大.而 LSSF 及 LCSF 两样品的导电能力较 La_{0.8}Sr_{0.2}FeO₃₋₈ 低得多. 对 ABO。型钙钛矿结构阴极材料,当A位引入+2价 Sr²⁺时,为了保持电中性,体系的电荷补偿主要是通 过 B 位离子的变价来实现的, 从而产生空穴导电¹⁵. 本研究 A 位除掺杂 Sr²⁺外, 还引入第二种稀土金属 离子.比较可知,La为非变价元素,而Nd、Ce、Sm三 种元素的变价特征不同.一方面,高温下由于体系失 氧,部分+3价的Nd转变为+2价,产生氧空位,氧空 位进一步离化形成电子空穴,导致载流子浓度的增 大,这将有利于提高样品的导电性.这一过程可用 Kröger-Vink 符号表示如下.

$$2Nd_{Nd}^{\times} \rightarrow 2Nd_{Nd}^{\prime} + V_{O}^{\bullet \bullet} + \frac{1}{2}O_{2}$$
$$V_{O}^{\bullet \bullet} \rightarrow V_{O}^{\times} + 2h^{\circ}$$

Table 1 Dependence of the electrical conductivity (σ / s cm ²) of the samples on temperatures								
Samples –	<i>T / °</i> C							
	450	500	550	600	650	700	750	800
LNSF	66.37	78.73	88.04	100.26	107.33	109.51	111.19	111.19
LSSF	17.43	19.14	20.59	21.79	22.57	22.77	22.77	21.96
LCSF	0.21	0.36	0.57	0.86	1.24	1.71	2.30	3.07
La _{0.8} Sr _{0.2} FeO ₃₋₆	64.30	74.39	82.69	92.20	100.71	114.84	138.10	233.78

表1 样品电导率与温度的关系

式中, Nd^x 表示+3 价的 Nd, Nd['] 代表+2 价的 Nd. V₀[•]代表氧空位, V₀[×]代表晶格结点上的氧原子, h⁰表 示电子空穴. 另一方面, 氧空位的大量形成, 又逐渐 使体系的电荷补偿由 B 位离子的变价(B³⁺→B⁴⁺)变 成以离子型补偿为主,不利于小极化子导电.上述两 个因素相互抵消,使得 LNSF 的电导率在 650 ℃以 上变化较小.由于+4 价 Ce 在能量上较+3 价 Ce 稳 定, Ce3+向 Ce4+的转变会消耗掉部分氧空位, 从而补 偿了 Sr²⁺掺杂引起的体系电荷不平衡效应. 与 LNSF 相比,在A位掺杂同样量的Sr²⁺时,LCSF材料中由 B 位离子变价形成的导电空位数较少,导电能力相 应降低; 且从 XRD 结果看, LCSF 体系呈明显的双 相结构,对材料的导电也是不利的.Sm的变价特征 与Nd 相似,存在+2氧化态,可能是因为 Sm²⁺离子 半径(0.111 nm)大于 La³⁺(0.1061 nm), 使其不能完 全固溶到钙钛矿结构的 A 位上, 引起晶格畸变, 对 载流子的迁移产生一定的阻碍作用,故LSSF样品 的电导率较低.

根据电导率与温度的关系:

$\ln(\sigma T) = -E_a / (RT) + \ln A$

式中, *A* 为指前因子; *T* 为热力学温度; *R* 为气体常数; *E*_a 为表观活化能.图 6 (a、b、c)分别是 LNSF、 LCSF、LSSF 材料的 ln(*σT*)对 *T*⁻¹ 的关系曲线.

比较可见, 在测试温度范围内, 三个样品的 ln(σT) 与 1/T 间的变化特征不同. LNSF 体系在 650 ℃时出 现折点, 该温度点上下两段的 ln(σT)与 1/T 间均呈 现良好的线性关系, 表明样品在不同温度区间的导 电机制不同, 低温段导电行为符合小极化子绝热导 电机制不同, 低温段导电行为符合小极化子绝热导 电机制¹⁶⁰, 650 ℃以上体系氧空位导电成分增加. 对 650 ℃以下实验数据点进行线性拟合, 求得表观活 化能为 19.93 kJ·mol⁻¹, 认为是体系氧空位解离能与 空穴导电活化能之和. LCSF 体系在 450~650 ℃范 围内, Arrhenius 曲线线性关系良好, 表观电导活化 能高达 56.15 kJ·mol⁻¹, 载流子难以产生, 故其导电 性较差. LSSF 体系在低温段, ln(*σT*)与 1/*T* 间也为线 性关系, 直线拟合得导电活化能为 13.95 kJ·mol⁻¹, 对应小极化子导电. 随着温度升高, ln(*σT*)逐渐偏离 原来的线性轨迹而降低, 但无明显的折点, 表明材料 在高温下有一定的金属导电特征. 同时, 高温下材料 中氧含量低, 体系电荷补偿逐渐由 B 位离子的变价 (B³⁺→B⁴⁺)变成以离子型补偿(氧空位大量形成)为主, 削弱了小极化子导电对电导率的贡献^[15].

3 结 论

采用 GNP 法合成了 A 位 Sr 掺杂的双稀土 La_{0.5}RE_{0.3}Sr_{0.2}FeO₃₋₆(RE=Nd、Ce、Sm)系列粉料,研究 了混合稀土复合氧化物作为 IT-SOFC 阴极材料的 可能性. XRD 谱图显示, LNSF 及 LSSF 样品均为立 方钙钛矿结构,而 LCSF 则是钙钛矿与 CeO₂ 立方萤 石相共存. 电导测量结果表明, LNSF 与 La_{0.8}Sr_{0.2}FeO₃₋₆ 的电导率基本接近, 600 ℃时即达 100 S·cm⁻¹以上; LSSF 及 LCSF 的电导率均较单一稀土对照样品 La_{0.8}Sr_{0.2}FeO₃₋₈ 有所降低. Nd、Ce、Sm 三种元素的变 价特征不同, 对阴极氧的吸附与解离可能有附加的 催化作用, 这方面的工作有待进一步研究.

References

- Doshi, R.; Richards, V. L.; Carter, J. D.; Wang, X. P.; Michael, K. J. Electrochem. Soc., 1999, 146: 1273
- 2 Takeda, Y.; Kanno, R.; Noda, M.; Yamamoto, O. J. Electrochem. Soc., 1997, 134: 2656
- 3 Godickemerer, M.; Sasaki, K.; Gaukler, L. J.; Riese, I. Solid State Ionics, 1996, 86-88: 691
- 4 Tu, H. Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O. Solid State Ionics, 1997, 100: 283
- 5 Ishihara, T.; Honda, M.; Nishiguchi, H.; Takita, Y. Solid oxide fuel

cells V. In: Stimming, U.; Singhal, S.C.; Tagawa, H.; Lahnert, W. ed. The electrochemical society proceedings series. Pennington, NJ:1997, PV 97-40:301

- 6 Tu, H. Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O. Solid State Ionics, 1999, 117: 277
- 7 Ishihara, T.; Fukui, S.; Nishiguchi, H.; Takita, Y. J. Electrochem. Soc., 2002, 149: A823
- 8 Horita, T.; Yamaji, K.; Sakai, N.; Yokokawa, H.; Weber, A.; Ivers-Tiffee, E. Solid State Ionics, 2000, 138: 143
- Kostogloudis, G. C.; Ftikos, C.; Ahmad-Khanlou, A.; Naoumidis,
 A.; Stover, D. Solid State Ionics, 2000, 134: 127
- 10 Ullmann, H.; Trofimenko, N.; Tietz, F.; Stöver, D.; Ahmad-Khanlou, A. Solid State Ionics, 2000, 138: 79
- 11 Elshof, J. E.; Lanklorst, M. H. R.; Bouwnsmeeter, H. J. M.

J. Electrochem. Soc., 1997, 144: 1060

- 12 Elshof, J. E.; Lanklorst, M. H. R.; Bouwnsmeeter, H. J. M. Solid State Ionics, 1997, 99: 15
- Simmer, S. P.; Bonnett, J. F.; Canfield, N. L.; Meinhardt, K. D.;
 Shelton, J. P.; Sprenkle, V. L.; Stevenson, J. W. *J. Power Sources*, 2003, 113: 1
- Patrakeev, M. V.; Bahteeva, J. A.; Mitberg, E. B.; Leonidov, I. A.;
 Kozhevnikov, V. L.; Poeppelmeier, K. R. *J. Solid State Chemistry*,
 2003, 172: 219
- Stevenson, J. W.; Armstrong, T. R.; Carneim, R. D.; Pederson, L.
 R.; Weber, W. J. J. Electrochem. Soc., **1996**, **143**(9): 2722
- Tai, L. W.; Nasrallah, M. M.; Anderson, H. U.; Sparlin, D. M.;
 Sehlin, S. R. Solid State Ionics, 1995, 76: 273

Synthesis and Properties of $La_{0.5}RE_{0.3}Sr_{0.2}FeO_{3-\delta}$ (RE=Nd, Ce, Sm) System with Two Rare Earths for Cathodes^{*}

CHEN, Yong-Hong^{1,2} WEI, Yi-Jun² ZHONG, Hong-Hai¹ GAO, Jian-Feng¹ LIU, Xing-Qin¹ MENG, Guang-Yao¹ (¹Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026; ²Center of Experiment and Communication, Huainan Normal College, Huainan 232001)

Abstract Two rare earths composite oxides of $La_{05}RE_{03}Sr_{02}FeO_{3-\delta}$ (RE=Nd, Ce, Sm) with A-site doped Sr²⁺ samples were synthesized by Glycine-Nitrate processes (GNP). The formation process of the perovskite structure was analyzed by means of X-ray powder diffraction and TG-DSC. The relative density of the ceramics was measured by Archimedes method, and the electrical conductivity of the samples was studied by four-probe technique. The results show that the sample for RE=Nd presents a single perovskite-type phase with a cubic symmetry after sintering at 1200 °C for 2 h, while the samples with Ce doped showed a separated cubic phase of CeO₂ , and the specimen doped with Sm is a cubic perovskite-type phase accompanied by some faint impure peaks. The electrical conductivity of $La_{0.5}Nd_{0.3}Sr_{0.2}FeO_{3-\delta}(LNSF)$ sample obtained from being sintered at 1250 °C for 2 h was over 100 S · cm⁻¹, significantly higher than that of the $La_{0.5}Ce_{0.3}Sr_{0.2}FeO_{3-\delta}(LCSF)$ and $La_{0.5}Sm_{0.3}Sr_{0.2}FeO_{3-\delta}(LSSF)$ at the same conditions. The results indicate that $La_{0.5}Nd_{0.3}Sr_{0.2}FeO_{3-\delta}$ may be a suitable cathode material for intermediate temperature SOFC.

Keywords: La_{0.5}RE_{0.3}Sr_{0.2}FeO_{3- δ} (RE=Nd, Ce, Sm), SOFC, Perovskite-type, Cathodes

Received: April 21,2005; Revised: June 24,2005. Correspondent: LIU, Xing-Qin(E-mail: xqliu@ustc.edu.cn; Tel: 0551-3606249; Fax: 0551-3631760). *The Project Supported by NSF of Education Hall of Anhui Province(2004kj326)