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ABSTRACT Scientists wishing to communicate the essential characteristics of a pattern (such as an immunofluorescence
distribution) currently must make a subjective choice of one or two images to publish. We therefore developed methods for
objectively choosing a typical image from a set, with emphasis on images from cell biology. The methods involve calculation
of numerical features to describe each image, calculation of similarity between images as a distance in feature space, and
ranking of images by distance from the center of the feature distribution. Two types of features were explored, image texture
measures and Zernike polynomial moments, and various distance measures were utilized. Criteria for evaluating methods for
assigning typicality were proposed and applied to sets of images containing more than one pattern. The results indicate the
importance of using distance measures that are insensitive to the presence of outliers. For collections of images of the
distributions of a lysosomal protein, a Golgi protein, and nuclear DNA, the images chosen as most typical were in good
agreement with the conventional understanding of organelle morphologies. The methods described here have been imple-
mented in a web server (http://murphylab.web.cmu.edu/services/TypIC).

INTRODUCTION

It is becoming common to collect many digital images via
fluorescence microscopy in a single study, yet publications
resulting from such studies can usually include only a few
images. Although these images are intended to be represen-
tative of the results, there is no standard method for select-
ing a representative image. A reader of a published paper
often has no way of knowing the criteria used to select a
published image or whether the image was selected at
random. The selection may be influenced (either con-
sciously or unconsciously) by an author’s conception of
what the results ought to be.

With this background in mind, it was of interest to
determine whether prior literature describing methods for
selecting a representative image from a set of digital images
existed. Searches of the INSPEC, MEDLINE, and Article-
First databases yielded no articles that appeared to be con-
cerned with the task of selecting a representative image.
Combinations of the terms “typical,” “representative,” “im-
age,” “microscopy,” and “selection” were used without suc-
cess (although articles were found for some combinations of
these terms, examination of the abstracts revealed that the
articles were not relevant).

One way to select a representative image would be to ask
which image is most similar to all of the other images in the
set. This question is related to the one asked by the design-
ers of image database query engines where the goal is to
find those images in the database that are most similar to a
particular query image. The Query by Image Content

(QBIC) system (Flickner et al., 1995) is one such tool. The
major challenges in querying an image database and select-
ing a representative image are the same: choosing numerical
features so that each image is represented as a point in a
multivariate space, and choosing a metric for measuring
distance between points in that space. The additional chal-
lenge faced in representative image selection is the choice
of a definition for the most typical observation in a set of
multivariate data (also referred to as the multivariate medi-
an). Tools, such as QBIC, that measure pairwise image
similarity represent a useful basis for the problem of represen-
tative selection, but are not a solution in and of themselves.

In this paper, criteria for evaluating methods for selecting
a representative image are described, results from applying
these methods to sets of images typical of those generated in
studies of cell and molecular biology are reported, and
methods for measuring image similarity that perform better
than QBIC for these types of images are presented.

MATERIALS AND METHODS

Images

A collection of images of Chinese hamster ovary (CHO) cells visualized
via indirect immunofluorescence was used (Boland et al., 1998). (The
image collection is available at http://murphylab.web.cmu.edu/data.) A
brief description of the sample preparation and image acquisition follows.
CHO cells were grown on coverslips, fixed with 2% paraformaldehyde,
and permeabilized with 0.1% saponin. The coverslips were then incubated
with a primary antibody, washed, incubated with a Cy5-conjugated sec-
ondary antibody, washed again, and mounted on slides. Primary antibodies
directed against the Golgi protein giantin, the lysosomal protein LAMP2,
and the cytoskeletal protein tubulin were used. DNA was labeled with
Hoechst 33258. Images of Cy5 and Hoechst 33258 fluorescence were
acquired using a customized Zeiss epifluorescence microscope (Farkas et
al., 1993). The microscope system consisted of a 1003, 1.3 NA oil
immersion objective, appropriate filter sets, and a cooled CCD camera with
a 5123 382 array of 23-mm pixels (resulting in a 0.23-mm pixel spacing
at the object plane). After acquisition, the images were manually cropped
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to isolate single cells, the background fluorescence was subtracted, and the
remaining pixels were thresholded at 1.5 times (DNA images) or 4 times
(all others) the value of the background fluorescence. Images in the original
data set obtained using a monoclonal antibody against NOP4 were not used
in this study because there was an insufficient number of images for some
of the methods described here.

Twelve test data sets were constructed from all pairwise combinations
of the four image classes where 75% of the images were of one image type
and 25% were of another type (see Results). The test sets consisted of 77
giantin images combined with 26 images from one of the other classes, 69
DNA images combined with 23 others, 97 LAMP2 images combined with
33 others, or 51 tubulin images combined with 17 others.

Feature calculation

Two sets of numerical features were used to describe the images, as
reported previously (Boland et al., 1998). The first, Haralick’s texture
features (Haralick, 1979), were calculated using the kharalick function of
the cytometry toolbox (Fleming, 1996) for Khoros (version 2.1 Pro; Khoral
Research, Albuquerque, NM; http://www.khoral.com). This function cal-
culates the gray-level co-occurrence matrix in four directions (vertical,
horizontal, and the two diagonals), and the output is the average of 13 of
Haralick’s statistics over these four directions. The maximum correlation
coefficient was not calculated because of computational instability.

The second set of features was based on Zernike moments (Teague,
1980). Two steps were required to map Cartesian pixel coordinates to a unit
circle for calculation of Zernike moments. First, the “center of fluores-
cence” (center of mass) for each image was calculated and used to redefine
the center of the pixel coordinate system. Second, because the Zernike
polynomials are defined over a circle of radius 1, thex andy coordinates
were divided by 150 (this corresponds to the size of an average cell in the
images used here). Only pixels within the unit circle of the resulting
normalized image,f(x,y), were used for subsequent calculations. The
Zernike moments,Znl, for an image were calculated using
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The Zernike moments through degree 12 (Znl such thatn # 12) were

calculated. Because the moments are complex numbers and are sensitive to
rotation of the image, the magnitudes of the moments were used as features
(i.e., uZnlu) (Khotanzad and Hong, 1990). This provided 49 descriptive
features for each image.

Distance metrics

The Euclidean distance between points in feature space was calculated
using
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where F is the number of features,xi1 is the value of featurei for
observation (image) 1, andxi2 is the value of that same feature for
observation 2.

The Mahalanobis distance was calculated using

~~x 2 x#!9C21~x 2 x#!!1/2

wherex is a vector of feature values,x# is the vector containing the means
of the features, andC is the feature covariance matrix.

Mahalanobis distances were also calculated after robust estimation of
population mean and covariance, using multout (version 3.03, available at
http://lib.stat.cmu.edu/jasasoftware/rocke). multout generates robust esti-
mates of the mean vector and covariance matrix by detecting and “delet-
ing” outlier events (Rocke and Woodruff, 1996). When using all 49
Zernike features (but not with the 13 Haralick features), multout reported
the starting sample covariance matrix as singular (presumably because the
number of features was too large for the number of observations available).
An iterative procedure was used to reduce the number of Zernike features.
The feature with the greatest number of correlations greater than 0.9 or less
than20.9 was identified and removed. In the event of ties, the feature with
the largest sum of squared correlations was chosen for deletion. This
reduced matrix was used as input to multout, and removal of features
continued until the program was able to proceed. This procedure resulted
in a reduced feature matrix consisting of 25 Zernike features for giantin, 44
features for LAMP2, 23 for tubulin, and 19 for DNA.

x2 tests

To evaluate the performance of typicality methods on “contaminated” test
sets consisting of more than one type of image, the number of minority
images assigned a typicality less than or equal to a particular value was
tabulated for increments of 0.05 between 0.05 and 1. The comparable ideal
cumulative density function (for 25% minority images) was considered to
be 0.2, 0.4, 0.6, and 0.8 for typicality values from 0.05 to 0.20 and 1 for all
higher typicality values. This was converted to an expected distribution for
each data set by multiplying by the number of minority images in that data
set. Thex2 was calculated for each data set to test the hypothesis that the
observed and ideal distributions were statistically indistinguishable. The
hypothesis was upheld when thex2 value for the test data was less than that
for 19 degrees of freedom at a 0.99 confidence level (x2 5 7.633).

RESULTS

Images and features

The choice of the particular numeric features used to de-
scribe an image or set of images is crucial to the success of
an image analysis task. We have previously demonstrated
that either of two feature sets, Haralick texture features
(Haralick, 1979) or Zernike polynomial moment features of
degree 12 (Khotanzad and Hong, 1990), are adequate to
correctly classify nearly 90% of the images in a collection
containing five different subcellular localization patterns in
Chinese hamster ovary (CHO) cells (Boland et al., 1998).
The collection includes images of the subcellular location of
giantin (which is found in the Golgi apparatus), LAMP2
(which is found predominantly in lysosomes), tubulin
(which forms part of the cytoskeleton), and DNA (which is,
of course, primarily found in the nucleus). The results
suggest that each of the feature sets contains enough infor-
mation to summarize each image class in a biologically
meaningful manner (i.e., that the features describe charac-
teristics that are important for recognizing the image from
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among other, similar images). This knowledge provides an
important starting point for choosing representative images
based on these features.

The high level of compression achievable using these
features should be noted. By using 49 Zernike features
instead of 1502 p pixel intensities, we reduce the number of
values used to represent the image by a factor greater than
1400. When 13 Haralick features are used, the compression
is ;5400:1. While much information is lost in this reduc-
tion, it is expected that these feature sets still capture the
essential characteristics of the images (as discussed above).
For computational reasons (see Materials and Methods), the
maximum number of features that could be used to describe
50–100 images was found in all cases to be less than half
the number of observations.

Creation of test sets

In data sets collected via fluorescence microscopy, it is quite
common to have some unusual images, both through error
in collection and from biological variation. Any method for
selecting a representative image must be able to tolerate
modest numbers of unusual images, that is, to have the
choice of representative image not be significantly affected
by the presence or absence of atypical images. To evaluate
the extent to which various methods met this criterion,
“contaminated” test sets in which 75% of the images were
of one class (e.g., giantin) and 25% were of another class
(e.g., LAMP2) were constructed from the images in our
collection. The choice of 25% contamination was made
because it is within the range that can be detected by
methods for identifying outliers, given the number of fea-
tures and observations used here. In addition, this percent-
age of contamination is expected to be higher than seen in
most data sets obtained via fluorescence microscopy.

Sets of images were constructed with each of the four
classes (giantin, LAMP2, tubulin, DNA) as majority class
and each of the other three classes as the minority class.
This approach to contamination was chosen because it was
believed that the presence of a second, fairly homogeneous
population of images, when added to the main population,
would do the most to skew any estimates of image typical-
ity. This is in contrast to combining several images from
each of the other classes to constitute the contamination,
where one might expect the minority class to be widely and
uniformly distributed and potentially have little effect on the
assignment of typicality.

It should be noted that biologists do not perceive these
image classes as being equally similar to each other. For
instance, the pattern of giantin is more like that of LAMP2
than that of tubulin. By separately using each class as a
contaminant, the performance of each typicality method
could be evaluated with the qualitative perceptions of biol-
ogists in mind.

Criteria for evaluating typicality methods

Two criteria for evaluating the performance of a typicality
assignment method on test data sets containing known con-
taminant images were developed. The first is based on the
straightforward concept that for such a contaminated data
set, a good typicality method would assign high values to
images of the majority class and low values to contaminant
images. For a data set containing a fraction of contamination
images given bye, an ideal method would always assign all
contaminant images typicality values less thane. This is
easily evaluated by measuring the cumulative fraction of
contaminant images with a typicality less thant as a func-
tion of t. For an ideal typicality method, this cumulative
distribution would increase from 0 att 5 0 to 1 att 5 e and
then remain at 1 fore , t #1. This is illustrated in Fig. 1.
For comparison, the cumulative distribution for a method
that is unable to distinguish majority from minority images
would increase linearly from 0 att 5 0 to 1 att 5 1 (Fig.
1). To measure the extent to which the observed distribution
for a given typicality method matches the ideal, expected
distribution, ax2 goodness-of-fit test was used (see Mate-
rials and Methods).

The second, simpler criterion is that an ideal typicality
method will always pick a member of the majority class as
the most typical image (i.e., never assign a rank of “1” to a
contaminant image).

Comparison of approaches using texture features

The contaminated data sets were analyzed using four meth-
ods. Each method ranked the images in a set according to

FIGURE 1 The cumulative distribution of contaminant images from
each of the methods described in the text for determining image typicality,
using the contaminated set consisting of a majority of giantin and a
minority of tubulin. F, HTFR; l, QQBE; Œ, HTFM; f, HTFE. The
performance of an ideal system (i.e., one that assigns all contaminant
images the lowest typicality possible) is indicated for reference (– – –), as
is the performance expected from a system that randomly assigns typicality
values to images (–zz –).
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some measure of typicality such that the image with a rank
of 1 was most typical. In all cases, the ranks were converted
to a “normalized typicality” between 0 (least typical) and 1
(most typical), using

Number of images2 Rank

Number of images2 1

The first method used the version of QBIC available over
the Internet from IBM (http://wwwqbic.almaden.ibm.com).
QBIC ranks images according to their similarity to a query
image, using three texture features based on those of
Tamura et al. (1978) and a weighted Euclidean distance
measure. QBIC was loaded with each test data set and then
queried using each of the images in the set in turn. For each
query, QBIC returned a ranked list of the images in order of
similarity to that query. Each image was given a score equal
to its rank, and the scores were summed for each image
across all queries. A final ranking was created from the
summed scores and referred to as the QQBE (QBIC query
by each) typicality (the image with the lowest sum of scores
was defined as the most typical of the set). The two evalu-
ation criteria described above were applied to these typical-
ity assignments. The method passed thex2 test for only two
of the 12 test sets (Table 1); the cumulative distribution for
one of these cases is shown in Fig. 1. Furthermore, the
method chose a contaminant image as most typical for one
of the sets (majority DNA, minority LAMP2). The inade-
quate performance of the QQBE method is not surprising,
given the low number of features describing each image and
the relatively simple distance metric used to define similarity.

In the second method we tested, Haralick’s texture fea-
tures (Haralick, 1979) were calculated to describe each
image. A vector of the feature means was calculated, and
the Euclidean distance from an image to the mean vector
was determined. The images were ranked according to this
distance. This was referred to as the HTFE (Haralick texture
features, Euclidean distance) typicality. The performance of
this method was again less than adequate, not passing thex2

test for any of the 12 sets (Table 1), and choosing a repre-

sentative image from the contaminant class for one set
(majority tubulin, minority LAMP2). The example cumula-
tive distribution shown in Fig. 1 shows how poorly this
method works for contaminated sets, because the line is
much closer to that expected for a random chooser than to
that expected for an ideal method. Despite the increase in
the number of features describing each image (over QBIC),
the Euclidean distance metric was still unable to generate
typicalities that met the specified performance criteria.

Using a Euclidean distance measure weights all features
equally and therefore does not attempt to compensate for
possible differences in the magnitudes of features (by Eu-
clidean distance, two points with values of the first feature
of 10 and 9.9 are considered to be the same distance apart
as two points with values of the second feature of 0.1 and
0.2). It also does not attempt to compensate for correlations
between features (a distance of 0.1 along a diagonal for two
highly correlated features is considered equal to the same
distance perpendicular to that diagonal, even though the
latter is far more significant statistically). Use of the Ma-
halanobis distance (see Materials and Methods) addresses
both of these limitations, using the covariance matrix of the
data to adjust for scaling differences and correlations be-
tween features.

Therefore, the third method for measuring typicality we
evaluated again used Haralick features to describe each
image, but used the Mahalanobis distance in place of Eu-
clidean distance. This was referred to as the HTFM (Haral-
ick texture features, Mahalanobis distance) typicality. The
change in distance metric resulted in better performance
than the HTFE method, meeting thex2 criterion for two sets
(Table 1) and in no case choosing a contaminant image as
most typical.

The problem with the three methods just described is that
if the data set contains images that are outliers (extreme
values or contaminants), then the selection of representative
images may be skewed toward the outliers. This is because
calculation of a distance requires knowledge of the popula-
tion mean vector and, in the case of the Mahalanobis dis-
tance, the covariance matrix. The estimation of these pop-
ulation parameters (especially the covariance matrix) can be
very sensitive to small numbers of “unusual” observations.
Much work has been done to develop methods for estimat-
ing population mean and covariance that are robust (Rous-
seeuw and Leroy, 1987), by which it is meant that the
estimates will be accurate for the majority population, even
if the sample contains a small number of outliers. The fourth
method we tested, then, was identical to the HTFM method,
except that a robust estimate of the mean vector and covari-
ance matrix (Rocke and Woodruff, 1996) was used to im-
prove the Mahalanobis distance calculation. The result was
referred to as the HTFR (Haralick texture features, robust
estimate of Mahalanobis distance) typicality. This method
satisfied thex2 test for six of the 12 sets (Table 1). The
cumulative distribution for one of these cases shown in Fig.
1 can be seen to fall directly along the distribution expected
for an ideal method. As for the HTFM method, the HTFR

TABLE 1 Typicality methods showing desired behavior on
test sets containing mixtures of two types of images

Minority image

Majority image

Giantin LAMP2 Tubulin DNA

Giantin HTFM,HTFR HTFM,HTFR
LAMP2 HTFR HTFR
Tubulin QQBE,HTFR QQBE
DNA HTFR

The QQBE, HTFE, HTFM, and HTFR methods described in the text were
used to calculate typicality scores for each image in 12 test sets consisting
of 75% of one type of image and 25% of another type. The cumulative
percentage of minority images with a typicality less than or equal to a given
value was tabulated as a function of that value (as in Fig. 1). Entries in the
table show methods whose performance, for a given test set, could not be
statistically distinguished from ideal performance using thex2 criterion
(see Materials and Methods).
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method did not chose a contaminant image as most repre-
sentative in any case. When considered along with the
results above, this outcome indicates that a more sophisti-
cated estimate of the size and shape of the majority popu-
lation produces a better (according to the two criteria used
here) assignment of image typicality.

It should be noted that some of the minority images may
in fact be similar to some of the majority images (e.g., cells
with dispersed giantin staining may appear similar to punc-
tate LAMP2 staining). For the CHO images used here, it
was observed previously that;10% of the images in some
of the classes cannot be readily distinguished (at least with
the features used). Thus the observation that a particular
method does not yield ideal results does not imply that that
method is not useful, especially if it consistently assigns the
highest typicality values to majority images. However, the
observation that the HTFR method can perform ideally in
cases where the other methods cannot does indicate that this
method is preferable.

By creating test sets with the same majority type and
different minority types, it was possible to compare the
performance of the method on sets subjectively considered
to be of unequal difficulty. The HTFR method, for example,
did well on mixtures of patterns that are easy for biologists
to distinguish. The mixtures that are more difficult for
biologists to distinguish (such as giantin and LAMP2) were
not ideally resolved by any of the methods.

Selection of representative images from
uncontaminated data sets

Given the performance of the HTFR method, we proceeded
to apply it to the uncontaminated data sets. In addition, we
explored the impact of the feature set used on the choice of
representative image. Because the results above demon-
strated the importance of using robust estimation of mean
and covariance, this approach was applied to distance esti-
mation with Zernike features in place of the Haralick texture
features (this combination is referred to as ZMFR typicality,
for Zernike moment features, robust estimation of Mahal-
anobis distance).

The Zernike features and Haralick features are designed
to capture different information about an image, so it was of
interest to determine the degree of correlation between the
typicality scores obtained with each. Typicality scores were
therefore obtained (for a data set consisting only of giantin
images) using the HTFR and ZMFR methods separately,
and the two values were plotted against each other (Fig. 2).
The lack of visible correlation (R5 0.154) between Zernike
and Haralick typicality scores demonstrates that the two
feature sets capture different information. Images that are
most typical overall (i.e., images that are most typical by
both feature sets) are found in the upper right corner of the
plot in Fig. 2. As a means of combining the two methods of
calculating typicality, the HZRC (Haralick and Zernike
features, robust estimation of Mahalanobis distance, com-

bined) typicality was defined as the square root of the sum
of the squares of the HTFR and ZMFR typicalities.

Because these results were for a data set that did not
contain known “contaminant” images, the only method
available to assess the utility of the three methods in this
case was subjective inspection of images with various typ-
icality scores. To this end, the most and least typical images
by each method, along with additional images with high and
low HZRC values, are displayed in Fig. 3 (the images are
identified by letter in the scatter plot in Fig. 2). The differ-
ence between the most and least typical images (with one
exception) is clear. Those images that depict vesiculated,
dispersed Golgi are found to be least typical, and those that
depict compact Golgi are picked as the most typical. This is
as expected, because vesiculated Golgi will be found only in
those cells preparing for mitosis or in those cells that are not
functioning normally. It is important to note that we did not
have to introduce biological knowledge or bias (other than
that the features used are able to distinguish common bio-
logical patterns) into the methods for them to be able to find
that a compact Golgi apparatus is more typical than a
dispersed one. The exception is the image shown in Fig. 3
G, which appears similar in many respects to the images in
Fig. 3 A–D. Although that image has the lowest ZMFR
typicality, it has a high HTFR typicality (giving it a medium
composite score). The results indicate that the HTFR typi-
cality may be more reliable for images of structures such as
the Golgi apparatus and confirm that the composite (HZRC)
method performs well (because the four images with the
highest HZRC typicalities all match expectations for a
Golgi protein pattern).

The three robust methods were also applied to the other
uncontaminated image sets. For DNA images, a moderate

FIGURE 2 Comparison of typicality using the HTFR method and typi-
cality using the ZMFR method for the entire, uncontaminated giantin
image set. The letters adjacent to various points reflect the panels in Fig. 3,
where the corresponding image is shown.
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degree of correlation (R 5 0.41) was observed between the
HTFR and ZMFR typicalities (data not shown). This may be
expected, given the simplicity of the nuclear DNA pattern.
The images chosen as most typical (Fig. 4,A andB) show
a sharp boundary between nucleus and cytoplasm, whereas
those chosen as least typical (Fig. 4,C andD) show weak,
punctate staining extending from the nucleus (perhaps due
to poor fixation or cell death before fixation). The agree-
ment with expectation is excellent for all methods.

As with giantin, the correlations between typicality
scores by the HTFR and ZMFR methods were low for
LAMP2 and tubulin (R 5 0.19 and 0.11, respectively; data
not shown). The most and least typical images chosen by
each method are shown in Figs. 5 and 6. The most typical
images for LAMP2 (Fig. 5,A andB) are reasonable choices,
showing some lysosomes concentrated in the perinuclear
region and some more peripherally located. The image
selected as least typical by the HTFR and HZRC methods is
clearly abnormal. However, the least typical image by the
ZMFR method does not appear grossly abnormal, although
the cell represented is larger than usual and the lysosomes
appear somewhat larger than normal. With respect to the
tubulin images (Fig. 6), it is difficult to conclude that any of
them are that much different from any of the others. Be-
cause Fig. 6B appears more typical of the cytoskeleton than
Fig. 6 E (whereas Fig. 6,A andD, seems equally typical),
the HTFR method may be more valuable for tubulin images
than the ZMFR method (as was the case for giantin).

Number of images required for
typicality determinations

The method used for robust estimation of means and co-
variances requires sufficient samples to enable removal of
outliers while maintaining a statistically useful number of
observations in the main population. The theoretical mini-
mum number of samples (in this case, images) that are
needed to reliably detect a certain percentage of outliers at
a given confidence level can be determined for a particular
number of variables (Rocke and Woodruff, 1996). The
numbers obtained by this method for typical confidence are
much larger than the number of images in the sets we have
used here. It is important to note that because the goal
pursued in this paper is to find the most typical images, it is
not essential that all outliers be removed. Thus biologically
significant results were obtained with only 77 giantin im-
ages (Fig. 3). To explore the practical minimum number of
images required for finding typical images using the HTFR
method, subsets containing specified numbers of randomly
chosen giantin images were created. To evaluate how well
the method performed for these smaller subsets, the rank of
each image in a subset was compared to its rank in the entire
set. For five subsets of 40 images each, the overall corre-
lation coefficient relating the two ranks was 0.900, and
acceptable results were also obtained for sets of 35 images
(correlation coefficient of 0.873). This is near the minimum
number necessary for the HTFR method, because the mult-
out program ran indefinitely for subsets of 30 images (and

FIGURE 3 The most (A–D) and
least (E–H) typical giantin images, as
determined using various methods.
(A) Highest HZRC. (B) Highest
HTFR, second highest HZRC. (C)
Highest ZMFR, third highest HZRC.
(D) Fourth highest HZRC. (E) Lowest
HZRC. (F) Second lowest HZRC. (G)
Lowest ZMFR. (H) Lowest HTFR,
fourth lowest HZRC. Scale bar5
10 mm.

FIGURE 4 The most (A, B) and
least (C, D) typical DNA images, as
determined using various methods.
(A) Highest ZMFR and HZRC. (B)
Highest HTFR. (C) Lowest ZMFR.
(D) Lowest HTFR and HZRC. Scale
bar 5 10 mm.
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subsets of 20 images always yielded singular matrices). We
conclude that the HTFR method is applicable to image
collections of sizes that can be readily collected with digital
microscopes. It should be noted that in cases where insuf-
ficient images are available for the HTFR method, the
HTFM method (which requires at least 14 images) may be
used (with awareness of its potential sensitivity to outliers).
For image collections smaller than this, the meaning of a
representative image may be called into question.

DISCUSSION

The selection of an image to represent the entirety of the
data from which it was derived is currently a subjective,
nonrepeatable step in the scientific process. This problem is
particularly acute in cell biology and is being compounded
by the large numbers of digital images that are now rou-
tinely acquired. To overcome this problem, we have devel-
oped and tested quantitative methods for selecting represen-
tative images from a set. The two steps in this process are 1)
extraction of features descriptive of the images in the set
and 2) calculation of a distance metric that, in some way,
defines how close each image is to the center of the population.

As with any choice of a representative from a set, the
selection of a representative image is biased by the numeric
values used to describe the images. It is not possible, in fact,

to choose a representative from a set without first selecting
the criteria by which we will define typicality. As an anal-
ogy, consider all criteria that could be used to select a
typical person from a population: height, hair color, IQ, etc.
Clearly a representative chosen using each of these mea-
surements by themselves need not be typical in all of them,
but will be a person of average height, average IQ, or with
the most common hair color. Does this fact remove the
utility of selecting a representative? The answer is clearly
no, but the analogy illustrates the importance of recognizing
the criteria used in any system (including the human visual
system) when evaluating the representative that is returned.
An advantage of automated methods is that the selection
bias is explicitly defined by the feature set used. This is in
contrast to the subjective determinations made by the hu-
man visual system, where the criteria used for selecting a
representative are often unknown. Given the vast number of
possible feature sets, we do not claim that those tested here
are the only ones suitable for fluorescence images; nor do
we claim that they are the best. Instead, we chose these
features because we believed them to be general-purpose
descriptors of the images (i.e., they were not designed with
specific protein distributions in mind; nor, for that matter,
were they originally intended for use with fluorescence
images at all).

FIGURE 5 The most (A, B) and
least (C, D) typical LAMP2 images,
as determined using various methods.
(A) Highest ZMFR. (B) Highest
HTFR and HZRC. (C) Lowest
ZMFR. (D) Lowest HTFR and
HZRC. Scale bar5 10 mm.

FIGURE 6 The most (A–C) and
least (E–F) typical tubulin images, as
determined using the ZMFR (A, D),
HTFR (B, E), and HZRC (C, F) meth-
ods. Scale bar5 10 mm.
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Based on the results described above, it is clear that the
choice of a distance metric is also important for assigning
typicality to the members of a set, regardless of the under-
lying features used to describe them. As demonstrated using
the contaminated data sets, a distance metric that takes into
account the statistical properties of the features (Mahalano-
bis distance) is superior to a Euclidean distance with the
same features. It is also clear that the detection of outliers
and their removal from estimates of population parameters
are important steps. Both of these results are as expected.

The approaches we have described for assessing typical-
ity methods using intentionally “contaminated” data sets
should have broad application, because the only way to
assess the performance of a typicality method applied to a
homogeneous (i.e., single class) data set is to subjectively
rate the typicality of the representative image. This analysis
via human perception was applied to the representative
images obtained from the noncontaminated data sets, and it
was determined that any of the representative images gen-
erated by three methods (HTFR, ZMFR, HZFC) could be
considered acceptable from a biological perspective. If all
we had were these subjective determinations regarding the
methods, we would be back where we started, namely at a
point where we are relying on the ambiguities of our own
unstated criteria for choosing the images we deem most
typical. Instead, we have the statistical and objective results
from the contaminated data sets to assure us that the meth-
ods employed on the uncontaminated data are the best
available, and we are reassured that the representative im-
ages look as we expect them to look based on our experi-
ence. The important advance is not so much that the system
gives us the answer we expected, but rather that it does so
in an objective, repeatable manner.

As this area is further investigated and developed, we
believe it will have significant impact. First of all, there is
the obvious application to areas where it is necessary to
represent a set of images with a single member of that set.
The first such task that comes to mind is the selection of a
single image or of a few images to represent an entire
experiment in the scientific literature. This might include
research areas as diverse as microscopy, astronomy, spaced-
based imaging of the earth, and medical imaging. Another
rapidly advancing field is that of image databases. As cur-
rently implemented, most of these databases are configured
to rank the constituent images in relation to a query image.
Selection of representative images, however, might allow
databases to be summarized with a handful of images that in
some way describe the contents of the database. Further-

more, typicality methods might be able to play a role in
data-mining efforts by choosing representatives from
among a large collection of poorly understood data. Such
goals are beyond the immediate reach of the methods de-
veloped here, but it is our belief that this work has defined
a novel area of research that has been neglected to this point
but that should have broad appeal to investigators from a
variety of fields in the future.

To facilitate use and further development of the ap-
proaches described here, a web-based typical image chooser
(TypIC) (located at http://murphylab.web.cmu.edu/services/
TypIC) has been made available. The service will accept
a collection of images and rank them according to their
typicality.
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