
Characterization of Distance-Dependent Damping in
Tapping-Mode Atomic Force Microscopy Force

Measurements in Liquid

Ijeoma Nnebe and James W. Schneider*

Department of Chemical Engineering, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213-3890

Received August 5, 2003. In Final Form: November 18, 2003

We have used a spectral analysis method to characterize changes in the local damping coefficient for
an acoustically driven cantilever as it approaches a hard surface in liquid. We show a significant distance
dependence of the damping coefficient (and associated quality factor) that must be accounted for to achieve
successful theoretical reproduction of experimental tapping-mode force curves. We model the cantilever
dynamics using a forced damped harmonic oscillator model and solve the equation of motion using the
method of finite differences. Experiments in solutions of differing viscosities show that bulk viscous damping
is not the source of the system dissipation, while simulations of the cantilever dynamics including adhesion
hysteresis also eliminate this as the origin of the dissipation. We conclude that frictional dissipation that
occurs with the intermittent contact is the likely source of dissipation in the system. Our results identify
a semiquantitative means of interpreting tapping-mode force curves on nondeformable surfaces in liquid.

Introduction

Tapping-mode atomic force microscopy (TM-AFM)1 is
a widely used tool in the imaging of soft, deformable
biological and polymeric surfaces.2-5 In this mode of AFM,
the cantilever is oscillated at moderate amplitude causing
intermittent contact between the tip and surface that
minimizes tip-sample contact time and reduces lateral
shear of the sample. The cantilever’s dynamic response
is monitored to provide information about probe-sample
interactions and to obtain topographical images and
material properties of the surface. In particular, TM-AFM
in air has proven invaluable in the imaging of biological
molecules such as proteins, DNA, and soft cell surfaces.2,6

It is also desirable to image such surfaces under physi-
ological conditions in order to obtain structures of the
molecules/surfaces in their natural environment7-13 and
to measure their intermolecular forces to help uncover

the molecular basis of their function. When using TM-
AFM to study these various soft surfaces, it is important
to consider all factors that affect the dynamic response of
the cantilever. Several modes of energy dissipation exist
for TM-AFM in liquid and should be fully characterized
for a correct interpretation of both TM-AFM images and
force measurements in this medium.

The hydrodynamic damping that affects the free oscil-
latory motion of AFM cantilevers has been well described
theoretically.14-16 Here, “free” refers to separation dis-
tances at which tip-sample interactions are negligible
or, essentially, when the cantilever’s oscillations are
unaffected by the sample surface. This damping has an
inertial component, caused by a mass of liquid that moves
with the oscillating cantilever, and a viscous component
caused by the resistance of the fluid that must be displaced
by the moving lever.16 Additional drag can also occur due
to the squeezing of liquid out of the gap between the
cantilever and surface or tip and surface. This drag has
been referred to as “squeeze damping”,17 and its magnitude
is dependent on the gap distance between the mean
position of the cantilever/tip and the sample surface and
the square of the squeeze object size. Theories describing
this form of viscous drag predict the cantilever squeeze
drag coefficient to scale as D-3,18 but experimentally it
has been observed to scale as D-1,19,20 where D is the gap
distance between the cantilever and sample surface. The
“tip squeeze drag coefficient” displays a more sensitive
distance dependence at the nanometer scale relevant to
TM force measurement and imaging experiments. This
damping coefficient is predicted to scale as D-1 16 and is
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commonly three orders of magnitude smaller than the
cantilever squeeze-damping coefficient. O’Shea and
Welland confirmed this experimentally in their study of
solvation forces using noncontact, dynamic AFM, in which
they failed to observe tip-surface squeeze damping.16

Much of the experimental and theoretical work on
squeeze damping applies to conditions where the oscil-
lation amplitude is much smaller than D. For TM
operation, however, the oscillation amplitude is compa-
rable to D, resulting in the intermittent contact that is
the basis of the measurement. Consequently, it is possible
that distance-dependent viscous damping is more sig-
nificant in TM-AFM operation in liquid, since in a single
oscillation cycle the squeeze gap can vary from finite
distances to zero. Other modes of energy dissipation may
be important in TM due to the contact that occurs between
the tip and sample. Any strong adhesion between the tip
and sample will dissipate energy from the system.
Additionally, lateral sliding of the tip during contact
because of its off-normal approach to the sample21 and
buckling of the cantilever due to acoustic waves generated
during acoustic excitation22 may promote frictional energy
dissipation. In this work, we measure the distance
dependence of the energy dissipation experimentally
through the cantilever thermal resonance response during
TM operation in liquid. We then use these results to
quantitatively predict TM-AFM force curves using nu-
merical simulations of the cantilever dynamics.

A few authors have modeled the cantilever dynamics
in TM liquid operation with comparison to experiment. In
1996, Chen et al.22 modeled the dynamics of a cantilever
tapping on silicon in liquid and used a squeeze-damping
theoretical model (∝D-3) to account for the hydrodynamic
drag in the system. Though there was fair agreement
between their simulation results and the experiment,
the shapes of the force curves were quite different, and
this was attributed to the limitations associated with
using the one-dimensional harmonic oscillator model to
describe the movement of the complex three-dimensional
cantilever structure. We will show in our work that we
can successfully reproduce the shape of our experimental
force curve and achieve good agreement using the one-
dimensional model when we utilize the distance-depend-
ent damping we measure experimentally. Measurements
are made under the same conditions used for conventional
TM imaging experiments in liquid, with oscillation
amplitudes of 5-10 nm and a driving frequency close to
the fundamental cantilever resonance frequency.

Experimental Methods
A Nanoscope III Multimode AFM was used to collect all TM

force measurements. In this system, acoustic excitation (forced
vibration of the fluid cell) is utilized to promote cantilever
oscillation. To collect the resonance spectra of the cantilever, the
photodetector signal was streamed at a high frequency (∼0.5
MHz), amplified using a 10× gain, and stored using a Labview
high-frequency data acquisition card simultaneous to force curve
collection at a 0.1 Hz ramp rate. This time-domain data was then
divided into subsets corresponding to ∼1 nm spacing, and these
subsets were converted to Fourier space with a Hanning window
and 69 averages. It was necessary to acoustically drive the
cantilever to obtain a self-consistent measure of the quality of
resonance.

TM force measurements were conducted on silicon in ultrapure
water (MilliQ Gradient A10 System, Millipore) or 50 mM NaCl
(Sigma-Aldrich). It was found that addition of salt did not affect

the amplitude changes with separation in the TM force curves.
Prior to use, both the silicon surfaces and cantilevers were cleaned
for 35 min using UV and ozone irradiation (UVO cleaner, model
42, JeLight, Irvine, CA). V-shaped silicon nitride cantilevers with
spring constants of approximately 0.5 N/m were used to conduct
the force measurements. Exact values of the spring constants
were obtained using the method of Hutter and Bechhoefer.23 In
some experiments, measurements were conducted in water/
glycerol (Sigma Aldrich) mixtures of various concentrations to
investigate bulk viscosity effects on cantilever dynamics.

Analysis
The motion of the TM cantilever forced to oscillate using

a sinusoidal external drive in liquid is modeled using the
one-dimensional forced damped harmonic oscillator model.
This is only valid under the assumption that the primary
mode of vibration is more dominant than secondary
vibrational modes. It has been shown that the ratio
between the amplitude of the fundamental bending mode
and secondary modes decreases in liquid as compared to
air; however, the primary mode is still the dominant mode
of vibration during tapping.24

Near the surface, tip-sample interactions and viscous
damping become significant and will affect the cantilever
response. The cantilever dynamics including the effects
of tip-sample interaction and the possibility of distance-
dependent viscous dissipation can be described using this
equation of motion25,26

In the above equation, x is the instantaneous tip position
and D is the equilibrium or mean tip-sample separation
distance in each oscillation cycle. Both vary with time, t;
however changes in D (mediated through movement of
the sample stage toward or away from the oscillating tip)
occur much slower than the variation in x. The physical
properties of the cantilever are represented through an
effective mass m that includes the mass of liquid that
oscillates with the lever and the cantilever restoring force/
spring constant kc. External perturbations to the oscillator
include the driving force required to sustain oscillation
Fdrive, viscous damping that opposes cantilever acceleration
and is characterized by the coefficient γ, and the tip-
sample interaction denoted by FP-S.

Equation 1 can be recast in terms of more directly
accessible variables experimentally

In eq 2, the substitution ωo ) (kc/m)1/2 27 was made to
eliminate m from the equation, where ωo is the resonance
frequency of the freely oscillating cantilever with its
entrained mass of liquid and ωo/Q was substituted for the
effective damping coefficient, γ/m.27 Q is the quality factor
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of the lever and is a measure of the sharpness of the
resonance response. The driving force is sinusoidal with
an amplitude ad and frequency ω. It is important to note
that in either equation we allow the viscous damping to
be dependent on D. This deviates from the usual repre-
sentation of the equation (for operation in air) where the
viscous drag component is assumed to be constant and
independent of separation.25,28,29

The steady-state solution to eq 2 has been derived using
Fourier expansions, assuming sinusoidal tip motion, by
Gauthier et al.30 and can be used to determine the
oscillation amplitude response as a function of frequency
or the resonance response of the cantilever

There are two significant terms in the equation above
that will affect the oscillation amplitude of the cantilever:
(i) r[A] the average tip-sample interaction force over an
oscillation cycle, scaled by 1/2 kcA2, and (ii) the average
viscous damping over an oscillation cycle, represented
through Q. Figure 1 depicts how each of the above terms
will affect the resonance response of the cantilever. Tip-
sample interactions effectively change the spring constant
of the system,31,32 thereby shifting the frequency at which
the maximum amplitude occurs (resonance frequency).
Increased viscous drag dissipates energy from the system
and, as a consequence, decreases the amplitude of the
oscillator.33 Note that Q is an average of the viscous
dissipation over one whole oscillation cycle and it can be
affected not only by viscous drag due to the fluid but by
viscous losses associated with the tip-sample interaction.
The quantity r[A] only represents the conservative part
of the tip-sample interaction and is positive for attractive
forces and negative for repulsive interactions.

Results and Discussion
Typically inTMforcemeasurements,both theoscillation

amplitude of the cantilever and the phase lag in its

response from the drive are used to obtain quantitative
measuresof thesamplematerialpropertiesandtheviscous
dissipation in the system. Since most commercial AFMs
utilize acoustic excitation to drive the cantilever in liquid,
vibration of fluid cell components gives rise to spurious
resonances that complicate both the identification of the
fundamental resonance frequency of the cantilever and
the phase behavior of the cantilever.34 We utilize the
resonance frequency obtained from the thermal fluctua-
tions of the cantilever20 to assist in the identification of
the fundamental resonance frequency during forced
excitation and solely focus on the measurement of oscil-
lation amplitude changes with separation. Figure 2a shows
the amplified photodetector signal during a typical force
curve on silicon. An important feature of the signal is that
the amplitude decays fairly symmetrically. This confirms
that the cantilever is being oscillated close to its funda-
mental resonance frequency.8,35

A well-appreciated complication in interpreting all AFM
force curves is the uncertainty associated with the tip-
sample separation distance. We have chosen to use the
return to constant amplitude (point A in Figure 2b) to
calibrate D ) 0. This return to constant amplitude
coincides with a linear increase in the mean deflection of
the cantilever (Figure 2b) that we assume is analogous to
the linear signal or “constant compliance region” observed
in dc AFM. In this constant-compliance region, the tip
can no longer approach or indent the sample, and it is the
continued linear movement of the sample stage under-
neath it that causes the linear deflection. We attribute
the terminal nonzero amplitude that we observe to the
large drive amplitude used to sustain oscillation in acoustic
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Figure 1. Theoretical resonance curve (A(ω)) of an oscillator
when probe-sample interactions are negligible (solid line), the
same oscillator perturbed by an attractive probe-sample
interaction (dashed line), a repulsive probe-sample interaction
(dotted line), and additional damping (dashed-dotted line).

A )
ad

((1 - ω2/ωo
2 - r[A])2 +

ω2/ωo
2

Q2 )1/2
(3)

Figure 2. (a) Truncated photodetector signal (amplified V) for
a TM force measurement on silicon in water. Number of cycles
illustrated was truncated for graphical purposes. (b) Amplitude
(black) and mean deflection (gray) versus mean tip-sample
separation, D, for the same force measurement. A denotes the
defined point of D ) 0.
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liquid operation that causes residual bending of the
cantilever.

Fourier transformation of the time domain data in a
TM measurement yields spectra consisting of a thermal
background and spikes centered at integer multiples of
the drive frequency.13 These spikes also appear when the
laser is reflected off the cantilever substrate, indicating
that they are due to the forced translation of the substrate
and do not reflect the cantilever dynamics. Therefore, we
remove these spikes and fit eq 3 to the broader background
thermal peak (Figure 3a). Spectral analyses of the
cantilever resonance under driven and non-driven condi-
tions yield identical thermal spectra when the noise spikes
are removed.36 Similar observations have been made by
Revenko and Proksch13 for TM spectra in liquid. As a
result, the values of Q obtained by our method are obtained
by thermal excitation over a wide range of frequencies,
despite the fact that the cantilever is acoustically driven
at a nominal drive frequency. Figure 3a shows some of

the fit results. At all separations, the cantilever generally
satisfies the harmonic approximation (eq 3). When
intermittent contact occurs, there is a large amount of
low frequency noise that greatly distorts the resonance
spectra below 3 kHz. This is accompanied by higher-order
harmonics arising from a distortion of the free cantilever’s
harmonic potential as the tip contacts the surface. Figure
3b shows the fit parameters Q and -r[A] as a function of
separation. r[A] is a negative value due to the dominance
of a repulsive tip-sample interaction in the measurement.
Q decays significantly once the tip starts to intermittently
contact the surface, and |r[A]| increases linearly signifying
the growing importance of the repulsive interaction due
to contact with the surface.

Bar et al. have shown that the resonance frequency
shift is linear with separation when tapping on silicon in
air.32 The origin of this linearity is the contact hard wall
repulsion that limits the lower turning point of oscillation.
When the lower turning point of oscillation is bounded,
a symmetric decrease in the upper turning point of
oscillation during rebound must occur. This is charac-
teristic of the symmetric vibration of a harmonic oscillator.
To determine if the onset of Q decay or increased
dissipation was related to the onset of tapping against
the silicon sample, we varied the drive amplitude from 5
mV corresponding to a free oscillation peak amplitude,
Ap,o, of 0.4 nm to 100 mV or Ap,o ) 12 nm (Figure 4a). As
a point of comparison, the natural thermal fluctuations
of this cantilever are about 0.1 nm and do not display any
significant change in Q with separation. In Figure 4b, we
replot the results by scaling the distance axis by Ap,o and
normalizing the average interaction by its value at free
oscillation. All the curves collapse onto one curve, con-
firming that the onset of additional dissipation only

(36) Nnebe, I. M.; Schneider, J. W. Materials Research Society
Symposium Proceedings, Volume 790; Materials Research Society, 2004.

Figure 3. (a) Theoretical fit of A(ω) curves (eq 3) obtained
using Fourier spectroscopy at various D every 0.8 nm from
contact (D = 0, bottom curve) for a TM force measurement on
silicon in water. (b) Fitted Q (white symbols) and -r[A] (black
symbols) as a function of D.

Figure 4. (a) Fitted Q as a function of separation for free peak
amplitudes of Ap,o ) 0.4 nm (circles), 3.1 nm (squares), 6.1 nm
(triangles), and 12.2 nm (diamonds). (b) Fitted Q as a function
of normalized separation, D/Ap,o, for the data in Figure 4a. Q
has also been normalized by its noncontact value.
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commences with intermittent contact. This is consistent
with the constant Q observed when the spectral analysis
is conducted for a thermally fluctuating cantilever for
which intermittent contact never occurs and suggests bulk
viscous effects have no role in the dissipation observed.

We proposed earlier that dissipation due to tip squeeze
damping might be more significant in TM than can be
described through classical noncontact models such as
the Reynolds equation16,37

In the above equation, η is the viscosity of the fluid and
R is the radius of the hemispherical end of the tip involved
in the squeeze damping. We therefore approximate an
equivalent γTM by averaging the computed γ from eq 4 at
all tip-sample distances over the oscillation cycle, i.e.

In (5), the constant Q obtained experimentally at
noncontact separationswasusedtocalculateanequivalent
damping coefficient attributed to cantilever squeeze
damping, which was then added to the tip squeeze
damping contribution. γTM calculated using this procedure,
assuming R ∼ 28 nm (the measured tip radius of
curvature), results in a D-0.6 dependence instead of the
D-1 dependence usually expected. Additionally, γTM is
about 3 orders of magnitude larger than the conventional
tip-squeeze damping calculated for oscillation amplitudes
that are much smaller than the gap height. This is due
to the cantilever sampling very small separations during
its oscillation cycle where large damping is predicted.

Figure 5 shows how the calculated γTM compares with
the experimentally observed damping coefficient, γex. No
change in γTM is observed until the onset of intermittent
contact; however at this point γex displays more sensitive
distance dependence than γTM. This deviation worsens as
Ap,o increases (inset of Figure 5). We will not place any
large significance in the differences observed between γex
and γTM because of the simplistic averaging procedure
used to obtain γTM. Instead, to more directly confirm if

squeeze damping is the origin of the dissipation we observe
during intermittent contact, we conducted more TM
forcemeasurements and A(ω) analysis in aqueous media
of different viscosities. The viscosity of water was modified
from 1 to ∼1.4 and ∼1.85 cP using 10% and 20% glycerol
(v/v). The effect of bulk viscosity on the freely oscillating
cantilever is best observed in Figure 6, showing resonance
spectra obtained from the thermal fluctuations of the
cantilever in each of the solutions. As the viscosity of the
bulk solution is increased, both the entrained mass of
liquid and fluid resistance to displacement increase
resulting in a negative frequency shift and broadening of
the resonance curve. Figure 7a shows the fitted Q(D) for
forced oscillation in all three solutions as a function of
separation. The drive amplitude was adjusted in each
solution to ensure that the oscillation amplitudes were
the same for all the experiments. The viscosity of the
solutions affect the cantilever squeeze damping contribu-
tion as expected resulting in the different values of Q
observed for each solution during the noncontact part of
the oscillation. With the onset of intermittent contact, Q
decays in all the solutions; however the final Q obtained
is independent of the viscosity of the solution. In fact, if
we normalize the vertical axis using the free cantilever
quality factor Qo and again normalize the distance axis
using the peak amplitude Ap,o, all the curves collapse onto
each other (Figure 7b), further indicating that the observed
dissipation is independent of bulk viscous-drag effects.
From eq 4, we expect the damping coefficient due to
squeeze flow to be viscosity dependent and therefore we
should expect that as we increase the viscosity of the
media, the dissipation would increase resulting in lower
final Q’s for the solutions of higher viscosity. Since this
is not what is observed, we can conclude that squeeze
damping is not the origin of the dissipation that is observed
experimentally during intermittent contact.

We must therefore consider other possible sources of
the energy dissipation. We first investigate the possibility
of adhesion hysteresis. To examine this further, we rely
on numerical simulations of the cantilever response with
separation for three different conditions: (i) constant Q;
(ii) distant-dependent energy dissipation using the Q decay
obtained experimentally; and (iii) distant-dependent
energy dissipation modeled through adhesion hysteresis.
The properties of the cantilever were all measured
experimentally, and a Hertzian contact force26 at the
silicon surface and an elastic modulus of 180 GPa for the
silicon was assumed for cases (i) and (ii). To account for
adhesion hysteresis, the Maugis model38 is used with a(37) Craig, V. S. J.; Neto, C. Langmuir 2001, 17, 6018-6022.

Figure 5. γ(D) calculated theoretically (white symbols) and
observed experimentally (gray symbols). Inset: γ(D) for a larger
drive amplitude.

γ ) 6πη R2

D
(4)

γTM )

∑
n)0

Ap

γn

n
(5)

Figure 6. A(ω) of a free cantilever in water (white symbols);
in 10% glycerol (gray symbols); and in 20% glycerol (black
symbols).

Distance-Dependent Damping Langmuir, Vol. 20, No. 8, 2004 3199



larger work of adhesion upon retraction away from the
surface. The adhesion hysteresis was adjusted until the
final oscillation amplitude obtained was the same for the
simulation and experiment. The significance of allowing
for some form of separation-dependent dissipation is
clearly evident through the simulation results (Figure 8).
However, when the source of dissipation is modeled as
adhesion hysteresis, the shape of the curve is different to
that observed experimentally (Figure 9).

Marcus et al.,21 in 1999, identified an important source
of dissipation in TM operation that arises from a fric-
tionalloss associated with lateral tip motion during
contact. This lateral motion is due to the slight inclination
of the cantilevers in the fluid cell. Since this dissipation
is only associated with contact, it should be independent
of the viscosity of the solution but dependent on the
material properties of the sample surface. We believe that
the dissipation that we have observed has frictional origins
that may be due to losses associated with sliding upon
contact or/and cantilever buckling suggested by Chen et
al.22

There are some limitations that we must address for
the purpose of providing a complete evaluation of the
method we have presented. First, it is important to note
that though secondary bending modes of the cantilever
are not as significant as the primary bending mode, the
optical method of detection is still sensitive to these
bending modes. This may complicate the identification of
local material viscosity with this method where it appears
dissipation is friction dominated. Also, since we use the
average resonance response to measure dissipation, local
sources of dissipation are difficult to identify because the
dissipation measured is an average over the entire
oscillation cycle spanning distances of a few nanometers.
Attempts to quantify local dissipation using smaller
amplitudes of oscillation or the thermal fluctuations of
the cantilever were unsuccessful, as the large amount of
dissipation on contact overdamps the cantilever. Despite
these limitations, we have shown that we can obtain good
quantitative reproduction of TM force curves in liquid by
accounting for distance-dependent damping in the theo-
retical model of the cantilever dynamics.

Conclusion

We have provided a method for characterizing the
dissipation occurring in a TM experiment that will allow
external damping effects to be rigorously accounted for in
future simulations of the dynamics of the cantilever in
TM operation in liquid. We have shown that on silicon,
this dissipation is not due to squeeze damping. Instead,
the dissipation likely has frictional origins due to sliding
of the tip during contact and cantilever buckling caused
by the motion of acoustic waves in the system.

(38) Burnham, N. A.; Colton, R. J.; Pollock, H. M. Nanotechnology
1993, 4, 64-80.

Figure 7. (a) Q(D) for a TM force measurement on silicon in
water (white symbols); 10% glycerol (gray symbols); and 20%
glycerol (black symbols). (b) Same data except vertical axis has
been normalized using the noncontact Qo and the horizontal
axis normalized using Ap,o.

Figure 8. A(D) from a TM force measurement on silicon in
water (circles): simulation results using a constant Q (dashed
line), and results using the form of Q decay obtained experi-
mentally (solid line).

Figure 9. Same experimental data but simulation results now
reflect the addition of adhesion hysteresis in the tip-sample
interaction. Surface energies during retraction of the tip from
the surface were defined as $adh,ret ) 10 mJ/m2 (solid line),
$adh,ret ) 20 mJ/m2 (long dashed line), and $adh,ret ) 50 mJ/m2

(short dashed line). Using $adh,ret ) 50 mJ/m2, the tip becomes
stuck to the surface immediately upon the onset of intermittent
contact.
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We aim to extend our dissipation-characterization
method toward TM experiments on compliant surfaces,for
which fluid mode TM-AFM is most commonly used. Recent
experiments that we have conducted on surfaces bearing
grafted polymer have shown that distance-dependence
dissipation is also significant in these systems.

Distance-dependent dissipation is significant in TM in
liquid and neglecting to account for it can lead to significant
inaccuracies in the determination of tip-sample interac-
tions and in topography measurement. We have provided

a useful procedure for quantifying this dissipation with
each particular TM measurement.
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