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We have identified conditions in which the atomic force microscope can be used to stretch a meniscus of a
perfluoropolyether (PFPE) lubricant pinned between an AFM tip and a nanometer-thick PFPE film to obtain the
disjoining pressure of the film. Under quasi-equilibrium conditions, the chemical potential of the film can be equated
to that of the stretched meniscus. A theory is presented that provides a complete description of the capillary force
of a stretched meniscus. Fits of the theory to quasi-equilibrium force-extension curves yield the effective meniscus
curvature and, by extension, the disjoining pressure of the underlying film. AFM force curves collected at varying
film thicknesses compare very well with predictions from Lifshitz theory of dispersive interactions in thin films, with
no adjustable parameters. This complete description of meniscus deformation during atomic force microscopy force-
extension experiments makes possible the measurement of unknown disjoining pressures as required for screening
of lubricant-overcoat combinations required for next-generation data storage systems.

Introduction

Central to the understanding of foam stability and wetting is
knowledge of the disjoining pressure (Π) of thin liquid films
(reviewed by Bergeron1). The disjoining pressure is defined as
the force per area exerted between the two interfaces that bound
the thin liquid films, owing to a combination of molecular-level
interactions. These include van der Waals, electrostatic, and
structural components. Physically, the disjoining pressure can
be envisioned as an internal force driving film swelling that
balances external forces (such as gravity and capillarity) acting
to thin the film. The disjoining pressure can be substantially
altered by the addition of surfactants, with attendant impact on
film thickness. The curvature of liquid bridges in contact with
the thin film is also impacted as equilibrium between the film
and meniscus is established.

Measurements of disjoining pressure as a function of film
thickness (“disjoining pressure isotherms”) can be accomplished
by several different methods, each requiring a means to tune an
external force. Disjoining pressures of liquid films are frequently
measured using a thin-film balance.2This apparatus uses a porous
glass annulus holding a volume of liquid. The ring is placed on
the substrate in a sealed chamber where gas pressure is controlled.
The chemical potential of the bulk liquid in the ring is controlled
by a manometer fused to the glass ring and exposed at the open
end to some reference pressure. Lowering the open end below
the ring applies a negative pressure,∆P, to the liquid, and the
film in the center of the ring thins to achieve equilibrium with
the bulk fluid. The thickness of the entrained film can then be
measured using an interferometric technique. The chemical

potential of the liquid under pressure∆P is

whereµ°L is the chemical potential of the bulk lubricant andVL

is the molar volume of the liquid. The chemical potential of the
thin film µL

Film is3

so that equality of film and bulk liquid chemical potentials
requires

Unfortunately, this technique is limited to the measurement of
small to moderate disjoining pressures due to the way in which
the bulk pressure is applied. The measurement of disjoining
pressure of liquid films formed by condensation from the vapor
phase4-7 is a common technique but is limited to films of volatile
liquids. Another technique used to measure the disjoining pressure
of thin lubricant films is a contact angle study.8-12 In these
experiments, drops of nonwetting liquids are placed on the film
and their contact angles are measured. Thermodynamic con-

* To whom correspondence should be addressed. E-mail: white@
andrew.cmu.edu.

† Carnegie Mellon University.
‡ Seagate Technology.
(1) Bergeron, V.J. Phys. Condens. Matter1999, 11, R215-R238.
(2) Claesson, P. M.; Ederth, T.; Bergeron, V.; Rutland, M. W.AdV. Colloid

Interface Sci.1996, 67, 119-184.

(3) Hsia, Y. T.; Jones, P. M.; White, L. R.Langmuir2004, 20, 10073-10079.
(4) Gee, M. L.; Healy, T. W.; White, L. R.J. Colloid Interface Sci.1989, 131,

18-23.
(5) Gee, M. L.; Healy, T. W.; White, L. R.J. Colloid Interface Sci.1989, 133,

514-516.
(6) Christenson, H. K.Phys. ReV. Lett. 1994, 73, 1821-1824.
(7) Crassous, J.; Charlaix, E.; Loubet, J. L.Phys. ReV. Lett.1997, 78, 2425-

2428.
(8) Tyndall, G. W.; Waltman, R. J.; Pocker, D. J.Langmuir1998, 14, 7527-

7536.
(9) Tyndall, G. W.; Leezenberg, P. B.; Waltman, R. J.; Castenada, J.Tribol.

Lett. 1998, 4, 103-108.
(10) Tyndall, G. W.; Waltman, R. J.MRS Symp. Proc.1998, 517, 403-414.
(11) Waltman, R. J.; Kurshudov, A.; Tyndall, G. W.Tribol. Lett. 2002, 12,

163-169.
(12) Waltman, R. J.; Pocker, D. J.; Tyndall, G. W.Tribol. Lett.1998, 4, 267-

275.

µL
Liq(∆P) ) µ°L + VL∆P (1)

µL
Film ) µ°L - VLΠ(h) (2)

Π(h) ) -∆P (3)

11436 Langmuir2006,22, 11436-11446

10.1021/la0612522 CCC: $33.50 © 2006 American Chemical Society
Published on Web 11/01/2006



siderations of this technique show that certain assumptions as
to the displacement of the film must be made.3 At present, surface
rearrangements in the film under the influence of the nonwetting
fluid and the role of contact angle hysteresis are not well
understood.

We have developed a direct method of measuring the disjoining
pressure that can be applied to nonvolatile, highly viscous films
such as those presented by perfluoropolyether (PFPE) lubricants
of magnetic data storage systems. PFPE polymers are ubiquitous
magnetic recording hard disk lubricants. They are functionally
well-suited to perform both as a boundary lubricant and as a
protective layer where their high chemical inertness and thermal
stability are especially important.13-15 An extensive research
literature exists probing the PFPE lubricant-surface inter-
action;16-18 this has been primarily focused on the effects of
functional constituents and polymer chain length on surface
mobility, stability and wetting behaviors.16-21 Central to these
efforts has been the measurement of macroscopic film properties,
either evolving in time or perturbed by surface film coverage.22

Using phenomenological arguments, several studies have sought
to connect the measured macroscopic properties to molecular-
surface attributes, which can become tenuous if indirect probes
of the spread films are used.8 Furthermore, these measurements
need to be direct, repeatable, and easily obtained to be practicable
when probing and sorting numerous lubricant-overcoat com-
binations. Novel overcoat materials need to be compatible with
hard-drive lubricants which provide protection against wear that
would otherwise result from collisions between the recording
head and the overcoat. While proper lubricant function is best
measured by directly assessing wear characteristics of lubricant-
overcoat combinations, such measurements can be time-consum-
ing and fail to provide the kind of molecular-level insight that
would inform the improved formulation and design of these
systems. Thus, a probe of a nanofilm should provide molecular
insight into the wanted attributes of a lubricant (i.e., wetting,
stability, etc.), thereby facilitating the design of the next generation
of hard disk drive lubricants.

The method uses atomic force microscopy (AFM) to measure
the force required to slowly stretch a meniscus of PFPE bridging
a film-covered sample and a spherical probe. Fitting the resulting
force vs probe-sample separation data (force curves) to
theoretical capillary force curves allows the disjoining pressure
to be calculated. This technique was pioneered by Mate and
co-workers who first demonstrated that AFM could be used to
probe lubricant properties (including measurement of disjoining
pressure) by stretching a lubricant meniscus.20,23-26 The present
work differs from these original studies in the use of full theoretical

capillary force curves which permit the measurement ofΠ(h)
for thicker films, a thorough understanding of the choice of AFM
parameters (i.e., probe radius and cantilever spring constant)
required to measure a given film, and a detailed experimental
analysis of the dynamics for the establishment of the equilibrium
conditions required by the method.

Collection of disjoining-pressure isotherms (Π(h)) for lubri-
cant-overcoat combinations is critical to assessing their per-
formance. An ideal hard-disk lubricant wets the overcoat on the
disk, quickly flows to heal defects in surface coverage, and has
a low vapor pressure. Each of these characteristics can be related
to the disjoining pressure,Π(h), of the lubricant film, defined
as3

where h is the lubricant film thickness andESLA(h) is the
interaction energy per unit area between the (multilayered)
substrate, S, and the air halfspace, A, across the lubricant, L. The
interaction energyESLA(h) contains contributions from van der
Waals, polar, hydrogen-bonding, and steric or structural forces
in the general case.

Restoration of the film after a depletion event will occur if the
disjoining pressure is positive:3

and for the spread film to be stable, we require3

If the disjoining pressure is positive but eq 6 is not satisfied, the
film will minimize its total free energy by forming a bimodal
height distribution. The formation of such structures, which have
been observed experimentally,22 is expected to be problematic
in practical data storage systems. As such, the disjoining pressure
of lubricant films provides a useful measure of the wettability
of the lubricant on substrata, and its thickness dependence is a
measure of the ability of the film to resist and heal defects. More
thorough discussions of the role of disjoining pressure in wetting
and the factors involved in film stability are considered
elsewhere.3,27-29

In dynamic spreading, the film thickness,h(x,t), at position
x on the substrate at timet is given by23,30

whereη is the Newtonian viscosity of the lubricant. For simple
lubricants obeying eqs 5 and 6, the effective diffusion coefficient,
D(h), for the film height is positive and restoring flows after a
head crash follow the usual diffusive course. However, for the
typical disk-surface lubricant Zdol (PFPE oligomers with terminal
hydroxyl groups), the disjoining pressure does not satisfy eq 6
for all film thicknesses (i.e., it is not monotonically decreasing
with increasing film thickness) and the effective diffusion
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coefficient becomes negative over a range of film thicknesses.
Restoring flows in the thickness region of negativeD(h) exhibit
stepped film profiles which do not present the usual flow
behavior.19,30 Such films will continue to exhibit the bimodal
thickness distribution discussed above. These permanently
“scarred” surfaces will affect the performance of the recording
head at low fly heights and may leave some parts of the disk
surface permanently less protected. Recent studies have shown
the presence of lubricant “moguls” within the region flown by
the recording head.31 These features are moundlike areas of
periodic circumferential lubricant that are due to the interaction
of the dynamical pressurization of the flying head and the lubricant
on thesurface.The typical hard-disk lubricantexperiences terraced
flow behavior when the lubricant is mounded in this manner.
This thickness distribution may evolve, leaving areas of the media
unprotected by the lubricant and further impacting the dynamical
spacing between the flying read-write transducer and the media
surface.

The primary goal of the present study is to establish that quasi-
equilibrium measurements of the meniscus stretching force can
be used to ascertain the disjoining pressure. Use of Fomblin
Z03, which is believed to interact with the substrate almost
exclusively by van der Waals interactions, provides a useful
proof-of-concept for the AFM method. In the next three sections,
we present the theory underpinning the technique, the theoretical
capillary force analysis, and the restrictions placed on the
measurement by the nature of the AFM measurement itself. In
subsequent sections, we present an experimental study of the
technique where we examine the role of wetting period and stage
retraction speed on the minimization of nonequilibrium effects
and the measured disjoining pressure of the Z/SiO2/Si system.
These results are compared to the theoretical predictions of
Lifshitz theory for the van der Waals component of the disjoining
pressure and the earlier experimental results of Mate and
Novotny20 and Fukuzawa et al.32,33

Equilibrium AFM Pull-off Force Measurement

The AFM pull-off force measurement can be used to extract
the disjoining pressure of a lubricant film as outlined below.
Contact of the probe with the film-bearing substrate produces
a meniscus of bulk lubricant which comes to equilibrium with
the film in time. The chemical potential of the lubricant in the
meniscus is given by eq 2 where∆P is now the Laplace pressure
of the meniscus:25

Herer1 andr2 are the local negative in-plane and positive axial
radii of curvature, respectively (see Figure 1), andγLA is the
interfacial tension of the lubricant-air surface. If the lubricant
in the meniscus is in thermodynamic equilibrium with that on
the surface:

where the (positive) effective radius of curvature,reff, is defined
by

Given that the volume of film lubricant is large compared to the
meniscus volume, the film far from the contact point is unchanged
and its disjoining pressure is determined by the film thickness.
Equilibrium between the film and the meniscus during pull-off
requires thatreff must remain constant. Mate et al.25 derived the
pull-off force, F(D), as

whereD is the probe-substrate separation distance obtained
from the AFM measurement assuming thatreff andD are small.
Thus Mate’s method simply requires the measurement ofF(D)
as a function ofD and the extraction ofreff via eq 11 from the
slope. Equation 9 then yields the disjoining pressure for that film
thickness. As we shall show below, eq 11 is not an accurate
expression for the capillary force under a range of experimental
conditions and that care must be exercised to ensure that
equilibrium is maintained between film and meniscus during the
pull-off experiment.

Theoretical Capillary Force Calculation

In this section we present the calculation of the theoretical
capillary force that the meniscus in equilibrium exerts on the
spherical probe particle attached to the AFM cantilever. Equation
10, with reff a given constant, is a differential equation for the
meniscus shape when it is in equilibrium with the lubricant film
during pull-off. In Appendix 1, we solve eq 10 to obtain the
separation distance,D, as

where the function∆(R,θ) is defined in eq A.6, the angleθp is
defined in eq A.9 and

Herer0 is the radius at which the meniscus contacts the film (see
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Figure 1. Definition of principal radii of curvature (r1 andr2) for
a saddle-shaped meniscus.
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Figure 12). The pull-off force,F(D), measured by the AFM
deflection is given by

so that we may write, from eq 9

In Figure 2 we plot the scaled pull-off force,F*, as a function
of D/reff for various values ofλ. We note (eq 12) that this curve
is strictly a function of the parameter (h + hP)/R in addition to
λ, but for all cases of interest, this parameter is very small and
the resultant curve is quite insensitive to its value. In the plot,
we have takenh ) hP ) 4 nm and probe radiusR ) 0.5 µm.
We show only the physically accessible part of theF(D) curve
in Figure 2. The segment of the capillary force curve with negative
slope is unstable, and the spring instability of the AFM system
would lead to breakage of the meniscus and a jump apart before
this portion of the pull-off curve is reached. In the stable region,
the form of the theoretical equilibriumF(D) curve is charac-
teristicallyupwardcurving,and this isauseful indicatorofwhether
the experimental pull-off measurement is an equilibrium one.
Note that the maximum separation for a stable equilibrium
meniscus is of orderreff, and this observation serves to limit the
range ofreff values tested in the curve fitting of experimental
pull-off data. In Figure 2, we show Mate’s linear result as a
dashed line for the case ofλ ) 0.05 where the approximations
entailed in eq 11 are valid. At largerλ values, both the slope and
contact (D ) 0) value of the capillary force differ significantly
from the predictions of eq 11.

To emphasize this point, in Figure 3 we plotF*(0), the scaled
contact capillary force, as a function of scaled meniscus radius,
λ (again withh ) hP ) 4 nm and probe radiusR) 0.5µm). The
deviation from Mate’s smallreff result (F* ≈ 1) asreff increases
is evident. In Figure 4, we plot the scaled initial slope (λ/2πγLA)-
(∂F/∂D)|D)0 as a function of scaled meniscus radius,λ (with h
) hP ) 4 nm and probe radiusR) 0.5µm). Asλ increases, the
initial slope becomes significantly smaller than unitysthe small
reff value for the scaled initial slope given by eq 11. Thus, the

use of eq 11 in the analysis of experimental pull-off curves will
overestimate the value ofreff and lead to underestimation of the
corresponding disjoining pressure whenreff is large.

Implications for the AFM Experiment

The capillary force theory developed above has several
implications for the actual AFM pull-off experiment which we
address below. Figure 5 is an idealized AFM pull-off force curve
that captures the phenomena we see in our data. The region from
A to B represents contact between tip and the sample substrate
upon retraction of the stage. Contact persists not only while the
cantilever is relaxing to its rest state but past this point due to
attractive van der Waals interactions between the substrate and
the tip and the capillary forces from the lubricant meniscus. At
a very small separation, the probe-substrate adhesion peaks and
the total force begins to decrease. At B, the slope of the force
curve becomes equal to the cantilever spring constant,K, and
these forces become insufficient to hold the cantilever on the

Figure 2. Scaled capillary force,F* (eq 15), versus scaled tip
displacement for various values ofλ ) reff/R. The dashed line is the
approximate result given by eq A.20 forλ ) 0.05(h ) hp ) 4 nm,
R ) 0.5 µm).

Figure 3. Scaled contact capillary forceF(0)/(4πγLAR) versus scaled
meniscus curvatureλ ) reff/R (h ) hp ) 4 nm,R ) 0.5 µm). The
approximate result from eq A.20 is the dashed line.

Figure 4. Scaled initial slope of the capillary force curve (λ/2πγLA)-
(∂F/∂D)|D)0 versus scaled meniscus curvatureλ ) reff/R (h ) hp )
4 nm, R ) 0.5 µm). The approximate result from eq A.20 is the
dashed line.

F(D) ) πr0
2∆P (14)

F(D) ) (4πγLAR)F* F* ) - λ
4R2

(15)
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surface and the cantilever jumps out of contact. If the spring
constant is too small, this jump-out can bypass the entire meniscus
curve, especially whenreff is small (largeΠ), and the capillary
force curve has a large initial slope. For sufficiently largeK
values, the system will jump out to a point C on the capillary
force curve. Since the equilibrium capillary force plot curves
upward, a necessary condition to experimentally observe the
capillary curve is

The theoretical capillary force calculation for a givenreff can
therefore indicate the spring constant required to observe it by
AFM. As a rule of thumb, the larger the disjoining pressure is
(i.e., the thinner the lubricant film), the stiffer the cantilever
must be to measure it.

To the right of C, the meniscus stretches on stage retraction
until point D (separation distanceDJ) where the slope of the
capillary curve again equalsK. Here, a second mechanical
instability occurs and the cantilever quickly relaxes to E following
a path of slopeK and the meniscus breaks. To the right of E,
the cantilever has no external forces acting upon it. If the pull-off
force is measured sufficiently slowly that the meniscus remains
in thermodynamic equilibrium with the substrate film, thenλ is
a constant andR increases asD increases (see eq 13). Thus, from
eqs 12 and 15, we may write the instability condition as

The derivative is evaluated by a simple numerical integration,
as shown in Appendix 1. Equations 12, 15, and 17 serve to
completely specify the theoreticalF(D) curve fromD ) 0 to D
) DJ for given values ofreff and probe radiusR.

As probe-substrate separation is increased, the volume of
lubricant within the meniscus (at constantreff) changes. To
maintain equilibrium, lubricant must be pumped to or from the
surrounding substrate film and the dynamics of this process is
controlled by the diffusion coefficient (see eq 7) and hence, by
the disjoining pressure in the region around the edge of the

meniscus. In Appendix 1, we have calculated the excess meniscus
volume,V (eq A.23), and in Figure 6, we plotV/πR3 for various
λ values as a function of the scaled separation distance,D/reff

(with h ) hP ) 4 nm and probe radiusR ) 0.5 µm). Note that
the excess meniscus volume in our experimental system (∼πR3)
is at least 5 orders of magnitude smaller than the total volume
of lubricant on the surface (V ) hA whereA ∼1 cm2 is the
surface area of the AFM sample). This validates our original
assumption that the film far from the meniscus is unperturbed.
We note that, for small separations,D, the excess volume in the
equilibrium meniscus increases slightly as the surfaces separate.
However, for separations approaching the jump-out point, it
decreases markedly. To maintain equilibrium here, a considerable
volume of liquid must flow back into the surrounding film. When
retraction is faster than this excess fluid can be pumped away,
the meniscus is capable of stretching to larger separation distances
than permitted under equilibrium conditions before the instability
occurs. It is likely, at these separations, that the experimental
pull-off measurement is nonequilibrium and therefore unreliable.
Accordingly, in curve fitting the experimental capillary force
curves, the data near jump-out is given small weight. The excess
volume change on separation becomes more pronounced for
largerreff values (i.e., thicker films), and these systems will be
more likely to exhibit anomalous, nonequilibrium pull-off force
curves.

Finally we note that, for a given radius of the probe sphere,
there is a maximum value ofreff that can be measured with that
sphere, viz. whenreff is such that the meniscus contacts the probe
sphere atrp ) R+ hp whereθp ) π/2 at zero separation of sphere
and substrate. For largerreff values, the meniscus will flood the
cantilever. From (eq A.9) we see that theR value corresponding
to this maximumreff value is

and from eq 12 withD ) 0

Figure 5. Schematic of a retraction AFM-derived force curve
collected on a stretched fluid meniscus between the AFM tip and
a surface. Points A-B indicate contact between tip and surface,
B-C is separation of the surfaces with a trapped liquid bridge
spanning them, C-D is the meniscus stretching, and D-E is the
jump reflecting breakage of the liquid bridge.

Figure 6. Scaled meniscus volumeV/πR3 (eq A.23) versus scaled
separation for various values of scaled meniscus curvatureλ ) reff/R
(h ) hp ) 4 nm,R ) 0.5 µm).
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[1 + 2λmax]1/2
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Solving this equation forλmax, we obtain

where we have neglected the weak dependence on the (h+ hP)/R
parameter. For a given probe radius, the AFM pull-off experiment
is restricted to films wherereff ereff

max.

Materials and Methods

Dip-Coating. The glassware used in the dip-coating process was
soaked in chromate cleaning solution (Fisher Scientific, Pittsburgh
PA) for 15 min followed by copious rinsing with deionized water.
Prior to dip-coating, undoped silicon wafers (International Wafer
Service) were cleaned for 20 min using a UV-ozone cleaner (Jelight
Company, Inc.). Dip coating was accomplished using the dipping
apparatus of a Langmuir-Blodgett film balance (KSV 5000, KSV
Instruments). Dips were performed at the retraction velocities listed
in Table 2. The immersion time was about 1 min, although this
parameter is not expected to impact the final layer thickness.34

Following constant-speed retraction, wafers were broken in half:
one-half was used in ellipsometry measurements of film thickness,
and a portion of the other half was probed using the AFM technique.
Two parameters were varied to control film thickness: concentration
of Fomblin Z03 in solution and retraction velocity of the wafer.
Lubricant layer thicknesses (1-4 nm) obtained under various dip-
coating conditions are shown in Table 1. Imaging of the dip-coated
films by dynamic AFM and imaging ellipsometry revealed no
vacancies of the type reported by Fukuzawa et al.33 for Z03 on silica.
As they report, this is likely due to our UV-ozone cleaning of the
wafers prior to film deposition.

Ellipsometry. Lubricant layer thicknesses were confirmed by
ellipsometry using a custom-built rotating-analyzer ellipsometer.35,36

Because only half of a wafer was dip-coated, the thickness of both
the transparent layersslubricant and native oxidescould be mea-
sured. Three measurements were taken at a random location on the
uncoated silica region and averaged to yield the native oxide layer
thickness at that point. Additional locations (three to five) in the
bare oxide region were examined. At each location, three measure-
ments were taken. These measurements gave an estimate of the
variation in silica thickness on the wafer. Deviations were less than
1 nm from the mean silica thickness. The same procedure was repeated

on the film-covered region. Typically, the Fomblin Z03 film thickness
deviated about 0.3 nm from the mean depending upon location.

AFM Experiments. AFM force-displacement curves were
collected using a commercial system (Multimode, Nanoscope IIIa
controller, Veeco Metrology) with a closed-loop piezo scanner
(PicoForce, Veeco Metrology). Cantilevers (Novascan) used had a
rectangular, diving-board geometry with a nominal spring constant
of 14 N/m, and were coated with a 30 nm layer of gold to reduce
optical interference. A 0.5( 0.125µm radius spherical silica tip
was attached to the end of the cantilever by the manufacturer. Before
these cantilevers were mounted in the AFM, they were rinsed with
Vertrel XF and UV-ozone cleaned for 20 min to remove any residual
PFPE from previous experimental runs. The AFM was enclosed in
a hood with small trays of CaSO4 (Drierite) to maintain a relative
humidity of 15-25% within the hood. The AFM was also surrounded
by foam insulation to minimize temperature fluctuations. To minimize
thermal drifts, which can be significant given the very slow retract
speeds utilized, the cantilever was illuminated by the AFM laser
overnight to achieve a steady temperature. After these initial
preparations, several force curves were performed in a day using the
methodology described below. In the case of the 1.2, 2.5, and 3.1
nm films, the tip was left in contact with the sample substrate for
30 min to allow sufficient time for PFPE to wet the sphere to
equilibrium. At this point, a retraction force curve was collected
until full separation was achieved. A variety of retraction speeds
ranging from 0.0547 nm/s to 1.0 nm/s were tested for each sample.
The technique employed for the 3.9 nm film was identical to that
for the other films with the exception that the waiting period prior
to force curve acquisition for the 3.9 nm film sample was increased
to 3 h. This was to allow more time for the larger-volume meniscus
to form.

Results and Discussion
Appropriate Conditions for AFM Force Measurements.

Two key experimental parameters to be studied were the retraction
speed and the waiting time required to obtain quasi-equilibrium
measurements. The effect of retraction speed is shown in Figure
7, where the length of the stretched liquid bridge progressively
increases as the retraction speed is increased from 0.1 to 1.0
nm/s. We expect that faster retraction velocity corresponds to a
meniscus that is further removed from the equilibrium condition.
At faster speeds, the meniscus has a larger volume because of
insufficient drainage and this allowed one to stretch the meniscus
to larger tip-sample separations than would be expected for a
constantreff curve. Superior fits were obtained between the
experimental data and Lifshitz theory at slow retraction velocities
(0.0547-0.1 nm/s), and these rates were used for the data
described in the next section.

The effect of the in-contact waiting time prior to retraction is
shown in Figure 8, where the stretched meniscus length increases
on increasing the waiting time from 30 min to 3 h. It is reasonable
to presume that the waiting time is required to allow lubricant

(34) Gao, C.; Lee, Y. C.; Chao, J.; Russak, M.IEEE Trans. Magn.1995, 31,
2982-2984.

(35) Azzam, R. M. A.; Bashara, N. M.Ellipsometry and Polarized Light, 3rd
ed.; Elsevier Science: New York, 1989.

(36) Muller, R. H.AdV. Electrochem. Electrochem. Eng.1973, 9, 167-226.

Table 1. Ellipsometry-Derived Film Thicknesses for Fomblin
Z03 Films Dip-Coated onto Silica Substrates

film thickness
(nm)

concentration
(g PFPE/L solution)

dipping speed
(mm/min)

1.2 2.00 50
2.5 2.00 100
3.1 4.01 45
3.9 5.05 60

Table 2. Meniscus Curvature and Disjoining Pressure Obtained
from Fits of AFM Force Curves on Fomblin Z03 Films of

Varying Thicknessa

film thickness
(nm)

retraction
velocity (nm/s)

reff

(nm)
disjoining

pressure (Pa)

1.2 0.0547 12.5( 2.5 1.680× 106

2.5 0.1 185( 10 1.135× 105

3.1 0.1 495( 15 4.242× 104

3.9 0.0547 790( 20 2.658× 104

a The error for eachreff is associated with the fitting. Disjoining pressure
was calculated using the equilibrium condition between Laplace pressure
and disjoining pressure.

reff
max

R
) λmax = 2.53 (20)

Table 3. Disjoining Pressure and Hamaker Function for the
System Silicon/Silica/ZO3/Air) Obtained from Retarded Lifshitz
Calculation (see Appendix 2) with a Silica Layer Thickness of

2.0 nm and Varying Z03 Thicknesses

film
thickness (nm)

disjoining
pressure (Pa)

Hamaker
function (J)

0.1 9.14× 108 -1.73× 10-20

0.5 7.42× 106 -1.84× 10-20

1.0 9.76× 105 -2.05× 10-20

1.5 3.10× 105 -2.25× 10-20

2.0 1.40× 105 -2.42× 10-20

2.5 7.64× 104 -2.56× 10-20

3.0 4.67× 104 -2.67× 10-20

3.5 3.08× 104 -2.75× 10-20

4.0 2.15× 104 -2.82× 10-20

4.5 1.56× 104 -2.87× 10-20

5.0 1.17× 104 -2.90× 10-20
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to spread onto the AFM tip, filling the meniscus to the equilibrium
volume. We have also observed that, when using AFM tips that
have not been cleaned following the previous experiment, much
shorter waiting times were required to yield force curves similar
to the 3 h result of Figure 8. This indicates that the lubricant
remains held to the sphere after the meniscus is broken and can
be used in subsequent force curves.

Selecting the correct cantilever probe size was also important
to obtain useful data. Initial trials were conducted using a 2.5
µm radius spherical particle as the probe but tip wetting became
prohibitively time-consuming because of the increased meniscus
volume the larger tip engenders. Figure 6 supports these
observations. Calculations suggest that a 2.5µm particle draws
an order of magnitude more lubricant than a 0.5µm one, since
the meniscus volume scales as tip radius cubed. However, as
discussed above, the smaller the probe, the lower the upper limit
on the thickness of film that can be examined. As film thickness
increases, the volume of the equilibrium meniscus increases until
it engulfs the tip. When tip flooding occurs, the meniscus exerts
very large forces on the cantilever that are not modeled by the
theoretical capillary force model described earlier.

Data Fitting. To obtain accurate fits, we scaled the experi-
mental force curve,F(D), with respect to the contact value,F(0),
obtained by extrapolating the experimental capillary force curve
to zero separation. This scaling helped to ameliorate uncertainties
in cantilever spring constants (∼20%), as well as significant
variation in cantilever tip diameter (∼25%). Figure 9 shows four
representative curves, along with fits to eqs 12-15, demonstrating
a very good agreement, with a small deviation near meniscus
breakage. This is likely due to the failure to completely pump
the excess meniscus volume back into the film at larger
separations, obviating the quasi-equilibrium assumption as
discussed above. The experimentally observed jump-out distance,
DJ, is always a little larger than the theoretical prediction as
expected if the excess meniscus volume has not been pumped
away.

The output of the data fitting of Figure 9 is the effective
meniscus radius,reff. This quantity gives the disjoining pressure
directly through eq 9. These results are given in Figure 10.
Calculation of the disjoining pressure from Lifshitz theory
(Appendix 2) shows very good agreement with the experimentally
derived values for disjoining pressure. It should be emphasized
that the Lifshitz calculations use no adjustable parameters; the
dispersive properties of the various components of the film were
obtained from published spectroscopic data. In the case of the
1.2 nm film, the theory curve does pass within the error bars but
may exhibit a small positive departure from Lifshitz theory. This
may have a physical rationale. A 1.2 nm thick Fomblin Z03 film
is approximately a monolayer. At such film thickness, it is possible
that the surface influences the PFPE molecules and encourages
structure atypical of their random bulk conformation, and this
may explain any positive deviation from purely van der Waals
behavior. On the other hand, the deviation may have its origin
in the neglected small correction factor in the capillary force
calculation (discussed in Appendix 1) which accounts for the
influence of disjoining pressure on the microscopic meniscus
profile. We have not investigated these possibilities further in
the present study.

We also display in Figure 10 some earlier disjoining pressure
results extracted from the graphical data of Mate and Novotny20

for a Fomblin Z of molecular weight 5000 (roughly comparable
to that of the Z03 lubricant presented in this work) on silica. At

Figure 7. AFM experiments performed on a 3.1 nm thick Fomblin
Z03 film at different retraction speeds.

Figure 8. Effect of different wetting periods on the shape of AFM
force curves (3.9 nm thick film). Wetting times are shown above
the data. For both curves, the retraction velocity was 0.5 nm/s.

Figure 9. Normalized pull-off force curvesF(D)/F(0) for the four
films in Table 1. The experimental contact force,F(0), is obtained
by extrapolation of the accessible small separation data. For ease
of viewing, only every 30th point of the experimental data (circles)
is plotted. The solid curves are the best-fit theoretical force curves.
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small film thicknesses, there is good agreement between our
results, the earlier study, and the van der Waals theoretical
prediction. However, at larger thicknesses, the earlier data are
considerably larger (an order of magnitude at a thickness of 3
nm) than both the theoretical prediction and the results of the
present work. We believe that this is due to the failure, in the
previous studies, to allow sufficient wetting time to establish an
equilibrium meniscus at the larger film thicknesses. Thus, pull-
off forces were obtained with smaller effective radii of curvature
than equilibrium resulting in larger disjoining pressures being
reported. We have observed identical behavior in our present
study when the wetting period is not sufficiently prolonged.

Recently, Fukuzawa et al. have provided a new method to
obtain disjoining pressure isotherms by applying thin liquid films
to substrates with microfabricated grooves and imaging the
resulting meniscus using dynamic-mode AFM.32,33The method
is similar in spirit to the one presented here, in that equilibrium
is established between a curved meniscus and a thin film and the
film disjoining pressure ascertained from the shape of the
meniscus. In order for assumptions in their analysis to hold, the
method is limited to film thicknesses above about 3 nm. However,
their method can be applied to thicker films that would engulf
the AFM probe used in the method described here, and the two
methods should be viewed as complementary. Comparing data
they collected over the range of 3-5 nm (for Fomblin Z03 on
silica of molecular weight 4000), we find excellent agreement
(Figure 10). Taken together, the data of Figure 10 suggest that
the method presented here gives excellent agreement with both
Lifshitz theory and established experimental methods in the range
of 1-4 nm.

In Figure 11, we have plotted the theoretical diffusion
coefficient, which governs the dynamics of film flow in Z03
lubricant nanofilms using the van der Waals disjoining pressure
shown in Figure 10 and the definition eq 7. A comparison with
our experimental data was obtained by first fitting the disjoining
pressure isotherm to a power-law function (a andb are fitting
parameters):

The thickness derivative of eq 21 was inserted into eq 7 to
derive the diffusion coefficient (Figure 11). It differs somewhat
from the theoretical van der Waals diffusion coefficient and may
reflect the contribution of structural forces at small thickness;
however, it should be noted that only a small number of data
points have been collected in this regime. For an additional
comparison, we also plot in Figure 11 diffusion coefficient data
taken from the study of Kim et al.37 of the spreading of Z films
on amorphous carbon surfaces by scanning microellipsometry
(SME). The results for two molecular weights of Z are shown.
These span the molecular weights of the Z in our AFM study.
These SME data are larger than the experimental and theoretical
diffusion coefficients for the Si/SiO2/Z system. This is due mainly
to the difference in van der Waals force between the carbon and
the silicon substrates, as can be clearly seen from the plot of the
theoretical diffusion coefficient calculated from eq 7 using the
van der Waals disjoining pressure for Z on amorphous carbon.
In fact, there is a remarkable agreement between the SME
experiments for the higher MW Fomblin and the theoretical van
der Waals curve, which would seem to indicate that the assumption
of bulk Newtonian viscous behavior in these thin films is well
approximated.

The diffusion coefficient can be seen to be a decreasing function
of film thickness of magnitude∼10-11 m2/s for Z films on these
substrates. Since a meniscus of excess volume∼πR3 must be

drawn from the surface film over a radial extent∼xR3/h, the
time scale for the meniscus pumping process isR3/D(h)h ≈ 102

s. The wetting time required to create the equilibrium meniscus
from the film is significantly larger than this time scale because

(37) Kim, M. C.; Phillips, D. M.; Ma, X.; Jhon, M. S.J. Colloid Interface Sci.
2000, 228, 405-409.

Figure 10. Disjoining pressure of Z03 on Si/SiO2 versus film
thickness. Squares are values obtained from fitting AFM force data
of Figure 9, and the line is derived from Lifshitz theory (Appendix
2). Triangles are from Mate and Novotny,20 and diamonds are from
Fukuzawa et al.33

Π ) ahb (21)

Figure 11. Diffusion coefficient for Fomblin Z on various substrates.
The triangles and circles are taken from the scanning microellip-
sometry (SME) studies of Kim et al.37 of Z on amorphous carbon
for two molecular weights which span the molecular weight of the
Z03 used in the present AFM study. The diffusion coefficients
calculated from the theoretical van der Waals disjoining pressure of
Z03 on amorphous carbon (continuous curve) and on Si/SiO2 (large
dashed curve) are displayed as a function of film thickness. The
results of the present AFM study for Si/SiO2/ZO3 are also shown
(small dashed curve). Calculated diffusion coefficients are obtained
by differentiating disjoining pressure data via eq 7.
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the disjoining pressure contribution to the lubricant flux acts
against the Laplace pressure gradient in the inward flowing
situation.

Conclusions

We have identified conditions in which AFM force measure-
ments of the stretching of a liquid bridge formed between a
PFPE lubricant film and an AFM tip yield the disjoining pressure
of the film, a critical parameter when judging its wear-reducing
properties in hard-disk applications. Judicious selection of the
AFM tip size, spring constant, retraction speed, and in-contact
waiting timeareneeded toestablish the requisitequasi-equilibrium
condition that equates the film chemical potential with that of
the stretched meniscus. Fits of the AFM force curve to the internal
Laplace pressure of a stretched meniscus give the disjoining
pressure. Such data collected on films of Fomblin Z03, which
are believed to interact purely by van der Waals forces, give
excellent agreement with theoretical predictions of disjoining
pressure based on Lifshitz theory, which considers only van der
Waals interactions. For more sophisticated lubricants such as
Zdol, preliminary AFM studies on silicon and nitrogenated silicon
surfaces38 show large structural/polar contributions to the total
disjoining pressure which is a strong function of the chemical
composition of the substrate. With an appreciation of the
constraints on the AFM measurement, the present technique offers
a straightforward technique for assessing the role of terminating
entities on the lubricant molecules, their interaction with chemical
moieties on the overcoat and the dielectric properties of the
overcoat in determining the dynamic response of the lubricant
on disk substrates. Future work will focus on applying the method
to films of industrial importance, where nondispersive interactions
are crucial and require quantification.

Appendix 1. Capillary Force Calculation

Laplace’s equation (eq 10) for the meniscus shape is

where the first term on the left is the inverse of the in-plane
radius of curvature (<0) and the second is the inverse of the axial
radius of curvature (>0). The right-hand side is the Laplace
pressure difference,∆p, in the meniscus divided byγLA, the
liquid-air surface tension (eq 9). The effective radius of curvature,
reff, is a constant if the meniscus remains in equilibrium with the
nanofilm during pull-off. It should be appreciated that the
macroscopic Laplace equation should strictly be modified when
the liquid-air interface is sufficiently close to the substrate that
the interaction energy,ESLA, makes a significant contribution to
the free energy of a surface area element.39,40 The inclusion of
the disjoining pressure term in eq A.1 makes anϑ(h/reff) correction
to the macroscopic result reported below.40 As such, this
microscopic profile effect can be neglected for all but the very
thinnest of lubricant films wherereff becomes comparable to the
film thickness. For the smallest film thickness in the present
study,h/reff ≈ 0.1.

The geometry and coordinates are defined in Figure 12.
Equation A.1 is integrated to yield

wherer0 is the radial distance at which the meniscus merges with
the substrate film (see Figure 12) whereθ ) 0. Alternatively,
since dy/dr ) - tan θ, eq A.1 can be written as

and rearranged to yield

Upon integration, using eq A.2 and the boundary conditiony(0)
) h, we obtain

where

and

The meniscus contacts the spherical probe surface (radiusR +
hp) at (rp, yp, θp) where

where we assume that a film of liquid of thicknesshP exists on
the probe surface at equilibrium. If the substrate and probe are
the same material, we can expecth ) hP, but otherwise,hP is
another parameter of the system, albeit a rather insensitive one.
Using eq A.2 we have, from eq A.8

for contact on the bottom half of the probe (θp obtuse) where
(38) Jones, P. M.; Luo, M.; White, L. R.; Schneider, J.; Wu, M.-L.; Platt, C.;

Li, L.; Hsia, Y.-T. Tribol. Int. 2005, 38, 528-532.
(39) White, L. R.J. Chem. Soc., Faraday Trans. 11977, 73, 390-398.
(40) Solomentsev, Y.; White, L. R.J. Colloid Interface Sci.1999, 218, 122-

136.

d sinθ
dr

+ sin θ
r

) - 1
reff

(A.1)

Figure 12. Geometry of the meniscus trapped between AFM tip
(top) and the substrate (bottom). Variables are referred to in Appendix
1.

r sin θ )
r0

2 - r2

2reff
(A.2)

d cosθ
dy

+ sin θ
r

) - 1
reff

(A.3)

dy
dθ

)
reff

1 + reff sin θ/r
(A.4)

y(θ) ) h + reff∆(R,θ) (A.5)

∆(R,θ) )

∫0

θ dθ sin θ
(R2 sin2 θ + 1)1/2[(R2 sin2 θ + 1)1/2 + R sin θ]

(A.6)

R )
reff

r0
(A.7)

sin θp ) rp/(R + hP) (A.8)

θp ) π - arcsin[ (λ/R)

(1 + 2λ)1/2] (A.9)

λ )
reff

R + hP
=

reff

R
(A.10)
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The vertical distance,qp, fromyp to the lowest point on the probe
(see Figure 12) is given by

and the separation distance,D, between probe and substrate is

From eq A.5 and eq A.11 we have

From eq A.2, we have

which is just the statement that, at equilibrium, the total normal
force on any horizontal cross-section is a constant equal to the
Laplace pressure over the area of the meniscus on the substrate.
This is equal to the force on the probe (the pull-off force,F)
where

where the scaled pull-off force,F*, is

For reff, Rgiven, eq A.10 definesλ (R. hP) and a specification
of F* determinesR from eq A.16. Equation A.13 then defines
the separationD corresponding to the scaled pull-off forceF*.
In this way, the calculation ofF(D) for given reff, R is reduced
to a straightforward numerical integration.

For smallλ values, we have 1. R . λ and, from eq A.9

From eq A.6, we have in this limit

so that eq A.13 becomes

Using eq A.16, we rearrange eq A.19 to obtain

which is Mate’s result (eq 11) corrected for the presence of a film
on the probe sphere.

The excess volume in the meniscus (the volume of the meniscus
less the volume of film that would be on the substrate and probe
surfaces if the meniscus was not present) is given by

where

is the volume of the spherical cap (radiusR) which subtends an
angle 2(π - θ) at the sphere center. Using eqs A.2 and A.4, we
can rearrange eq A.21 to yield

When the separation distance,D, is less than the sum of film
thicknesses,h + hP, the termVsp(θp) must be corrected since a
piece of this spherical cap lies below the height of the films and
should not have been subtracted. From the geometry of this case,
we can show that the angle 2(π - θq) subtended by this
overcounted piece of spherical cap is defined by

and forD < h + hP, the excess volume is then

From eq A.6, we obtain, after some algebra,

a quantity we require in order to evaluate the jump-out point on
the F(D) curve.

Appendix 2. Retarded Calculation of Disjoining
Pressure of ZO3 on Si

The interaction energy of substrate 1 interacting with substrate
2 across thicknessL of medium 3 is given by41-45

where the Hamaker functionA132(L) is given by

(41) Dagastine, R. R.; White, L. R.; Jones, P. M.; Hsia, Y. T.J. Appl. Phys.
2005, 97, 126106/126101-126106/126103.

(42) White, L. R.; Dagastine, R. R.; Jones, P. M.; Hsia, Y. T.J. Appl. Phys.
2005, 97, 104503/104501-104503/104507.

(43) Lifshitz, E. M.SoViet Phys.: J. Exp. Theor. Phys.1956, 2, 73-83.
(44) Hough, D. B.; White, L. R.AdV. Colloid Interface Sci.1980, 14, 3-41.
(45) Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P.AdV. Phys.1961,

10, 165-209.

Vsp(θ) ) πR3

3
[1 + cosθ]2[2 - cosθ] (A.22)

V )

πR3[λ3

R2∫0

θp dθ sin θ
(R2 sin2 θ + 1)1/2[(R2 sin2 θ + 1)1/2 + R sin θ]3] -

Vsp(θp) (A.23)

h + hP - D

R
) - λ[∆(R,θp) - 1

λ
(1 + cosθp)] ) 1 + cosθq

(A.24)

V )

πR3[λ3

R2∫0

θp dθ sin θ
(R2 sin2 θ + 1)1/2[(R2 sin2 θ + 1)1/2 + R sin θ]3] -

Vsp(θp) + Vsp(θq) (A.25)

R4 ∂

∂R2[∆(R,θp) - 1
λ
(1 + cosθp)] )

- λ
2(1 + λ)cosθp

- R3

2∫0

θp dθ sin2 θ

(R2 sin2 θ + 1)(3/2)
(A.26)

E132(L) ) -
A132(L)

12πL2
(A.27)

A132(L) ) -
3kT

2
∑
n)0

∞

′∫rn

∞
dx x ln{[1 - ∆31

E ∆32
E e-x][1 -

∆31
M ∆32

M e-x]} (A.28)

rp
2 + (qp - R)2 ) (R + hP)

2 (A.11)

D ) yp - qp (A.12)

D ) h + hP + reff[∆(R,θp) - 1
λ
(1 + cosθp)] (A.13)

2πrγLA sin θ - πr2∆p ) - πr0
2∆p (A.14)

F ) πr0
2∆p ) -

πγLAreff

R2
) (4πγLAR)F* (A.15)

F* ) - λ
4R2

(A.16)

θp ) π - λ
R

+ ... (A.17)

∆(R,θp) ) 2 + ... (A.18)

D - h - hP ) reff[2 - λ
2R2

+ ...] (A.19)

F(D) ) -4πγLAR(1 -
D - h - hP

2reff
+ ...) (A.20)

V ) ∫y0 ) h

yp dyπr2 - Vsp(θp) (A.21)
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and

where

are the dielectric permittivity and magnetic permeability of
substancej evaluated at imaginary frequency,iên, given by

Herec is the speed of light,k is Boltzmann’s constant,T is the
absolute temperature, andp is Planck’s constant divided by 2π.
Note thatê0 ≈ 2.5× 1014 rad/s at room temperature. The prime
on the summation in eq A.28 indicates that then ) 0 term is
assigned half weight. For all materials in this studyµj ) 1. The
construction of the dielectric response function,εj(iê), for each
material is discussed below.

The disjoining pressure,Π132(L), defined by

is the force per unit area that substrate 1 exerts on substrate 2
across thicknessL of medium 3 is given explicitly by45

These equations must be modified when the substrate is layered,
as is the case for the system Silicon(1)/Silica(4)/ZO3(3)/Air(2)
considered here. In eqs A.28 and A.34,∆31

E is replaced by41,42

wheret4 is the thickness of layer 4 (the surface silica layer) and
s4 is defined in eq A.30. Analogous replacement of∆31

M with
∆h 31

M is also made. In this calculationε2(iê) ) 1 and we use a
Ninham-Parsegian construction41,42 for the lubricant ZO3 and
the silica layer.44 The functionε1(iê) for silicon was calculated
by a Kramers-Kronig construction44 usingε′(ω),ε′′(ω) data for
silicon.46Theε(iê) function for amorphous carbon was similarly
constructed from theε′′(ω) data of Kovarik et al.47
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ên ) nê0 ê0 ) 2πkT
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∞ ×
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