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Abstract
Determination of the functions of all expressed proteins
represents one of the major upcoming challenges in
computational molecular biology.  Since subcellular
location plays a crucial role in protein function, the
availability of systems that can predict location from
sequence or high-throughput systems that determine
location experimentally will be essential to the full
characterization of expressed proteins.  The development of
prediction systems is currently hindered by an absence of
training data that adequately captures the complexity of
protein localization patterns.  What is needed is a
systematics for the subcellular locations of proteins.  This
paper describes an approach to the quantitative description
of protein localization patterns using numerical features and
the use of these features to develop classifiers that can
recognize all major subcellular structures in fluorescence
microscope images.  Such classifiers provide a valuable tool
for experiments aimed at determining the subcellular
distributions of all expressed proteins.  The features also
have application in automated interpretation of imaging
experiments, such as the selection of representative images
or the rigorous statistical comparison of protein distributions
under different experimental conditions.  A key conclusion
is that, at least in certain cases, these automated approaches
are better able to distinguish similar protein localization
patterns than human observers.

Introduction

As the initial sequencing of a number of eukaryotic
genomes is completed, a major effort to determine the
structure and function of all expressed proteins is
beginning.  Significant current work in this new area (often
referred to as functional genomics or proteomics) is
devoted to the analysis of gene and protein expression
patterns (in different adult tissues and during development)
and the prediction and determination of protein structure.
More limited efforts have been made to predict aspects of

protein function.  Overlooked in much of this work is the
importance of subcellular location for proper protein
function.

The organelle or structure where a protein is located
provides a context for it to carry out its role.  Each
organelle provides a unique biochemical environment that
may influence the associations that a protein may form and
the reactions that it may carry out.  For example, the
concentrations of protons, sodium, calcium, reducing
agents, and oxidizing agents vary dramatically between
organelles.  Thus we can imagine that knowledge of the
location(s) in which a previously uncharacterized gene
product will be found would be of significant value when
attempting to determine (or predict) its properties.

Such knowledge can be obtained by two approaches:
experimental determination or prediction. Experimental
determination of subcellular location is accomplished by
three main approaches: cell fractionation, electron
microscopy and fluorescence microscopy.  As currently
practiced, these approaches are time consuming,
subjective, and highly variable.  While each method can
yield important information, they do not provide
unambiguous information on location that can be entered
into databases.

There have been pioneering efforts to predict subcellular
location from protein sequence (Eisenhaber and Bork
1998; Horton and Nakai 1997; Nakai and Horton 1999;
Nakai and Kanehisa 1992).  These efforts have been
modestly successful, correctly classifying approximately
60% of proteins whose locations are currently known.  A
major limitation of the usefulness of these systems is that
only broad categories of subcellular locations were used
(see Table 1).  This limitation is a reflection of the nature
of the available training data: the subcellular location is
only approximately known for most known proteins.

For example, the categories used by YPD (Garrels
1996)are overlapping but not explicitly hierarchical (the



microsomal fraction is expected to include much of the
endoplasmic reticulum, endosomes, and the Golgi
apparatus).  They also do not provide sufficient resolution
to determine if two proteins can be expected to show the
same distribution.  For example, a protein predominantly
located in the cis Golgi protein would have a different
subcellular location pattern than one in the trans Golgi
(and would be expected to show different protein sorting
motifs).  Similarly, endosomes in animal cells can be
resolved into (at least) early endosomes, sorting
endosomes, recycling endosomes, and late endosomes.

The limitations of current knowledge on subcellular
location can be further verified by inspection of the
"subcellular location" field of the Swiss-PROT database.
The contents of the field fall into three broad categories.
For most proteins, it is empty.  For many, it consists of a

brief, standardized but very general description, such as
"integral membrane protein" or "cytoplasmic."  For the
remaining proteins, the field contains unstructured text that
varies from being very general to quite specific.  T h e
ambiguities in database descriptions and reports of
experiments reflect imprecision and investigator-to-
investigator variation in terminology (especially in the
endomembrane system), uncertainty about the actual
location of many proteins (e.g., whether a Golgi protein is
in cis or medial cisternae), and the fact that many proteins
cycle between different locations.  What is needed is a
systematic approach to describing subcellular location that
can
•  incorporate information obtained by diverse

methodologies
•  address differences in cell morphology and organelle

structure between cell types
•  provide sufficient accuracy and resolution that proteins

with similar but not identical subcellular locations can
be distinguished

•  reflect the possibility that subcellular localization
patterns can be formed from weighted combinations of
simpler patterns (e.g., a protein may be found in both
the endoplasmic reticulum and the Golgi complex).

Developing a Systematics

The first requirement for creating a systematics for
subcellular location is a means of obtaining the set of all
possible localization patterns (initially in one cell type but
eventually in others). This can be accomplished by random
tagging of all expressed genes (Jarvik et al. 1996; Rolls et
al. 1999) and then collecting fluorescence microscope
images showing the distribution of each tagged gene
product.  Criteria are then needed for deciding whether two
proteins show the same localization pattern or whether
each should be assigned to its own class.  This could
potentially be decided by imaging both proteins in a single
cell (by labeling each with a different fluorescent probe),
but the number of pairwise combinations of the estimated
10,000 to 100,000 proteins expressed in a single cell make
this effectively impossible.

As an alternative, we suggest a heuristic procedure for
exploring the space of possible localization patterns.  This
procedure starts by numerically describing all known
protein localization patterns and then attempting to cluster
the proteins into essentially non-overlapping groups.  Each
group is then be examined to determine whether any
existing knowledge (i.e., from cell fractionation
experiments or visual inspection of images) suggests that it
should be split.  Additional numeric image descriptors
would then be sought to resolve the subpopulations and the
process repeated until either all existing knowledge has
been accounted for or until the limitations of fluorescence
microscopy are reached.  As will be discussed below, our
results suggest that automated pattern analysis is more
sensitive than human observation.

PSORT YPD
Bud neck
Cell wall
Centrosome/spindle pole body

chloroplast
cytoplasm Cytoplasmic

Cytoskeletal
endoplasmic reticulum Endoplasmic reticulum

Endosome/Endosomal
vesicles

outside Extracellular (excluding cell
wall)

Golgi body Golgi
Lipid particles

lysosome/vacuole Lysosome/vacuole
Microsomal fraction

mitochondria Mitochondrial
mitochondria inner
membrane

Mitochondrial inner
membrane

mitochondria
intermembrane space

Mitochondrial intermembrane
space

mitochondria matrix
space

Mitochondrial matrix

mitochondria outer
membrane

Mitochondrial outer
membrane

nucleus Nuclear
Nuclear matrix
Nuclear nucleolus
Nuclear pore
Nuclear transport factor
Other vesicles of the
secretory/endocytic pathways

microbody (peroxisome) Peroxisome
plasma membrane Plasma membrane

Secretory vesicles
Unspecified membrane

Table 1. Categories of subcellular localization used for previous
prediction systems. The categories used by PSORT (Nakai and
Kanehisa 1992) for yeast, animal and plant cells are shown.  The
categories used in YPD (Garrels 1996) have been used to test
other prediction approaches.



As alluded to above, one benefit of having a systematic
scheme is that the location of known proteins can be more
accurately described so that systems for predicting location
from sequence can be better trained.  New motifs
responsible for localization may be discovered directly by
such systems (by examining the decision rules of a
successful classifier) or separately by using unsupervised
learning programs such as MEME (Bailey and Elkan 1995)
on subsets of proteins identified as having the same
localization pattern.

There are additional benefits, however.  Being able to
quantitatively describe localization patterns such that all
(or most) patterns can be distinguished provides a objective
means for comparing images.

Our progress towards numerical description and
classification of protein localization patterns is described in
this paper.  The overall goal of the work described below is
to enable comparison and analysis of microscope images to
become as automated, accepted, objective, reliable, and
statistically-sound as comparison of protein and nucleotide
sequences.

Image Datasets

We have followed a data-driven approach to design and
selection of numerical features to describe fluorescence
microscope images.  In order to attempt to demonstrate the
feasibility of classification of protein localization patterns,
we created a database of images of five different
subcellular patterns in Chinese hamster ovary cells (Boland
et al. 1997; Boland et al. 1998).  Based on the encouraging
results obtained with this set, we then generated a
collection of images of ten subcellular patterns in HeLa
cells (Boland, M.V., and Murphy, R.F., submitted).  This
collection was designed to include all major organelles and
to include pairs of similar patterns to enable testing of the
sensitivity of various features and classifiers.
Representative images for each pattern are shown in Figure
1.  There is a high degree of similarity between the patterns
of the two Golgi proteins (Fig. 1B,C), both of which a
located in a tight structure near the nucleus.  The patterns
of the lysosomal and endosomal proteins (Fig. 1D,H) are
somewhat similar, with both proteins being concentrated to
one side of the nucleus but also showing punctate staining
through the cytoplasm.  The endoplasmic reticulum (ER)
and mitochondrial proteins (Fig. 1A,E) are both distributed
around the nucleus in a fairly symmetric manner.

Numerical Features

Traditional pattern recognition applications (such as
industrial parts recognition or military target recognition)
most frequently make use of model-based approaches in
which spatial models of the target are fitted to the image.
However, many cell types (including HeLa cells) display a
very large degree of heterogeneity both in overall cell
morphology and in the distribution of organelles within

cells.  This is illustrated in Figure 2, which shows
representative images of the pattern of transferrin receptor
(primarily found in endosomes).  Given this heterogeneity,
we have chosen to describe protein locations using
numerical features that capture essential characteristics of
the patterns, rather than to try to develop spatial models of
the pattern displayed by each class.

We have utilized three types of these numerical features
to describe subcellular location patterns.  All features were
chosen to be invariant to position and rotation of the cell
within the image, and to be insensitive to changes in the
scale of intensity values.  The first set is the Zernike
moment features (Teague 1980) through order 12.  These
49 features are calculated from the moments of each image
relative to the Zernike polynomials, an orthogonal basis set
defined on the unit circle.  The calculation of these
moments therefore requires that we supply the radius of a
typical cell.  Positional invariance is achieved by defining
the origin of the unit circle to be the center of fluorescence
of the image.  The second set is the Haralick texture
features (Haralick 1979).  These 13 features can be related
to intuitive descriptions of image texture, such as
coarseness, complexity and isotropy.  The procedures we
used to calculate the Zernike and Haralick features have
been described previously (Boland et al. 1998).

While we have shown that these features are valuable for
classifying cell images, they are not sufficient by
themselves to distinguish all cell patterns we have tested.
For this reason, as well as the fact that it is difficult
(especially for the Zernike moments) to relate them to the
ways in which cell patterns are usually described by
biologists, we have created a new set of 22 features derived
from morphological and geometric analysis that correspond
better to the terms used by biologists.

Thirteen of these features are derived from object finding
and edge detection in combination with an automated
thresholding method (Ridler and Calvard 1978).  These
include the number of objects, the ratio of the size of the
largest object to the smallest object, the average distance of
an object from the center of fluorescence, and the fraction
of above-threshold pixels along an edge.  Three features
are derived from the convex hull of the fluorescence
distribution (e.g., the fraction of the area of the convex hull
that is occupied by above-threshold pixels).

Since biologists frequently use the cell nucleus as a
landmark for assessing subcellular patterns (resulting in
terms such as perinuclear), we have developed six features
that relate each protein pattern to a superimposed DNA
image of the same cell.  These features include the average
distance of protein-containing objects to the center of
fluorescence of the DNA image (the center of the nucleus)
and the fraction of protein fluorescence that colocalizes
with DNA fluorescence (i.e., is inside the nucleus).

The calculation and properties of these features will be
described in detail elsewhere (Murphy, R.F., Boland, M.V.,
and Valdes-Perez, R., in preparation).



Figure 1. Representative images from the HeLa cell database.  The most typical image was chosen from each class using the HTFR
method (Markey, et al. 1999) which uses Haralick texture features to rank images based on their Mahalanobis distance from a robust
estimate of the multivariate mean.  Images are shown for cells labeled with antibodies against an endoplasmic reticulum protein (A),
the Golgi protein giantin (B), the Golgi protein GPP130 (C), the lysosomal protein LAMP2 (D), a mitochondrial protein (E), the
nucleolar protein nucleolin (F), transferrin receptor (primarily found in endosomes) (H), and the cytoskeletal protein tubulin (J).
Images are also shown for filamentous actin labeled with rhodamine-phalloidin (G) and DNA labeled with DAPI (K).  Scale bar = 10
µm.



 

 

 

 
Figure 2. Variation in the transferrin receptor distribution in HeLa cells.  The 91 images in the dataset were ranked in order of their
typicality using a modification of the approach of Markey et al. (1999).  The 84 features describing each image were used to calculate
16 principal components comprising 90% of the total variance.  These were used to rank the images by their Mahalanobis distance
from a robust estimate of the multivariate mean.  The most (A) and least (H) typical image are shown, along with every 13th image in
between (B-G).  Note that the more typical images show a more rounded morphology.  All images are shown at the same
magnification and intensity scale.
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Classification with All Features

In our initial work (Boland et al. 1998), we used Zernike
features to describe the five patterns from CHO cells and
demonstrated that neither linear discriminators nor
classification trees were able to provide satisfactory results.
However, a back-propagation neural network (BPNN) with
a single hidden layer of 20 nodes was able to correctly
classify an average of 87% of previously unseen images
(compared to only 65% for a classification tree).  Using
Haralick features instead, a single hidden layer network
was able to correctly classify 88%, indicating that both the
Zernike and Haralick feature sets contain sufficient
information to differentiate the five patterns in the CHO
dataset.  The results also indicated that even for a small
number of relatively distinct patterns, the more complex
decision boundaries available in a neural network provide
better classification performance.

Initial analysis of the ability of a BPNN to resolve the
ten classes in the HeLa cell dataset revealed that Zernike
and Haralick features (either separately or combined) were
unable to distinguish many of the classes.  We therefore
combined the Zernike, Haralick and the new localization
features described above and tested BPNN with various
numbers of hidden nodes.  The average correct
classification rate increased from 75% for 5 hidden nodes
to 81% for 20 hidden nodes, but did not increase further for
30 hidden nodes.  The number of hidden nodes was
therefore set at 20 for further experiments.

A confusion matrix for such a network is shown in Table
2.  The average correct classification rate was 81 ± 4.8%
(mean ± 95% confidence interval).  The most important
conclusion from this table is that all ten classes can be
resolved with better than 50% accuracy, including the three
pairs of classes expected to be difficult to distinguish.  We
conclude not only that the features we have chosen capture
essential aspects of the subcellular patterns, but that the

majority of images of each class can be easily separated
from the others in the feature space.

Given the large number of weights (1880) to be adjusted
in this network, we considered the possibility that a simpler
classifier could perform as well or better.  We therefore
tested k nearest neighbor classifiers with k ranging from 1
to 10.  The best average classification rate was 68 ± 5.7%,
indicating that (as with the CHO dataset) the more complex
decision boundaries of a BPNN provide better
classification.

We next considered whether increasing the complexity
of the classifier could improve performance further.  Two-
hidden-layer (2HL) networks can form even more complex
decision boundaries than one-hidden-layer (1HL) networks
(Beale and Jackson 1990).  While the decision boundaries
of 1HL networks are restricted to convex hulls, 2HL
networks can use any combinations of such convex hulls,
providing arbitrary hulls.  There is no further advantage to
be gained by adding further layers because 2HL provide
the maximum decision boundary complexity.

We first explored the performance of 2HL networks with
various numbers of nodes in the first and second layer.  As
shown in Table 3, performance reached a plateau above
approximately 15 nodes in each.  The best performance,
79%, was obtained with 20 hidden nodes in each layer.
Since this performance is comparable to that of the 1HL
network (81%), we conclude tentatively that those
observations in each class that can be distinguished from
the other classes can be enclosed by a convex decision
boundary and that no separable subpopulations exist (or at
least any subpopulations are so subtle that more training
samples would be required to define them).

Classification with Selected Features

Since improved classification performance is often
obtained by reducing the number of input features, we
sought to choose a subset of the 84 features that preserves
their ability to resolve the classes.  We used stepwise
discriminant analysis (Jennrich 1977) for this purpose.  An

No. of nodes in 1st hidden layer
5 10 15 20 25 30

5 71 75 75 74 75 74
10 73 77 77 77 78 77
15 76 76 77 78 78 78
20 74 78 78 79 78 77
25 74 76 78 77 78 78
30 75 77 77 77 78 77

Table 3. Average percent correct classification for
HeLa data using BPNN with two hidden layers of
various sizes and all 84 features.  Values shown are
averages for test data over ten trials as described in
Table 2.  Each value has a 95% confidence interval of
approximately 5%.  Percentages at or above 78% are
shaded.

Output of Classifier
DN ER Gia GP LA Mit Nuc Act TfR Tub

DNA 99 1 0 0 0 0 0 0 0 0
ER 0 86 3 0 0 5 0 0 0 5

Giantin 0 0 77 19 0 1 2 0 1 0
GPP130 0 0 18 78 2 0 2 0 1 0
LAMP2 0 1 3 2 73 1 2 0 17 1
Mitoch. 0 9 2 0 4 77 0 0 2 6

Nucleolin 2 0 1 2 1 0 94 0 0 0
Actin 0 0 0 0 0 3 0 91 0 6
TfR 0 5 3 1 25 3 0 5 55 5

Tubulin 0 5 0 0 1 7 1 4 5 77
Table 2. Average percent correct classification for HeLa
data over ten trials using a BPNN with a single hidden
layer of 20 nodes and all 84 features.  For each trial, the
images for each class were randomly divided into a
training set, a stop training set, and a test set.  The results
on the test set were averaged over the ten trials.
Instances of confusion greater than 10% are shaded.



F-statistic was calculated for each feature to test the
hypothesis that any difference in that feature's values
between two classes could have arisen randomly even if
those classes were drawn from the same population.  The
features for which this hypothesis could be rejected at the
0.0001 confidence level were selected, giving a set of 37.
These included 11 of the 49 Zernike features, 12 of the 13
Haralick features, and 14 of the 22 biologically motivated
features.

The ability of this set of features to resolve the ten
classes was tested using a 1HL BPNN in a similar manner
to that used for the full feature set.  The average correct
classification rate was 83 ± 4.6%.  As shown in Table 4,
there was an improvement of 5% in classification of actin
images, 7% for transferrin receptor, and 4% for tubulin.
Thus, overall classification accuracy was improved by 2%
while reducing the size of the network by 50% (from 1880
weights to 940 weights).

As we did for the full feature set, we next explored the
performance of 2HL networks with various numbers of
nodes in the first and second layer.  As shown in Table 5,
performance reached a plateau above approximately 15
nodes in each.  The best performance, 84.4%, was obtained
with 30 hidden nodes in each layer.  This is marginally
higher than the performance of the 1HL network (83%),
confirming our previous conclusion that most of the
observations in each class that can be distinguished from
the other classes can be enclosed by a convex decision
boundary.  Comparing the confusion matrix for this 2HL
network (Table 6) with the results for the corresponding
1HL network (Table 4), we observe that the 2HL network
performs 2-3% better on average for mitochondria,
nucleolin, transferrin receptor and tubulin, 7% better for
giantin, and 6% worse for gpp130.  Note that these two
classes that changed the most are the most difficult to
distinguish even for experienced cell biologists.  The
combination of the feature subset and the 2HL classifier
provides the best overall performance we have been able to
achieve for classifying individual images.

Classification of Sets of Images

While the performance of the classifier is impressive given
the subtlety of the differences between many of the classes,
it is possible to improve that performance even more by
considering how biologists frequently draw conclusions
when using a microscope.  This is by scanning over many
fields of view to be able to integrate information from more
than one cell.  We can mimic this by attempting to classify
sets of images that are all known to be taken from the same
class (i.e., were collected from the same microscope slide).
The principle is to use the single cell classifier on each
image in a set and then classify the set as belonging to the
class that receives a plurality (if any).  For the 1HL
classifier using the 37 "best" features, this approach results
in an average classification accuracy of 98% (Boland,
M.V., and Murphy, R.F., submitted).  When sets that are

No. of nodes in 1st hidden layer

No.
of
nodes
in 2nd

HL 5 10 15 20 25 30 35 40
5 79.0 81.2 81.4 81.8 81.6 81.6 80.2 81.1
10 79.3 82.5 83.2 83.0 83.1 83.2 83.0 83.7
15 81.1 82.3 83.2 83.6 83.2 83.7 83.8 83.5
20 80.3 83.3 83.4 82.7 83.2 83.2 83.284.0
25 79.8 82.9 82.8 83.4 83.284.0 83.1 83.8
30 81.5 83.2 83.4 83.6 83.684.4 83.7 83.8
35 79.2 83.3 83.4 83.2 83.6 83.6 83.5 83.3
40 80.0 82.6 83.1 83.3 83.6 83.3 83.4 83.7

Table 5. Average percent correct classification for HeLa
data using BPNN with two hidden layers of various
sizes at the 37 "best" features.  Values shown are
averages for test data over ten trials.  Each value has a
95% confidence interval of approximately 5%.
Percentages at or above 84% are shaded.

Output of Classifier
True Class DN ER Gia GP LA Mit Nuc Act TfR Tub

DNA 99 1 0 0 0 0 0 0 0 0
ER 0 87 2 0 1 7 0 0 2 2

Giantin 0 1 77 19 1 0 1 0 1 0
GPP130 0 0 16 78 2 1 1 0 1 0
LAMP2 0 1 5 2 74 1 1 0 16 1
Mitoch. 0 8 2 0 2 79 0 1 2 6

Nucleolin 1 0 1 2 0 0 95 0 0 0
Actin 0 0 0 0 0 1 0 96 0 2
TfR 0 5 1 1 20 3 0 2 62 6

Tubulin 0 4 0 0 0 8 0 1 5 81
Table 4. Average percent correct classification for HeLa
data over ten trials using a BPNN with a single hidden
layer of 20 nodes and the 37 "best" features.  Values
shown are averages for test data from 10 trials as
described in Table 2.  Instances of confusion greater than
10% are shaded.

Output of Classifier
True Class DN ER Gia GP LA Mit Nuc Act TfR Tub

DNA 98 1 0 0 0 0 0 0 1 0
ER 0 87 2 0 1 5 0 0 1 3

Giantin 0 0 84 12 1 1 1 0 1 0
GPP130 0 0 20 72 1 2 3 0 2 0
LAMP2 0 0 5 1 74 0 3 0 15 2
Mitoch. 0 8 1 0 0 81 0 0 5 5

Nucleolin 0 0 0 1 1 0 98 0 0 0
Actin 0 0 0 0 0 1 0 96 1 3
TfR 0 2 2 0 18 4 0 2 65 7

Tubulin 0 2 1 0 2 7 0 1 5 84
Table 6. Average percent correct classification for HeLa
data over ten trials using a BPNN with 30 nodes in two
hidden layers and the 37 "best" features.  Values shown
are averages for test data from 10 trials.  Instances of
confusion greater than 10% are shaded.



classified as unknown (no class received a plurality) are
eliminated, the average increases to 99% and each class
except transferrin receptor has an accuracy of 99% or
higher (the accuracy for transferrin receptor is 93%).  By
using even larger sets, arbitrary accuracy can be achieved
whenever it is possible to acquire multiple images from a
population of cells expressing the same labeled protein.

Extension to Three Dimensions

The discussion above has been restricted to the analysis of
two-dimensional images.  Modern fluorescence
microscopes (such as confocal, laser scanning
microscopes) are able to acquire stacks of two-dimensional
slices to form a full three-dimensional cell image.  Since
proteins in cells are distributed in three dimensions, not
two, it will be important in the future to extend the
approaches described here to images obtained by 3D
microscopy.  Such images obviously contain more
information than 2D images, therefore presumably
providing improved discrimination between similar classes
of protein localization patterns.  It is also worth noting that
visual interpretation of 3D images is even more difficult
than it is for 2D images, making computational analysis
even more potentially valuable for 3D images.  For cell
types with extensive 3D structure, such as columnar
epithelial cells, it will be especially crucial to use 3D
pattern analysis because any single 2D section cannot be
representative of the whole cell.

It is anticipated that the features we have used can all be
extended to three dimensions with minimal difficulty.
Three-dimensional analogues of the previously developed
2D features are not enough to capture all of the information
in 3D images. Many cell types display a specific
orientation with respect to a basement membrane (or the
surface of a culture dish).  Therefore, additional 3D
features that reflect z-axis directionality (while still being
invariant to rotation in the horizontal plane) will be needed.

Conclusions

The most important conclusion to be drawn from the work
described above is that the set of features that we have
developed captures the essential characteristics of
subcellular structure. The validation of these features
indicates that they can be used as a basis for defining
localization classes, and then those classes can be
correlated (where possible) with currently used (or new)
descriptive terms.

Since many articles containing fluorescence micrographs
are currently published in journals that have full-text, on-
line versions, an interesting potential application of the
single cell classifiers we have described is for cataloging
(and perhaps reinterpreting) published images depicting
subcellular location.  We anticipate the possibility of
creating a multimedia knowledge base with links to
statements regarding localization derived from journal text

and links to available images that support these statements
(along with results of systematic analysis of these images).
The creation of such a knowledge base can also be
expected to aid improvement in description and
classification efforts by providing new patterns for learning
and testing.

The ability to describe cell images using validated
features suggests additional applications beyond
classification.  These are based on the use of features to
measure similarity between images.  The first application is
the objective selection of a representative image from a set.
Representative images are useful for presentation,
publication and for providing pictorial summaries of
localization classes (e.g., on a summary page for an image
database).  We have described a system for choosing
representative images using the Haralick and Zernike
features (Markey et al. 1999) and established a web service
(http://murphylab.web.cmu.edu/services/Typic) that will
rank uploaded images in order of their "typicality."  This
service is currently being improved by incorporating the
new features and including feature reduction methods
(such as the approach in Figure 2).

A second application is the automated interpretation of
imaging experiments.  Cell biologists often wish to
determine whether the distribution of a particular protein is
altered by the expression of another protein or the addition
of a drug.  We have recently developed a system that can
answer such questions with any desired statistical accuracy
by comparing the distributions of the features for images
with and without treatment (Roques, E.J and Murphy, R.F.,
in preparation).

The results from this application emphasize the
apparently higher level of sensitivity to pattern changes of
the automated approach we have described compared with
human observers.  Informal comparisons reveal that even
trained cell biologists are unable to distinguish related
patterns as well as our classification systems.  It appears
that while human observers can discern a great deal of
information from individual images, they have difficulty
retaining and comparing that information across large sets
of fairly similar images.  We are planning a more formal
study to clarify this point.

In order to provide the initial framework for a
systematics of protein localization, we plan to use our
approach to generate a database for randomly-tagged
proteins in HeLa cells (with links to existing protein
sequence databases). The methods we have described
should be useful to enable the systematic classification and
cataloging of the subcellular location of expressed proteins
in a variety of cell types and organisms.
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