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ABSTRACT

Purpose: The main issue of this paper is to present results of finite element analysis of beams elements on 

unilateral elastic foundation received with a use of special finite elements of zero thickness designated for 

foundation modelling.

Design/methodology/approach: Computer strength analysis with a use of Finite Element Method (FEM) 

was carried out.

Findings: The paper presents possibilities of special finite elements of zero thickness which enable taking 

into consideration unilateral contact in construction-foundation interaction as well as an impact of surrounding 

construction environment to its behaviour.

Research limitations/implications: Further researches should concentrate on taking into consideration a 

multi-layer aspects as well as elasto-plasticity of foundation.

Practical implications: Modern engineering construction on elastic foundation analyze require not only 

standard analysis on Winkler (one parameter) foundation but also calculation of construction on two-parameter 

foundation which will take into consideration a possibility of loosing contact between construction and foundation 

(unilateral contact).

Originality/value: The paper can be useful for person who performs strength analysis of beams on elastic 

foundation with a use of finite element method.

Keywords: Analysis and modelling; Computational mechanics; Finite element method; Elastic 

foundation; Unilateral contact.

METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

1. Introduction 

Modern engineering analyze methods carried out with a use of 
FEM tools need taking into consideration a complex numerical 
models reflecting real construction behaviour [1-5].  

Two approaches are generally applied for description of 
beams on elastic foundation.

Theories for analysis of beam behaviour include: (i) Euler-Bernoulli 
beam theory (C1 and C2 class finite beam elements without transverse 
shear deformation) [6]; (ii) Timoshenko beam theory (C0 class finite beam 
element with transverse shear deformation effects) [7].  

For the elastic foundation, according to the first approach, the 
foundation reaction p(x) is directly proportional to the vertical 
beam deflection w(x). This foundation is well known as the 
Winkler foundation [6]. Physically, this foundation consists of 
independent spring elements: 

)()( 0 xwkxp  .                             (1) 

The second approach introduces shear interactions between 
the beam and foundation (different vertical deformations), see 
Pasternak [8], Filonenko-Borodich [9] and Vlasov [10]. It should 
be noted that these models are mathematically equivalent. The 
only difference is the definition of the parameters. Therefore, 
these models can be written in the general form 
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where k0 and k1 are the first (Winkler modulus) and the second 

foundation parameters, respectively. The modern FEM analysis of 

beams on an elastic foundation has been widely reported in the 

literature [11-14]. 

2. Stiffness matrices formulation 
                                                                                                              

For the beam on foundation formulation the total potential (  is 
expressed by 

( = (Ue + Uf) - W             (3) 

where Ue is the beam strain energy, Uf is the foundation strain energy, 
W is the potential of the loads. The potential of the loads W is given by 

W = )
l

qwdx . (4) 

Fig. 1. The four and six-node zero thickness foundation elements 

connected to the beam two- and three-node elements 

2.1 C
1
 class beam element 

For beam elements modelling two and three-node beam elements 
of C1 type were used. The strain energy in the beam is expressed as [6] 
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The 'strains' are defined in terms of the nodal displacements and shape 
functions derivatives by the expressions 

)(),( ''' xuxw ab '' ++     (6) 

or in other form as 

'b+ Bb a, 'a+ Ba a.           (7)

The nodal displacement vectors for the two-node beam element are 
given as 

a , -222111 .. wuwu' .                                   (8) 

For the two-node beam element 
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Shape functions )()( 41 xNxN & for the two-node beam element are 

given by Torbacki and Buczkowski [15]. Using Eq. (5-9) the stiffness 
matrix of the two-node element can be evaluated from 
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Thanks to similar procedure stiffness matrix for the three-node beam 
element can be received.

2.2 Foundation under C
1
 class beam element 

For foundation modelling special four and six-node finite elements 
of zero thickness were used (see Fig. 1). 

The strain energy in foundation is expressed as [15] 
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where k0 is the first parameter in vertical direct (Winkler foundation 
modulus), k1 is the second parameter, which represents the shear 
interaction of the foundation layer, lf. is the length of surroundings 
outside the beam element, 

.)(,)( ''
aBaB ww xwxw ''         (12) 

For the four-node foundation element we have 

121
'''

121 ][,][ xwxw BBBBBB &'&'   (13) 

and for the six-node foundation element 

181
'''

181 ][,][ xwxw BBBBBB &'&' ,  (14) 

whereas the submatrices B for the four-node elements are given by 
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and for the six-node elements 

2.  Stiffness matrices formulation

2.1.  C1 class beam element

2.2.  Foundation under C1 class beam element
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where for the foundation element under the beam element 

/2ldet  J and for the foundation element beyond the beam element 

/2fldet  J . The foundation stiffness matrix fK  is  

b10f KKKK !! .   (17) 

By substituting Eqns. (12-16) into the first integral of Eq. (11) the 

Winkler foundation stiffness matrix 0K is derived 
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The shear foundation stiffness matrix 1K is derived 
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The shear foundation stiffness matrix of the foundation element beyond 

the beam region bK can be expressed as 
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Using the three-point Gauss integration formula for the solution of 0K ,

1K and bK  gives the following forms for the four-node and the six-

node elements, respectively 
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with the submatrices 0K and 1K assembled using the three-point 

Gauss integration. Submatrices bK for the four and the six-node 

foundations element has the similar form of 1K . The only 

difference is fl instead of l in submatrices bK .

3. Numerical example 

Beam element freely sitting on an elastic foundation including 
unilateral contact was analyzed. Total length of beam element amounts  
l = 6 [m] and the flexural rigidity amounts EI = 17·104 [kNm2]. Element 
is loaded with a centrally, vertically placed concentrated force P = 30 
[kN]. Three examples of foundation parameters were assumed. First of 
them is Winkler foundation with module k0 = 25·104 [kN/m2] and k1 = 0 

[kN]. For such model there exists an analytical solution of vertical 
deflection of beam in a following form [16]: 
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where it is assumed that beginning of x axis is situated in a middle of 
beam element and lk represents half of length zone of beam and 

foundation contact, 2/,+  kl , 4
0/4 kEI + . Length of analytically 

distinguished contact zone amounts 2lk = 4.034 [m]. Analytical result 
was confirmed numerically (see Table 1 and Fig. 2a). Contact zone in 
Tab. 1 and Fig. 2a includes points with negative deflection values. Due 
to symmetry only half of the system was presented on a graph. On a 
Fig. 2a a line of beam deflection and on a Fig. 2b distribution of 
reactions to three analysed examples were presented.  

Fig. 2. Free beam on unilateral foundation: line of beam deflection (a) 

and beam reaction (b), k0 [kN/m2] and k1 [kN] 

3.  Numerical example
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Table 1.  
Composition of own and analytical results of foundation 
deflection: all presented values w(x)[m] are multiplied by 105            
(k0 [kN/m2] and k1 [kN]) 

Analytical 

method [16] 

Present  

method

0k 25·104 25·104 25·104 25·104

1k 0 0 104 105

x [m] w(x) [m]

0.000 -5.0941 -5.0829 -4,9902 -4,3103 

0.188 -4.9943 -4.9880 -4.8980 -4.2336 

0.375 -4.7312 -4.7278 -4.6458 -4.0275 

0.563 -4.3465 -4.3468 -4.2780 -3.7344 

0.750 -3.8803 -3.8811 -3.8302 -3.3878 

0.938 -3.3556 -3.3590 -3.3303 -3.0011 

1.125 -2.7992 -2.8016 -2.7990 -2.0130 

1.313 -2.2200 -2.2240 -2.2510 -2.2503 

1.500 -1.6340 -1.6361 -1.6957 -1.8832 

1.688 -1.0409 -1.0439 -1.1386 -1.5331 

1.875 -0.4500 -0.4505 -0.5820 -1.2014 

2.063 0.1446 0.1432 -0.0263 -0.8871 

2.250 0.7359 0.7369 0.5293 -0.5874 

2.438 1.3300 1.3305 1.0848 -0.2982 

2.625 1.9183 1.9242 1.6403 -0.0144 

2.813 2.5036 2.5518 2.1958 0.2680 

3.000 3.0717 3.1115 2.7514 0.5504 

Second example is a two-parameter foundation with coefficients k0

= 25·104 [kN/m2] and k1 = 104 [kN]. It can be noticed that by adding 
second parameter and incensement of foundation stiffness contact zone 
of beam element with foundation was enlarged in comparison to 
Winkler foundation. Third example also represents two-parameter 
foundation in which first parameter remain the same but the value of the 
second was increased (k0 = 25·104 [kN/m2] and k1 = 105 [kN]). It 
resulted in progressive enlargement of contact zone. 

4. Summary 

The performance of the solution for the beam element 

according to Euler-Bernoulli C1 class beam element resting on 

elastic foundation represented by zero-thickness foundation 

elements has been presented and tested.  

The results obtained using these kinds of beam elements 

compare quite well with the theoretical values. The model 

adopted can be used to analyse the beams on the elastic two-

parameter foundation with any type common boundary and 

contact unilateral conditions or loading combinations. Taking into 

consideration the influence of the surroundings on settlement of 

the beams is also possible. 

These beam elements on foundation can be further extended to 
layered inelastic beam elements resting on non-linear foundation.  
A solution of this problem should be a subject of future investigation. 

Explicit expressions for the stiffness matrices both the beam 
elements and the zero-thickness foundation elements, obtained by 
using Gauss integration schemes, can be evaluated. Validity and 
accuracy of the suggested method is verified by a numerical example. 
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