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IRT models with relaxed assumptions in eRm: 
A manual-like instruction  

REINHOLD HATZINGER, & THOMAS RUSCH 1  

Abstract  
Linear logistic models with relaxed assumptions (LLRA) as introduced by Fischer (1974) are a 

flexible tool for the measurement of change for dichotomous or polytomous responses. As opposed to 
the Rasch model, assumptions on dimensionality of items, their mutual dependencies and the 
distribution of the latent trait in the population of subjects are relaxed. Conditional maximum likelihood 
estimation allows for inference about treatment, covariate or trend effect parameters without taking the 
subjects' latent trait values into account. In this paper we will show how LLRAs based on the LLTM, 
LRSM and LPCM can be used to answer various questions about the measurement of change and how 
they can be fitted in R using the eRm package. A number of small didactic examples is provided that 
can easily be used as templates for real data sets. All datafiles used in this paper are available from 
http://eRm.R-Forge.R-project.org/ 
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1. Introduction 
 
Linear logistic models with relaxed assumptions (LLRA; see, e.g., Fischer, 1974, 1977, 

1988) can be thought of as generalised Rasch models with multidimensional latent trait 
parameters where change is modelled as a function of treatment (main) effects, treatment 
interactions, and trend effects. These effects are incorporated into the design matrix by 
means of a linear decomposition of "virtual'' item parameters. Subsequently, we will 
therefore use the term LLRA for all such possible models characterised by different design 
matrices. Conditional Maximum Likelihood (CML) estimation (Anderson, 1970) allows for 
the separation of "structural" treatment effect parameters (parameters that account for the 
change over time that we are interested in) and "incidential" trait parameters (parameters that 
are not of interest and are conditioned out of the likelihood). Consequently, results about the 
structural effect parameters are completely independent of the multivariate distribution of 
trait parameters in the sample of subjects, which is consistent with the principle of specific 
objectivity (cf., e.g., Rasch, 1977). Relaxed assumptions mean that neither unidimensionality 
of the items nor distributional assumptions about the population of subjects are required (cf. 
Fischer, 1989). 

The LLRA has some very useful properties for the measurement of change, such as the 
ratio scale properties of the estimated effect parameters, η̂  (Fischer, 1995). It is therefore 
possible to assess the relative effectiveness of treatments (e.g. a treatment might be twice as 
effective). Furthermore, specific objectivity of the effect parameters allows for 
generalisability beyond the current experimental situation, which is desirable if treatments 
are to be compared in a competitive way. Moreover, the LLRA allows inference for a variety 
of situations such as  
– no change at all  
– no trend, treatment or interaction effects, respectively  
– assumptions about different dimensionality of an item set (e.g. how many dimensions do 

they measure)  
– efficacy of certain treatments or influence of certain covariates  
– generalisability of treatment effects over dimensions or subject groups  
– comparison of treatments  
– etc.  

 
For a more general discussion of Rasch models and their advantages and usage see, e.g., 

Kubinger (1989). 
Unfortunately, the wide range of applications for LLRAs has not yet been exploited. The 

usage of IRT models for the measurement of change seems to be focused on more restrictive, 
LLTM based procedures, e.g. Miceli et al. (2008). Still, we think that the relaxed assumption 
approach is a very promising and flexible way to measure change and should attract more 
attention. 

In this paper we restrict ourselves to describing how LLRAs can be fitted in R (R 
Development Core Team, 2008) using the eRm package (Mair and Hatzinger, 2008) (for a 
basic description of the eRm package see Mair and Hatzinger, 2007, or Poinstingl et al., 
2007). In Section 2 we discuss LLRAs for dichotomous responses with time effects (Section 
2.1) and time and treatment effects (Section 2.2) for two time points. The extension to more 
than two time points is given in Section 2.3). Section 3 describes LLRAs for polytomous 
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responses, including the Partial Credit approach (Masters, 1982; Section 3.1) for equal and 
different number of categories and the Rating Scale approach (Andrich, 1978; Section 3.2) 
for two or more time points, respectively. Additionally, an appendix briefly explaining the 
useful concept of Kronecker products is included. 

 
 

2. LLRA for dichotomous responses  
 
The most simple LLRA is a model for dichotomous responses at two time points, 1T  and 

2T . 
 

 1 1
exp( )( = 1| ) = ,

1 exp( )
vi

vi
vi

P X T
+

θ
θ

 (1) 

 

 2 2
exp( ) exp( )( = 1| ) = = ,

1 exp( ) 1 exp( )
vi vi vi

vi
vi vi vi

P X T
′ +
′+ + +

θ θ δ
θ θ δ

 (2) 

 
where viθ  is the location of subject v  on the i -th latent trait at 1T , and =vi vi vi′ −δ θ θ  is the 
amount of change of subject v  on this particular trait i . The vector of subject parameters 

1( , , )T
v vk…θ θ  characterises a subject on all traits simultaneously. There may be as many 

latent traits as items (multidimensionality) or items considered to measure the same latent 
trait may be grouped together, even up to unidimensional measurement. Additionally, the 
dependence structure of the viθ  does not have to be considered, because they are not part of 
the conditional likelihood function and therefore do not influence the estimation. In the 
following (without any loss of generality), we will assume each item to measure mutually 
exclusive traits (otherwise, some items would have to be grouped together). The flexibility 
of these models arises from the possibility to reparameterise viδ  as  
 
 = T

vi iδ ηw  (3) 
 

where iw  is a vector of covariate values for trait i , = 1, ,i k…  and h  is a vector of 
parameters, typically describing treatments or other covariate based groups, interactions 
between treatments, and trends, i.e.  

 
 

<
=vi vji ji i vji vli jli

j j l
q q q+ +∑ ∑δ λ τ ρ  (4) 

 
with vjiq  denoting dosage of treatments j  for trait i , jiλ  being the effect of the treatment 
j  on trait i , iτ  being a trend effect on trait i  and jliρ  the interaction effects of treatments 
j  and l  on trait i , = 1, ,i k… . This multidimensional formulation allows for any restriction 

concerning effects, such as generalisations of effects over different traits or indicators. 
When fitting such a model, a different data structure has to be used compared to 

unidimensional models assuming homogeneous items. The usual data structure is displayed 
in Table 1.  
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Table 1:  

Data structure for models with repeated measurements 
 

 Real Persons  1T    2T   
 1S    111 121 1 1kx x x…   112 122 1 2kx x x…  

2S    211 221 2 1kx x x…   212 222 1 2kx x x…  
   #   # 

nS    11 21 1n n nkx x x…   12 22 2n n nkx x x…  
 
 
In models with relaxed assumptions however, the data have to be rearranged such that 

each row consists of the responses to a particular item for all time points, as is portrayed in 
Table 2. 

 
 

Table 2:  
Modified data structure for models with relaxed assumptions 

 
 Virtual Persons  1T    2T   

 *
11S    111x    112x   
*
21S    211x    212x   

 #  #  # 
*
1nS    11nx    12nx   

*
12S    121x    122x   
*
22S    221x    222x   

 #  #  # 
*
2nS    21nx    22nx   

 #  #  # 
*
1kS    1 1kx    1 2kx   
*
2kS    2 1kx    2 2kx   

 #  #  # 
*
nkS    1nkx    2nkx   

 
 
In fact, this modified data matrix is a simplified version of the real data structure in 

LLRAs (which includes structurally missing observations for certain virtual items (cf. 
Fischer, 1995, p 163). However, for ease of presentation and since this structure corresponds 
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to the data structure used for input into Rasch model software (e.g., into eRm) we omit the 
more complicated representation. 

The particular form of the design matrix depends on the study design and hypotheses. 
We can mainly distinguish two types of design matrices. One type, where we just look for 
changes over time and the other type, where additional variables describing subjects are 
taken into account (these may be experimental conditions and/or observed characteristics 
such as gender).  

 
 

2.1 Time effects 
 
Restricting ourselves to two time points, the general form of the first type of design 

matrices emerges when we specify k  different trend parameters τ  for the k  items. 
 
 

Table 3:  
Design matrix for trend parameters for each item 

 
  1τ  2τ  "  kτ  

Item 1 – 1T       

Item 2 – 1T       
      

Item k  – 1T      

Item 1 – 2T   1       

Item 2 – 2T    1   

#     %   

Item k  – 2T     1 
 
 
When using the eRm package we need a further design structure - the item assignment. 

Since different real items have been answered by the same subject but are treated as being 
the same item answered by different virtual subjects (cf. Tables 1 and 2) we need an 
additional specifier to identify which virtual subject has responded to which real item. 
Recalling the modified data structure the item assignment vector is as in Table 4.  

 
 



R. Hatzinger, & T. Rusch 92 

Table 4: 
Modified data structure and item assignment vector 

 
Virtual Persons 1T  2T   Item Assignment 

*
11S  111x  112x   1 
*
21S  211x  212x   1 

#  #  #   #  
*
1nS  11nx  12nx   1 

*
12S  121x  122x   2 
*
22S  221x  222x   2 

#  #  #   #  
*
2nS  21nx  22nx   2 

#  #  #   #  
*
1kS  1 1kx  1 2kx   k  
*
2kS  2 1kx  2 2kx   k  

#  #  #   #  
*
nkS  1nkx  2nkx   k  

 
 
Example 1: 100 subjects have responded to 3 items at 2 occasions. We want to 

investigate if there is a change between 1T  and 2T . 
 
 
First the eRm package is loaded.  
 
> library(eRm) 
 
The data are given in the usual form in file llra_ex1.dat2 (each row corresponds to one 
person, cf. Table 1). 
 
> dat <- read.table("llra_ex1.dat", header = TRUE)  
 

                                                                                                                         
2 all data files are available from http://eRm.R-Forge.R-project.org/ 
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The first few lines of the data are  
 
> head(dat) 
 
 T1I1 T1I2 T1I3 T2I1 T2I2 T2I3 
1 0 1 1 1 0 1 
2 1 1 0 1 0 1  
3 1 0 0 1 0 1  
4 1 1 0 1 0 1  
5 1 0 1 1 1 1  
6 1 1 0 0 0 1 
 
To obtain the data structure that can be used for an LLRA we have to rearrange the data 

set to fit the form of Table 1. For example, we could use a command such as 
 
> data <- matrix(unlist(dat), nc = 2)  
 
The first few lines of the modified data matrix in data are  
 
> head(data)  
 
 [,1] [,2] 
[1,] 0 1  
[2,] 1 1  
[3,] 1 1  
[4,] 1 1  
[5,] 1 1  
[6,] 1 0  
 
Since R stores matrices columnwise, the ordering in data produced by the above matrix() 

command is: 

     number of (real)  number of (real) 
row  subject  item at 1T    item at 2T   
[1] 1 1 1 
[2]: 2 1 1 
#  #  #  #  
[n]: n  1 1 
[n+1]: 1 2 2 
#  #  #  #  
[2n]: n  2 2 
[2n+1]: 1 3 3 
#  #  #  #  
[(k-1)n+v]: v  k  k  
#  #  #  #  
[(k-1)n+n]: n  k  k  
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 Accordingly, the first 100 rows in data correspond to columns 1 and 4 of dat, the two 
columns which consist of the responses to (real) item 1 at times 1T  and 2T . The next 100 
rows correspond to columns 2 and 5 in dat, etc. To know which (real) item is in which row 
of the modified data matrix is crucial for setting up the item assignment vector properly. In 
fact, the ordering of the rows of the modified data matrix does not matter as long as the item 
assignment vector is correctly specified. 

We now define a model where we want to estimate 3 change parameters τ  (cf. Table 3), 
i.e., it is assumed that the amount of change is different for all items. This model can be 
estimated as an LPCM. To assign the (real) items to the appropriate rows of the design 
matrix we need the items assignment vector as discussed above  

 
> Igrps <- as.numeric(gl(3, 100, 300))  
 
and the design matrix as given in Table 3. An easy way to construct this design matrix is 

by using a Kronecker product (for some basics on Kronecker products (see A).  
 
> design.3 <- c(0, 1) %x% diag(3) 
> colnames(design.3) <- paste("TAU", 1:3, sep = "")  
 
The model is now fitted using the command  
 
> res.llra.3 <- LPCM(data, W = design.3, mpoints = 2, groupvec = Igrps,  
+ sum0 = FALSE)  
 
The result is  
 
> summary(res.llra.3)  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data, W = design.3, mpoints = 2, groupvec = Igrps, sum0 = 
FALSE) 
 
Conditional log-likelihood: -104.3815  
Number of iterations: 5  
Number of parameters: 3 
 
Basic Parameters (eta) with 0.95 CI:  
 Estimate Std. Error lower CI upper CI  
TAU1 1.050 0.311 0.441 1.658  
TAU2 -0.452 0.279 -0.999 0.095  
TAU3 -0.074 0.272 -0.608 0.460 
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Item Easiness Parameters (beta) with 0.95 CI:  
 Estimate Std. Error lower CI upper CI  
I1.c1 t1 g1 0.000 0.000 0.000 0.000  
I1.c1 t1 g2 0.000 0.000 0.000 0.000  
I1.c1 t1 g3 0.000 0.000 0.000 0.000  
I1.c1 t2 g1 1.050 0.311 0.441 1.658  
I1.c1 t2 g2 -0.452 0.279 -0.999 0.095  
I1.c1 t2 g3 -0.074 0.272 -0.608 0.460  

 
For models with two time points, the Basic Parameters (eta) give the log odds for the 

response pattern ratio (0,1)/(1,0) for each item group. The frequency tables for the three 
items (INDICES) at 1T  (V1) and 2T  (V2) are  

 
> ftab <- by(data, Igrps, table)  
> ftab  
 
INDICES: 1  
    V2  
V1  0 1 
 0 10 40 
 1 14 36  
––––––––––––––––––––––––––  
INDICES: 2 
    V2  
V1  0 1 
 0 31 21 
 1 33 15  
––––––––––––––––––––––––––  
INDICES: 3 
    V2  
V1  0 1 
 0 25 26 
 1 28 21  
 
For item 1, e.g., 10 subjects responded with 0 at both time points whereas 40 changed 

from response 0 to 1. The log odds for the response pattern ratio (0,1)/(1,0) for item 1 is  
 
> cat("log(", ftab[[1]][1, 2], "/", ftab[[1]][2, 1], ") = ",  
+ log(ftab[[1]][1, 2]/ftab[[1]][2, 1]), "") 
 
log( 40 / 14 ) = 1.049822  
 

which corresponds to the value given for the estimate TAU1. 
To continue the analysis, we alternatively may specify a model with just one change 

parameter for the items, i.e., the trend is supposed to generalise over all items. A different 
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design matrix is needed. In general, if trend effects are hypothesised to be the same for some 
items the corresponding columns in the design matrix have to be collapsed.  

 
> design.0 <- as.matrix(rowSums(design.3))  
> colnames(design.0) <- "TAU1"  
> design.0  
 
 TAU1 
[1,] 0  
[2,] 0  
[3,] 0  
[4,] 1  
[5,] 1  
[6,] 1  
 
The model that generalises the trend over all items is 
 
> res.llra.0 <- LPCM(data, W = design.0, mpoints = 2, groupvec = Igrps,  
+ sum0 = F)  
> print(res.llra.0)  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data, W = design.0, mpoints = 2, groupvec = Igrps, sum0 = F) 
 
Conditional log-likelihood: -111.845  
Number of iterations: 3  
Number of parameters: 1 
 
Basic Parameters eta:  
 TAU1  
Estimate 0.1484195  
Std.Err 0.1575683  
 
To compare these two models we can perform a likelihood ratio test. Since we will need 

such calculations again, we define a little function lrtst().  
 
> lrtst <- function(model.1, model.2) { 
+ lrstat <- 2 * abs(model.1$loglik – model.2$loglik)  
+ df <- abs(model.1$npar – model.2$npar)  
+ prb <- round(1 - pchisq(lrstat, df), digits = 3)  
+ cat("Likelihood ratio statistic:", lrstat, "df =",  
+ df, "p =", prb, "")  
+ } 
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Applying it to our two models yields  
 
> lrtst(res.llra.0, res.llra.3)  
 
Likelihood ratio statistic: 14.92703 df = 2 p = 0.001  
 
The result indicates that the trend is not the same for all items. However, examining the 

summary for the output object res.llra.3 we can see that the confidence intervals for TAU2 
and TAU3 overlap. We could therefore test for 2 3=τ τ . This is simply achieved by again 
redefining the design matrix (i.e., by collapsing columns 2 and 3 of design.3) and refitting 
the model  

 
> design.2 <- cbind(design.3[, 1], rowSums(design.3[, 2:3]))  
> colnames(design.2) <- c("TAU1", "TAU23")  
> design.2  
 
 TAU1 TAU23  
[1,] 0 0  
[2,] 0 0  
[3,] 0 0  
[4,] 1 0  
[5,] 0 1  
[6,] 0 1  
 
> res.llra.2 <- LPCM(data, W = design.2, mpoints = 2, groupvec = Igrps,  
+ sum0 = FALSE)  
> res.llra.2  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data, W = design.2, mpoints = 2, groupvec = Igrps, sum0 = 
FALSE) 
 
Conditional log-likelihood: -104.8531  
Number of iterations: 5  
Number of parameters: 2 
 
Basic Parameters eta:  
 TAU1 TAU23  
Estimate 1.0498235 -0.2607262  
Std.Err 0.3105375 0.1940865  
 
> lrtst(res.llra.2, res.llra.3)  
 
Likelihood ratio statistic: 0.943219 df = 1 p = 0.331  
 



R. Hatzinger, & T. Rusch 98 

The LR-test statistic comparing the model with separate trend parameters for each item 
(res.llra.3) and the model with a common trend parameter for items 2 and 3 (res.llra.2) is 
not significant. We can thus conclude that the amount of change is the same for item 2 and 
item 3 but different for item 1. However, there seems to be no change at all for items 2 and 3. 
We can test this hypothesis by omitting columns 2 and 3 from the design matrix.  

 
> design.1 <- as.matrix(design.3[, 1])  
> res.llra.1 <- LPCM(data, W = design.1, mpoints = 2, groupvec = Igrps,  
+ sum0 = FALSE)  
> res.llra.1  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data, W = design.1, mpoints = 2, groupvec = Igrps, sum0 = 
FALSE) 
 
Conditional log-likelihood: -105.7631  
Number of iterations: 5  
Number of parameters: 1 
 
Basic Parameters eta:  
 eta 1  
Estimate 1.0498216  
Std.Err 0.3105373  
 
> lrtst(res.llra.1, res.llra.2)  
 
Likelihood ratio statistic: 1.819932 df = 1 p = 0.177  
 
The LR-test supports the hypothesis of no change for items 2 and 3.  
 
 

2.2 Time and treatment effects 
 
We now want to estimate the effect of different treatments or the effect of certain 

covariates over time additionally to the (general) time effects (trends). The introduction of 
such treatment effects is straightforward. Suppose we have a treatment and a control group 
(or groups characterised by some categorical variable) and we want to estimate different 
treatment (or other group) effects ijλ  and different trends iτ  for each item i  (here we 
assume only two groups and therefore =ij iλ λ ). The design matrix where the rows are 
ordered according to the requirements of the eRm package is given in Table 5.  

Other specific hypotheses (like generalisation of treatment or trend effects over several 
items) are obtained by collapsing appropriate columns in analogy to Example 1.  
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Table 5:  
Design matrix for different treatment and trend parameters for each item for a treatment group 

(TG) and a control group (CG). 
 

    1λ   2λ   "   kλ   1τ   2τ   "   kτ  
 1T   Item 1 – TG                   
 Item 1 – CG                   
 Item 2 – TG                   
 Item 2 – CG                   
 #                 
 Item k  – TG                  
 Item k  – CG                  
          

2T   Item 1 – TG    1         1        
 Item 1 – CG            1        
 Item 2 – TG      1        1      
 Item 2 – CG              1      
 #      #         #    
 Item k  – TG         1         1  
 Item k  – CG                 1  

 
 

General remark concerning the construction of the rows of the design matrix: The 
slowest index is the index of time points. Nested within time points are the item indices, and 
within items the (treatment) groups indices. The fastest index corresponds to response 
categories in case of polytomous items. 

 
( )Time Points Items Treatment Groups Categories  

 
 
Example 2 (Example 1 continued): Suppose the first 50 subjects received a treatment 

whereas the second 50 did not (control group). We want to additionally estimate the effect of 
the treatment on each item separately.  

 
We first have to set up the design matrix (cf. Table 5). This can easily be done by 

generating a zero matrix with appropriate dimensions  
 
> design4 <- (matrix(0, nrow = 12, ncol = 6)) 
 

and then use the data editor and insert 1s in the appropriate positions.  
 



R. Hatzinger, & T. Rusch 100 

> fix(design4) 
 
Alternatively, we could use the design matrix design.3 from above (cf. Table 3) and 

apply Kronecker products (see Appendix). 
 

> design4 <- cbind(design.3 %x% c(1, 0), design.3 %x% c(1, 1))  
> design4 
 
 [,1] [,2] [,3] [,4] [,5] [,6]  
[1,] 0 0 0 0 0 0  
[2,] 0 0 0 0 0 0  
[3,] 0 0 0 0 0 0  
[4,] 0 0 0 0 0 0  
[5,] 0 0 0 0 0 0  
[6,] 0 0 0 0 0 0  
[7,] 1 0 0 1 0 0  
[8,] 0 0 0 1 0 0  
[9,] 0 1 0 0 1 0  
[10,] 0 0 0 0 1 0  
[11,] 0 0 1 0 0 1  
[12,] 0 0 0 0 0 1  
 
We again need an item assignment vector, but now we have to take account of the 

treatment groups, i.e., we have to identify the subjects in a certain treatment group who 
responded to a certain item. This new assignment is therefore a combination of treatment 
group ×  items. In general, a separate group has to be defined for each such (treatment group 
×  item) combination. Please note, that the assignment vector determines which reponses 
belong together, i.e., it has the same length as the (modified) data matrix and must be 
specified such that each row is assigned to the corresponding (treatment group ×  item) 
combination. Table 6 gives an illustration. 

In our example we need 6 assignment groups (treatment/control and 3 items) each of size 
50. Having defined the assignment vector we fit the model with treatment and trend 
parameters for each item. 

 
> grps6 <- as.numeric(gl(6, 50, 300))  
> res.llra.4 <- LPCM(data, W = design4, mpoints = 2, groupvec = grps6,  
+ sum0 = F)  
> summary(res.llra.4)  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data, W = design4, mpoints = 2, groupvec = grps6, sum0 = F) 
 
Conditional log-likelihood: -94.49457  
Number of iterations: 16  
Number of parameters: 6 
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Table 6:  
Data structure for designs with treatments  

 
     Virtual Persons  1T    2T    Assignment Group  

 Item 1 TG  *
( )11TGS    ( )111TGx    ( )112TGx  1 

   #  #  #  #  
    *

( ) 1TG nS    ( ) 11TG nx    ( ) 12TG nx  1 

 CG  *
( )11CGS    ( )111CGx    ( )112CGx  2 

   #  #  #  #  
    *

( ) 1CG nS    ( ) 11CG nx    ( ) 12CG nx  2 

 Item 2 TG  *
( )12TGS    ( )121TGx    ( )122TGx  3 

   #  #  #  #  
    *

( ) 2TG nS    ( ) 21TG nx    ( ) 22TG nx  3 

 CG  *
( )12CGS    ( )121CGx    ( )122CGx  4 

   #  #  #  #  
    *

( ) 2CG nS    ( )211CGx    ( ) 12CG nx  4 

   #  #  #  #  
Item k  TG  *

( )1TG kS    ( )1 1TG kx    ( )1 2TG kx  2 1k −  

   #  #  #  #  
    *

( )TG nkS    ( ) 1TG nkx    ( ) 2TG nkx  2 1k −  

 CG  *
( )1CG kS    ( )1 1CG kx    ( )1 2CG kx  2k  

   #  #  #  #  
    *

( )CG nkS    ( ) 1CG nkx    ( ) 2CG nkx  2k  

 
 

Basic Parameters (eta) with 0.95 CI:  
 Estimate Std. Error lower CI upper CI  
eta 1 1.892 0.827 0.271 3.512  
eta 2 -0.791 0.571 -1.910 0.328  
eta 3 1.910 0.609 0.716 3.103  
eta 4 0.460 0.369 -0.263 1.182  
eta 5 -0.074 0.385 -0.829 0.681  
eta 6 -0.965 0.415 -1.779 -0.151 
 
Item Easiness Parameters (beta) with 0.95 CI:  
 Estimate Std. Error lower CI upper CI  
I1.c1 t1 g1 0.000 0.000 0.000 0.000  
I1.c1 t1 g2 0.000 0.000 0.000 0.000  
I1.c1 t1 g3 0.000 0.000 0.000 0.000  
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I1.c1 t1 g4 0.000 0.000 0.000 0.000  
I1.c1 t1 g5 0.000 0.000 0.000 0.000  
I1.c1 t1 g6 0.000 0.000 0.000 0.000  
I1.c1 t2 g1 2.351 0.740 0.901 3.802  
I1.c1 t2 g2 0.460 0.369 -0.263 1.182  
I1.c1 t2 g3 -0.865 0.421 -1.691 -0.039  
I1.c1 t2 g4 -0.074 0.385 -0.829 0.681  
I1.c1 t2 g5 0.944 0.445 0.071 1.818  
I1.c1 t2 g6 -0.965 0.415 -1.779 -0.151  
 
Care has to be taken when interpreting the Basic Parameters (eta) since LLRA models 

are not hierarchical, i.e., the treatment effects are always nested within the time effects. For 
models with two time points and treatment groups, the Item Parameters give the log odds 
for the response pattern ratio (0,1)/(1,0) for each (item ×  treatment)-group. As can be seen 
from the output above (see Basic Parameters (eta), the treatment effect for the first item eta 
1 (1.8918) is the difference of the log odds (i.e., the log odds-ratio), 2T  vs. 1T , for the 
treatment group (2.3514) and the control group (0.4595) for item 1. 

 
> cat(res.llra.4$betapar[7:8], "\n") 
 
2.351374 0.4595322  
 
> cat(res.llra.4$betapar[7] - res.llra.4$betapar[8], "\n") 
 
1.891842  
 
Further hypotheses, e.g., generalisability of treatment effects over several items etc., can 

again be specified by collapsing appropriate columns of the design matrix. 
 
 
Example 3 (Example 1 continued): We now suspect that the treatment effects are the 

same for items 1 and 3 (as suggested by the estimates from model res.llra.4), i.e., λ1 = λ3. 
 
The design matrix is obtained by collapsing columns 1 and 3 of design4  
 
> design4a <-cbind(design4[, 1] + design4[, 3], design4[,  
+ c(2, 4:6)])  
> design4a  
 
 [,1] [,2] [,3] [,4] [,5]  
[1,] 0 0 0 0 0  
[2,] 0 0 0 0 0  
[3,] 0 0 0 0 0  
[4,] 0 0 0 0 0  
[5,] 0 0 0 0 0  
[6,] 0 0 0 0 0  



IRT models with relaxed assumptions in eRm: A manual-like instruction 103 

[7,] 1 0 1 0 0  
[8,] 0 0 1 0 0  
[9,] 0 1 0 1 0  
[10,] 0 0 0 1 0  
[11,] 1 0 0 0 1  
[12,] 0 0 0 0 1  
 
Fitting the model yields  
 
>res.llra.4a <-LPCM(data, W = design4a, mpoints = 2,  
+ groupvec = grps6, sum0 = F)  
> res.llra.4a  
 
Results of LPCM estimation:  
 
Call: LPCM(X = data, W= design4a, mpoints = 2, groupvec = grps6, sum0 = F)  
 
Conditional log-likelihood: -94.49471  
Number of iterations: 12  
Number of parameters: 5  
 
Basic Parameters eta:  
 eta 1 eta 2 eta 3 eta 4 eta 5 
Estimate 1.9033262 -0.7908937 0.4572550 -0.07410331 -0.9621958 
Std.Err 0.4907199 0.5709421 0.3441605 0.38516357 0.3798782 
 
and the LR-test  
 
>lrtst(res.llra.4a, res.llra.4)  
 
Likelihood ratio statistic: 0.0002967158 df = 1p = 0.986  
 
supports the simplification.  
 
 

2.3 More than two time points  
 
Basically, everything mentioned so far also applies to models for more than two 

measurement points. There are, however, more possible hypotheses and therefore more 
different ways to specify the design matrix. Moreover, the parameters are no longer 
interpretable as simple log odds or log odds ratios but should be (more generally) considered 
as reflecting the amount of change on the latent trait.  

To account for more than two time points, the LLRA as in (1) and (2) can be straight-
fowardly generalised to any number of time points t, by 
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 exp( )( = 1| ) = ,
1 exp( )

vi vti
vit t

vi vti
P X T +

+ +
θ δ
θ δ

 (5) 

 
with  
 

 = T
vti itδ ηw  (6) 

 
where itw  is a vector of covariate values (e.g. dosages or treatment groups) for trait i  up to 
time point t , = 1, ,i k…  and h  is the same vector of parameters as in (3). 

The data structure for fitting these models is basically the same as in Table 1, the only 
difference is to add additional columns for each time point. 

 
 
Example 4: To illustrate a model with more than two repeated observations we shall use 

data from 100 subjects who have responded to 2 items at 3 occasions. The data are again 
given in usual form (each row corresponds to one real person).  

 
We read the data from file llra_ex2.dat and inspect the first few lines  
 
> dat2 <- read.table("llra_ex2.dat", header = TRUE)  
> head(dat2)  
 
 T1I1 T1I2 T2I1 T2I2 T3I1 T3I2  
1 0 0 1 1 1 1  
2 1 0 1 0 0 0  
3 0 0 1 0 0 1  
4 0 1 1 1 0 1  
5 0 0 1 1 0 0  
6 0 0 1 1 0 1  
 
For LLRA analysis we again have to convert the data. 
 
> data2 <- matrix(unlist(dat2), nc = 3)  
> dim(data2)  
 
[1] 200 3  
 
The dimension is 200 ×  3, i.e., there are 200 virtual subjects having responded to 3 

virtual items. The first 100 lines correspond to the first real item, the other 100 lines to the 
second. 

We first consider the hypothesis of different time effects for the items, where different 
amounts of change occur between timepoints 1T  and 2T , and 1T  and 3T . According to the 
rule 

 
( )Time Points Items Treatment Groups Categories  
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we set up the design matrix as given in Table 7 and the assignment vector (for the two 
items), e.g., using the commands 

 
> idx <- cbind(c(3, 5, 4, 6), 1:4)  
> dsgn4 <- matrix(0, 6, 4)  
> dsgn4[idx] <- 1  
> I2grps <- as.numeric(gl(2, 100))  
 

and fit the model  
 

> res2.llra.4 <- LPCM(data2, dsgn4, mpoints = 3, groupvec = I2grps)  
> res2.llra.4  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data2, W = dsgn4, mpoints = 3, groupvec = I2grps) 
 
Conditional log-likelihood: -97.5181  
Number of iterations: 13  
Number of parameters: 4 
 
Basic Parameters eta:  
 eta 1 eta 2 eta 3 eta 4  
Estimate 2.5535969 -1.267079e-06 1.8807291 3.0667937  
Std.Err 0.4029427 3.751091e-01 0.4237687 0.4525402  
 
The estimates show that for item 1 there is a significant change between 1T  and 2T  (eta 

1) but no change between 1T  and 3T  (eta 2). For item 2 the picture is different. Here, the 
trend between 1T  and 2T  (eta 3) seems to continue up to 3T . The frequencies and the 
proportions of the item responses using the original data reflect this pattern. 

 
Table 7:  

Design matrix for different trend parameters for the items i  between 1T  and 2T  ( 2 1t t
i
−τ ), and 

between 1T  and 3T  ( 3 1t t
i
−τ ). 

 
     2 1

1
t t−τ   3 1

1
t t−τ   2 1

2
t t−τ   3 1

2
t t−τ  

 1T  Item 1         

 Item 2         

2T  Item 1  1        

 Item 2      1   

3T  Item 1    1     

 Item 2        1  
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> tab <- apply(dat2, 2, table)  
> tab  
 
 T1I1 T1I2 T2I1 T2I2 T3I1 T3I2  
0 77 87 19 55 77 27 
1 23 13 81 45 23 73  
 
> proportions <- tab[2, ]/colSums(tab)  
> proportions[c(1, 3, 5)]  
 
T1I1 T2I1 T3I1  
0.23 0.81 0.23  
 
> proportions[c(2, 4, 6)]  
 
T1I2 T2I2 T3I2  
0.13 0.45 0.73  
 
We could therefore try to simplify the model by introducing a linear trend for item 2 on 

the latent trait. Instead of two design columns for item 2 the whole design matrix is then  
 
> dsgn3 <- cbind(dsgn4[, 1:2], c(0, 0, 0, 1, 0, 2))  
> dsgn3 
 
 [,1] [,2] [,3]  
[1,] 0 0 0  
[2,] 0 0 0  
[3,] 1 0 0  
[4,] 0 0 1  
[5,] 0 1 0  
[6,] 0 0 2  
 
Fitting this models and testing if the simplification is admissible yields 
 
> res2.llra.3 <- LPCM(data2, dsgn3, mpoints = 3, groupvec = I2grps)  
> res2.llra.3  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data2, W = dsgn3, mpoints = 3, groupvec = I2grps) 
 
Conditional log-likelihood: -98.20308  
Number of iterations: 12  
Number of parameters: 3 
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Basic Parameters eta:  
 eta 1 eta 2 eta 3  
Estimate 2.5535957 -4.460496e-06 1.4787503  
Std.Err 0.4029424 3.751083e-01 0.2125844  
 
> lrtst(res2.llra.4, res2.llra.3)  
 
Likelihood ratio statistic: 1.369966 df = 1 p = 0.242  
 
We conclude that for item 1 the amount of change towards higher probability of 

responses in category 1 increases between 1T  and 2T , but at 3T  decreases back to the same 
level as at 1T . For item 2, however, we can observe a positive continuing trend over all three 
time points. 

 
 

3. LLRA for polytomous responses 
 
The same ideas can also be used for the analysis of polytomous items where the number 

of categories and the category distances may be the same for all items (RSM) or different 
(PCM). The increased complexity of the models is reflected in a somewhat more 
sophisticated setup of the design matrix. However, all basic rules as discussed in the 
previous section on dichotomous responses still apply. We can even use the structure of the 
design matrices discussed so far. The main difference concerns the inclusion of the 
polytomous response categories.  

 
 

3.1 The partial credit approach 
 
For two time points, the model is  
 

 1 1

=0

exp( )( = 1| ) = ,
exp( )

vi ih
vih mi

vi il
l

hP X T
l

+

+∑

θ ω

θ ω
 (7) 

 

 2 2

=0 =0

exp( ) exp( ( ) )( = 1| ) = = ,
exp( ) exp( )

vi ih vi vi ih
vih m mi i

vi il vi vi il
l l

h hP X T
l l

′ + + +

′ + + +∑ ∑

θ ω θ δ ω

θ ω θ δ ω
 (8) 

 
where the parameters are defined as in (1), (2), and (3), h  denotes the h th response 
category ( = 0, , ih m… ), 1im +  is the number of categories for item i , and ihω  is the 
category parameter for item i . 

Since in all models the first category is set to zero we always have to consider only im  
response categories (in case of dichotomous models there is only one category left being 



R. Hatzinger, & T. Rusch 108 

considered, = = 1im m , and therefore there was no need to include the categories in the 
design matrices so far). 

 
 

3.1.1 All items with equal number of response categories 
 
As an example, we specify a design matrix analogous to Table 5. We have a treatment 

and a control group and want to estimate a treatment effect iλ  and a trend effect iτ  for each 
item i . The items have 4 response categories ( = 0, ,3h … ). The corresponding design matrix 
is given in Table 8. 

The comparison of Tables 5 and 8 shows two main differences. First of all we have to 
include category parameters ω  which are normalised such that 0 1= = 0i iω ω  to ensure 
estimability3. Secondly, when specifying treatment and trend effects the categories must also 
be taken into account, since now the general change to be modelled is vihδ , cf. (7) and (2). 
Since the first category is set equal to zero ( = 0h ) it is used as a baseline. The h  values 
reflect how often the subjects need to show "effort'' to achieve a score higher than 0. For 
example, to score 3 instead of 0, the subjects have to pass the scores of 0, 1, and 2. Thus, 
each entry for the λ s and the τ s in Table 5 is expanded for the categories, i.e. 1 to im , in 
Table 8. The amount of "effort'' needed to change from one category ( 1h − ) to the next ( h ) 
for item i  is reflected by the values of ihω . 

If there are more than two time points, the specifications follow those of Section 2.3. 
However, a main difference is that entries which would have been used in the design for a 
dichotomous model have to be multiplied by the category number (1 to im ). For instance, 
the entry 2 in dsgn3 on page 106 specifying the linear trend at 3T  for item 2 would result in 
2 4 6 instead of 1 2 3 (cf. Example 3). 

To complete the definition of design structures for fitting such models in eRm, again an 
item assignment vector has to be supplied. The specification is the same as described in 
Section 2.3. 

 
 
 
 
 
 
 
 
 

                                                                                                                         
3 Each of the latent dimensions in the model is measured by the same real item i  repeatedly presented to 
subjects (if we do not assume generalisation of certain effects over more than one item). Therefore the number 
of response categories is the same for all t  virtual items representing the corresponding latent dimension i  
(in fact, t  repeated presentations of the same real item t ). It is therefore natural to assume the same category 
distances for the real item i  over all t  measurement points (rating scale assumption within one real item). 
Consequently, the category parameters are normalised such that 0 1= = 0i iω ω . In principle, we could specify 
different thresholds over the t  measurement points. The number of parameters, however, would increase 
dramatically. 
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Table 8:  
Design matrix for different treatment and trend parameters for each item for a treatment group 

(TG) and a control group (CG) 
 

         1λ  2λ  3λ  1τ  2τ  3τ  12ω  13ω  22ω  23ω  32ω  33ω  
 T1  Item 1  TG Cat 1                         

     Cat 2              1           
     Cat 3                1         
    CG Cat 1                         
     Cat 2              1           
     Cat 3                1         
  Item 2  TG Cat 1                         
     Cat 2                  1       
     Cat 3                    1     
    CG Cat 1                         
     Cat 2                  1       
     Cat 3                    1     
  Item 3  TG Cat 1                         
     Cat 2                      1   
     Cat 3                        1 
    CG Cat 1                         
     Cat 2                      1   
     Cat 3                        1 

 T2  Item 1  TG Cat 1  1      1                 
     Cat 2  2      2      1           
     Cat 3  3      3        1         
    CG Cat 1        1                 
     Cat 2        2      1           
     Cat 3        3        1         
  Item 2  TG Cat 1    1      1               
     Cat 2    2      2        1       
     Cat 3    3      3          1     
    CG  Cat 1          1               
     Cat 2          2        1       
     Cat 3          3          1     
  Item 3  TG Cat 1      1      1             
     Cat 2      2      2          1   
     Cat 3      3      3            1 
    CG Cat 1            1             
     Cat 2            2          1   
     Cat 3            3            1 
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Example 5: A treatment group ( = 30n ) and a control group ( = 30n ) have responded to 
3 items (each with 4 response categories) at 2 time points. We want to estimate a trend effect 
and a treatment effect for each item.  

 
The commands for reading the data (from file llra_ex3.dat) and modify them for an 

LLRA structure are 
 
> dat3 <- read.table("llra_ex3.dat")  
> data3 <- matrix(unlist(dat3), nc = 2)  
 
The design matrix can either be specified using a null matrix (filled with 0s) with 

appropriate dimension and fix() to enter the corresponding numbers, or to piece it together 
from some submatrices. We will illustrate the latter method since it is easier for larger design 
matrices. We start defining a pseudodesign for treatment and time effects for 2T ,  

 
> pseudodes <- matrix(c(1, 0, 1, 1), 2, 2)  
> rownames(pseudodes) <- c("TreatGroup", "CtrlGroup")  
> colnames(pseudodes) <- c("Treatment", "Trend")  
> pseudodes  
 
 Treatment Trend Treat 
Group 1 1  
CtrlGroup 0 1  
 
Then we use a diagonal matrix representing the items, apply a Kronecker product to 

expand the pseudodesign,  
 
> des0 <- diag(3) %x% pseudodes 
 
and rearrange the columns for readability  
 
> des0 <- des0[, c(1, 3, 5, 2, 4, 6)]  
> effnam <- c("TreatEff1", "TreatEff2", "TreatEff3", "TAU1",  
+ "TAU2", "TAU3")  
> colnames(des0) <- effnam  
> des0  
 
 TreatEff1 TreatEff2 TreatEff3 TAU1 TAU2 TAU3 
[1,] 1 0 0 1 0 0  
[2,] 0 0 0 1 0 0  
[3,] 0 1 0 0 1 0  
[4,] 0 0 0 0 1 0  
[5,] 0 0 1 0 0 1  
[6,] 0 0 0 0 0 1  
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This is the treatment and trend effect structure for 2T . Since at 1T  all effects are at their 
baseline, the structure for 1T  is simply a null matrix of the same dimension as des0 for 2T . 
Accordingly, we can use  

 
> des0 <- c(0, 1)  
 

to obtain the design which would be used for a dichotomous model (cf. Example 2). Next we 
have to introduce the categories.  
 

> des1 <- des0  
 

This completes the setup for the treatment and trend effects. For polytomous models we 
additionally need covariates for the category parameters, which may be obtained in a similar 
way  

 
> c0 <- matrix(c(0, 1, 0, 0, 0, 1), 3, 2)  
> c1 <- c(1, 1)  
> c2 <- diag(3)  
 
Putting everything together yields the design matrix as shown in Table 8.  
 
> des2 <- cbind(des1, rbind(c2, c2))  
> colnames(des2) <- c(effnam, "C1.2", "C1.3", "C2.2", "C2.3", "C3.2", "C3.3") 
 
Finally, we need the assignment vector (2 groups ×  3 items)  
 
> grpspoly <- as.numeric(gl(6, 30))  
 
The model is  
 
> res.lpcm <- LPCM(data3, des2, mpoints = 2, groupvec = grpspoly)  
> res.lpcm  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data3, W = des2, mpoints = 2, groupvec = grpspoly) 
 
Conditional log-likelihood: -132.6720  
Number of iterations: 43  
Number of parameters: 12 
 
Basic Parameters eta:  
 TreatEff1 TreatEff2 TreatEff3 TAU1 TAU2 TAU3 
Estimate 1.4689254 -0.7297481 0.4609431 0.2501465 1.5374481 1.311026 
Std.Err 0.5812815 0.4797781 0.5008556 0.3572245 0.4241286 0.420396 
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 C1.2 C1.3 C2.2 C2.3 C3.2  
 
Estimate -1.2678423 -4.163966 -1.194317 -3.3847270 -1.6196304  
Std.Err 0.4841956 1.111025 0.469731 0.9935174 0.5243751  
 C3.3  
Estimate -4.377936  
Std.Err 1.067895  
 
Inspection of the parameter estimates shows a significant positive trend for items 2 and 3, 

the respondents tend to choose higher categories at 2T  compared to 1T . A treatment effect 
can only be observed for item 1. 

Once again, hypotheses about generalisability of trend or treatment effects can be 
investigated by collapsing the appropriate columns, fitting these models and using the 
likelihood ratio test. 

 
 

3.1.2 Items with different number of response categories 
 
With the partial credit (7) approach it is also possible to estimate trend, treatment and 

category effects if the number of categories differ across items. In Example 4 all items had 
the same number of categories, but it is possible to simultaneously analyse items with 
different numbers of categories, for example, a questionnaire with dichotomous and 
polytomous items. 

 
 
Example 6: A treatment group ( = 30n ) and a control group ( = 30n ) have responded to 

3 items at 2 time points. Item 1 has 3 categories, item 2 is dichotomous and item 3 has 4 
categories. We want to estimate a trend effect and a treatment effect for each item.  

 
The commands for reading the data (from file llra_ex3_a.dat) and rearrange them for an 

LLRA structure are 
 
> dat3a <- read.table("llra_ex3_a.dat")  
> data3a <- matrix(unlist(dat3a), nc = 2)  
 
These data are a modified version of the data used in the previous example. The data for 

item 3 remain the same but the data for the other two items have been altered such that the 
higher categories have been merged into one. Specifically, for item 1, category 2 contains all 
category 2 and 3 responses from the original data and for item 2, category 1 contains all non-
zero categories. Again there are several ways to set up the design matrix. Either by defining 
a null matrix of appropriate dimensions and by using fix() to enter the corresponding 
numbers or to build it up from some submatrices. 

The easiest way to do it is to use the design matrix from Example 4 and modify it 
accordingly. This is again the (summarised) code to build up the design matrix with the same 
number of categories for all items (as previously discussed in Example 4), now stored into 
des3. 
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> pseudodes <- matrix(c(1, 0, 1, 1), 2, 2)  
> rownames(pseudodes) <- c("TreatGroup", "CtrlGroup")  
> colnames(pseudodes) <- c("Treatment", "Trend")  
> des0 <- diag(3)  
> des0 <- des0[, c(1, 3, 5, 2, 4, 6)]  
> effnam <- c("TreatEff1", "TreatEff2", "TreatEff3", "TAU1", "TAU2", "TAU3")  
> colnames(des0) <- effnam  
> des0 <- c(0, 1)  
> des1 <- des0  
> c0 <- matrix(c(0, 1, 0, 0, 0, 1), 3, 2)  
> c1 <- c(1, 1) 
> c2 <- diag(3)  
> des3 <- cbind(des1, rbind(c2, c2))  
> colnames(des3) <- c(effnam, "C1.2", "C1.3", "C2.2", "C2.3", "C3.2", "C3.3")  
 
Consider a design matrix W for items with the same number of categories, and a design 

matrix W *  for items with different number of categories. If W is such that the number of 
categories is the same as for the item(s) with the maximal number of categories in W * , then 
the dimension of W must be larger than W * . To obtain W *  from W the columns that 
represent the nonexisting categories in W *  must be deleted from W. For our examples, W 
relates to the design matrix des2 from Example 4 and W *  to the design matrix for Example 
5. We delete the columns corresponding to the superfluous category parameters to ensure 
full column rank 

 
> des3a <- des3[, -(8:10)]  
 
Actually, the corresponding rows should be deleted as well. However, when using eRm 

for LLRAs it is not possible (for technical reasons) to delete these rows from the design 
matrix W (as would be done if a simple PCM was used for scale analysis). The number of 
rows of the design matrix must be the same in both cases. Instead of deletion, the 
superfluous category rows are filled with 0s. 

 
> des3a[c(3, 6, 8, 9, 11, 12, 21, 24, 26, 27, 29, 30), ] <- 0  
 
This is the complete setup for the design matrix. It is important to keep in mind that a 

design matrix with equal number of categories for every item has to be set up first and that 
this number must be the maximum number of item categories. 

Finally, we once more need the item assignment vector (which is the same for Example 5 
and Example 6)  

 
> grpspoly <- as.numeric(gl(6, 30))  
 
The model is fitted by  
 
> res.lpcm2 <- LPCM(data3a, des3a, mpoints = 2, groupvec = grpspoly)  
> res.lpcm2  



R. Hatzinger, & T. Rusch 114 

 
Results of LPCM estimation: 
 
Call: LPCM(X = data3a, W = des3a, mpoints = 2, groupvec = grpspoly) 
Conditional log-likelihood: -101.261  
Number of iterations: 32  
Number of parameters: 9 
 
Basic Parameters eta:  
 TreatEff1 TreatEff2 TreatEff3 TAU1 TAU2 
Estimate 1.3750292 -0.4448694 0.4609519 0.5751396 3.1237565 
Std.Err 0.5481639 0.9551232 0.5008556 0.3110730 0.7340798 
 TAU3 C1.2 C3.2 C3.3  
Estimate 1.3110184 -0.03226568 -1.6196293 -4.377925  
Std.Err 0.4203942 0.40979976 0.5243734 1.067891  
 
Compared to the results of Example 4, the parameter estimates still show significant 

positive trends for items 2 and 3, the respondents tend to choose higher categories at 2T  than 
at 1T . A treatment effect can again only be observed for item 1. It should be noted that the 
estimates for item 3 do not really change, because it was the item that had the same number 
of categories as in Example 4. 

Again, results for specific hypotheses on generalisability of treatment or trend effects 
over several items are obtained by collapsing appropriate columns and fitting that model. 
Another possible simplification concerns the scaling of the categories. This is the topic of the 
next section. 

 
 

3.2 The rating scale approach 
 
If we assume the category distances to be the same across all items (equidistant scoring), 

then model (7) for 2T  simplifies to 
 

 2 2

=0

exp( ( ) )( = 1| ) = ,
exp( )

vi vi h
vih mi

vi vi l
l

hP X T
l

+ +

+ +∑

θ δ ω

θ δ ω
 (9) 

 
where now =ih hω ω  for all items. All other considerations of the previous section also apply 
to (9). 
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Example 7 (Example 5 continued): We try to simplify the model using equal category 

parameters across the items.  
 
Basically, to specify this simpler model we have to collapse columns 7, 9, 11, and 8, 10, 

12, respectively.  
 
> cat2 <- rowSums(des2[, c(7, 9, 11)])  
> cat3 <- rowSums(des2[, c(8, 10, 12)])  
 

and add the new columns to the design for treatment and trend effects des1.  
 

> des3 <- cbind(des1, cat2, cat3)  
> colnames(des3) <- c(effnam, "C.2", "C.3")  

 
Fitting this simpler model gives  
 

> res.lrsm <- LPCM(data3, des3, mpoints = 2, groupvec = grpspoly)  
> res.lrsm  
 
Results of LPCM estimation: 
 
Call: LPCM(X = data3, W = des3, mpoints = 2, groupvec = grpspoly) 
 
Conditional log-likelihood: -133.1761  
Number of iterations: 20  
Number of parameters: 8 
 
Basic Parameters eta:  
 TreatEff1 TreatEff2 TreatEff3 TAU1 TAU2 
Estimate 1.339879 -0.7904490 0.4295578 0.2461319 1.6843826 
Std.Err 0.513233 0.4914142 0.4831179 0.3523761 0.3955073 
 TAU3 C.2 C.3 
Estimate 1.2327487 -1.3510798 -3.917679 
Std.Err 0.3590487 0.2830229 0.601310 
 
A likelihood ratio test to evaluate if the simplification is admissable shows that we do not 

need to model item specific category parameters.  
 
> lrtst(res.lpcm, res.lrsm)  
 
Likelihood ratio statistic: 1.008248 df = 4 p = 0.909 
 
Again, other hypotheses (like generalisation of treatment or trend effects across several 

items) can be specified by deleting appropriate rows and columns of the design matrix in 
analogy to previous examples. 
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3.3 More than two time points 

 
The general formulation of the relaxed assumption model for arbitrary time points is 
 

 

=0 =0

exp( ) exp( ( ) )( = 1| ) = = ,
exp( ) exp( )

vi ih vi vit ih
viht t m mi i

vi il vi vit il
l l

h hP X T
l l

′ + + +

′ + + +∑ ∑

θ ω θ δ ω

θ ω θ δ ω
 (10) 

 
where 

 
 = ,T

vit itδ ηw  (11) 
 

and T
itw  is a row in the design matrix specifying certain effects on (real) item i  at time t  for 

subject (or all subjects of treatment group) v . 
 
 
Example 8: A treatment group ( = 30n ) and a control group ( = 30n ) have been 

observed at 3 time points. The study design is  
 

  1T    2T    3T  
 TG  Baseline  Treatment  –  
CG  Baseline  –   –  

 
The items with 4 categories measure the severity of three symptoms (the first category 

represents highest severity) at each time point. The question is whether the treatment is 
effective at 2T  and if this effect is still observable after a period without treatment at 3T . We 
assume the same category differences for all items (rating scale approach). We want to 
estimate a model with a treatment parameter λ  for every item comparing 1T  and 2T  and 1T  
and 3T  (i.e., 6 treatment parameters) and general trend parameter τ . 

 
The data are in file llra_ex4.dat. We first read the data and modify them for the LLRA 

structure. The first 30 cases belong to the treatment group, the other 30 are the controls.  
 
> data4 <- read.table("llra_ex4.dat", header = FALSE)  
> dat4 <- matrix(unlist(data4), nc = 3)  
 
The pseudo design is given in Table 9.  
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Table 9:  
Pseudo design matrix (neglecting items and categories) for effect parameters between 1T  and 2T  

( 2 1t t−λ ), and between 1T  and 3T  ( 3 1t t−λ ) and a general trend parameter τ . 
 

     2 1t t−λ   3 1t t−λ    τ  

 T1 TG       
 CG       

 T2 TG  1     1  
 CG      1  

 T3 TG    1  1  
 CG      1  

 
We start to construct the design matrix using d1m which corresponds to the final setup 

for the τ s at 2T . The other specifications are analogous to Example 4. 
 
> d1 <- c(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0)  
> d1m <- matrix(d1 %x% c(1, 2, 3), 18) 
> d2m <- diag(2) %x% d1m 
> trnd <- rep(1:3, 2 * 3 * 2)  
> trnd <- trnd * as.numeric(gl(2, 3 * 2 * 3))  
> d3m <- cbind(d2m, trnd)  
> design <- rbind(matrix(0, 18, 7), d3m)  
> cat2 <- rep(c(0, 1, 0), 3 * 3 * 2)  
> cat3 <- rep(c(0, 0, 1), 3 * 3 * 2)  
> design <- cbind(design, cat2, cat3)  
> colnames(design) <- c("L.1(2)", "L.2(2)", "L.3(2)", "L.1(3)", "L.2(3)", "L.3(3)",  
+ "TREND", "C.2", "C.3")  
> groups <- as.numeric(gl(6, 30))  
 
Fitting the model yields  
 
> res.ex4 <- LPCM(dat4, design, mpoints = 3, groupvec = groups)  
> res.ex4  
 
Results of LPCM estimation: 
 
Call: LPCM(X = dat4, W = design, mpoints = 3, groupvec = groups) 
 
Conditional log-likelihood: -300.3035  
Number of iterations: 50  
Number of parameters: 9 
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Basic Parameters eta:  
 L.1(2) L.2(2) L.3(2) L.1(3) L.2(3) L.3(3)
  
Estimate 1.0301068 0.4611837 1.2037938 -0.2398956 1.2096525 2.6403020 
Std.Err 0.3464313 0.3323187 0.3680473 0.3655568 0.4091801 0.5267083 
 TREND C.2 C.3  
Estimate 0.40981701 -1.3353425 -3.7098060  
Std.Err 0.09808928 0.2143427 0.4252225  
 
In general, there is a positive trend for both groups over the whole observation period. 

When comparing treatment and control group, immediately after the therapy at 2T  there is a 
significant difference in improvement for symptoms 1 (L.1(2)) and 3 (L.3(2)), but not for 
symptom 2. Comparing the improvement between 1T  and 3T , the difference between 
treatment and control group is still observable for symptom 3 (L.3(3)) and now also for 
symptom 2 (L.2(3)) whereas the difference with regard to symptom 1 (L.1(3)) has vanished. 

 
 

4. Concluding remarks  
 
This paper tried to offer some guidelines for the usage and estimation of LLRA in the 

open source and easily available software environment eRm. Although the basic ideas of the 
LLRA have been introduced many years ago, this model has hardly ever been applied to 
analyse repeated categorical measurements as they occur in psychological assessment. This 
is even more unjust since many questions in psychology deal with change over time 
concerning different treatments or different characteristics of the experimental units. 
Moreover, theories about latent (personality) traits behind these questions might not yet have 
been researched extensively enough to justify the stronger assumptions of the LLTM 
approach. Or the nature of such traits might be too general to allow for specific distributional 
or dimensionality assumptions. The LLRA is well suited for measuring change in such 
situations and investigating various related hypotheses. The purpose of this paper was to 
arouse interest in the readers and provide some means for practical computations. And we 
hope to contribute to the sparking of some applications.  
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Appendix A. Basics of Kronecker products in R  
 
If A is an m n×  matrix and B is a p q×  matrix, then the Kronecker product A ⊗  B is 

the mp nq×  block matrix  
 

11 1

1

= .
n

m mn

a B a B
A B

a B a B

⎡ ⎤
⎢ ⎥⊗ ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
 

 
In simple terms, the result has the same structure as the left hand side, but each element 

of the left hand side is blown up by the whole right hand side. 
 
Four simple examples: 

Let a be a column vector with 2 elements and B a 2 ×  2 matrix  
 

1 0 3
= = .

2 5 7
a B

⎡ ⎤ ⎡ ⎤
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The four examples are:  
 

0 3
1 0 3 5 7

= =
2 5 7 0 6

10 14

a B
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In R these can be obtained by  
 
> a <- c(1, 2)  
> B <- matrix(c(0, 3, 5, 7), ncol = 2, nrow = 2, byrow = TRUE)  
> a %x% B 
> t(a) %x% B 
> B %x% a 
> B %x% t(a) 
 
Remarks: The definition of a by using the combine function c() results in a a column 

vector a. This is not so obvious when we print a which results in [1] 1 2. But using the 
transpose function t() twice gives the "correct'' display, i.e., t(t(a)). For the definition of B 
we used the byrow = TRUE option to illustrate that the matrix should be filled by rows and 
not by columns (the default). 

 


