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ABSTRACT
Motivation: Assessment of protein subcellular location is
crucial to proteomics efforts since localization information
provides a context for a protein’s sequence, structure, and
function. The work described below is the first to address
the subcellular localization of proteins in a quantitative,
comprehensive manner.
Results: Images for ten different subcellular patterns
(including all major organelles) were collected using
fluorescence microscopy. The patterns were described
using a variety of numeric features, including Zernike
moments, Haralick texture features, and a set of new
features developed specifically for this purpose. To test
the usefulness of these features, they were used to
train a neural network classifier. The classifier was able
to correctly recognize an average of 83% of previously
unseen cells showing one of the ten patterns. The same
classifier was then used to recognize previously unseen
sets of homogeneously prepared cells with 98% accuracy.
Availability: Algorithms were implemented using the
commercial products Matlab, S-Plus, and SAS, as well as
some functions written in C. The scripts and source code
generated for this work are available at http://murphylab.
web.cmu.edu/software.
Contact: murphy@cmu.edu

INTRODUCTION
An important part of the characterization of a protein is the
determination of the subcellular organelles or structures to
which it localizes. This information is valuable because it
provides a context for the protein’s structure and function.
For example, two proteins that are hypothesized (based
on sequence similarity) to possess similar structure and
function may in fact localize to different compartments
within the cell and therefore be involved in distinct cellular
processes.

∗To whom correspondence should be addressed.

The most common method for determining subcellular
location is interpretation of fluorescence microscope
images, either of cells stained with monoclonal antibodies
against a specific endogenous protein or of cells express-
ing a GFP-tagged protein from a transfected construct.
Currently, the interpretation is performed visually by
the investigator. Such subjective interpretations may be
influenced by investigator bias (either conscious or uncon-
scious), cannot be easily confirmed by other investigators,
do not lend themselves to statistical analysis, and do not
provide a systematic description that can be entered in
databases.

An automated system for interpreting images of
localization patterns would therefore have a number of
advantages over current practice. These would include
objectivity, reliability, and repeatability. Since we have
found no prior work on the numerical analysis of protein
localization patterns, we have worked to develop and test
methods for quantitatively describing such patterns. To
this end, we initially demonstrated the feasibility of cre-
ating an automated system to distinguish five subcellular
patterns in Chinese hamster ovary cells (Boland et al.,
1998). When we attempted to apply the features used
in that system to a larger number of patterns in HeLa
cells, many of the patterns could not be distinguished.
In the work described here, we developed new features
and classification approaches to address more challenging
questions: can all major classes of localization patterns
(e.g. organelles) be distinguished by an automated
system? How visually subtle can differences between
patterns be such that they can still be distinguished by
such a system? The work we describe will be immediately
useful in a number of biotechnology applications, includ-
ing pharmaceutical screening for drugs that affect protein
location, large scale proteome characterization efforts,
and microscope-based automated functional assays.
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SYSTEMS AND METHODS
Immunofluorescence microscopy
HeLa cells were grown to sub-confluent levels on
collagen-coated microscope coverslips, fixed in
paraformaldehyde, and permeabilized with saponin.
They were then incubated with one of eight monoclonal
antibodies or rhodamine phalloidin (a label for fila-
mentous actin). Monoclonal antibodies directed against
an ER antigen (clone RFD6; DAKO, Carpinteria, CA,
USA), the Golgi protein giantin (Linstedt and Hauri,
1993), the Golgi protein GPP130 (Linstedt et al., 1997),
the lysosomal protein LAMP2 (Mane et al., 1989), a
mitochondrial outer membrane protein (clone H6/C12;
Serotec, Oxford, England), the nucleolar protein nu-
cleolin (Deng et al., 1996), transferrin receptor (clone
236-15 375; O.E.M. Concepts, Toms River, NJ, USA),
and beta tubulin (clone 2-28-33; Sigma) were used as
primary antibodies in separate labeling experiments.
Working dilutions of antibody stock solutions were
obtained by empirically optimizing for low background
in the presence of adequate specific signal. Filamentous
actin was labeled with 53 nM rhodamine phalloidin
(Molecular Probes). Cells incubated with primary anti-
bodies (except the anti-nucleolin antibody, which was
directly conjugated with Cy3) were subsequently incu-
bated with a Cy5 conjugated secondary antibody (Jackson
Immunoresearch, West Grove, PA, USA). All cells were
also labeled with the DNA intercalating dye DAPI. After
fixation, permeabilization, and labeling, the coverslips
were mounted on microscope slides. The coverslips were
scanned manually using differential interference contrast
microscopy to identify cells that were well spread and
separated from their neighbors. The focus was adjusted,
while viewing in DIC mode, until most cellular organelles
appeared in focus. Two stacks of three images separated
axially by 0.237 µm (above, at and below the focal plane
chosen by DIC) were collected for each field of view. One
of these stacks was collected for Cy5, Cy3 or rhodamine
fluorescence and one stack for DAPI fluorescence.

Image processing
The out-of-focus component of the fluorescence in the
central plane of each stack was reduced via nearest
neighbor deconvolution (Agard et al., 1989). The re-
maining background fluorescence (defined as the most
common pixel value in the image) was then subtracted
from the deconvolved image and small, isolated spots of
fluorescence were removed with a majority filter (Pratt,
1991, p. 457)—the Matlab bwmorph function with the
‘majority’ option. This filter sets a given pixel to 1 if at
least five of its immediate eight neighbors are 1 and to 0
otherwise. All pixels whose value was below a threshold
chosen by an automated method (Ridler and Calvard,

1978) were set to zero, and single cells were isolated using
a manually defined polygon. The intensity values for each
cell image were scaled to the range 0–1 by dividing by the
highest intensity value for that cell.

Zernike and Haralick features
Zernike moments and Haralick texture features were
calculated from the processed protein localization images
as previously described (Boland et al., 1998). Briefly,
Zernike moments (Zernike, 1934) are calculated us-
ing an orthogonal basis set, the Zernike polynomials,
which are defined over the unit circle. For reference,
plots of the Zernike polynomials are available at
http://murphylab.web.cmu.edu/services/SLF. The ampli-
tudes of these complex-valued moments were used as
features in subsequent pattern recognition. Translation
invariance was incorporated into the Zernike features by
calculating them about the center of fluorescence of the
image. The Haralick texture features (Haralick, 1979), on
the other hand, are statistics calculated on the gray-level
co-occurrence matrix derived from each image.

Subcellular location features
Additional sets of features designed to capture information
about subcellular location were developed for this study.
The first of these, termed Subcellular Location Features,
set 1 (SLF1) contains 16 features that are calculated from
the processed protein image only.

SLF1.1—the number of fluorescent objects in the image.
Objects were identified by applying the Matlab bwlabel
function to a binarized version of the processed image.
The bwlabel function defines an object as a contiguous
group of non-zero pixels in an eight-connected environ-
ment (i.e. a given pixel is adjacent to each of its eight
neighbors) (Haralick and Shapiro, 1992, pp. 28–48). No
restrictions were placed on the size of an object identified
using this method.

SLF1.2—the Euler number of the image. The Matlab
imfeature function was used to calculate the Euler
number, the number of objects in the image minus the
number of holes (Gonzalez and Woods, 1992, p. 505). A
hole is defined as a contiguous group of zero-valued pixels
contained entirely within an area of non-zero pixels. This
feature is intended to distinguish reticular or mesh-like
patterns from those that are more uniformly distributed.

SLF1.3—the average number of above-threshold pixels
per object. The mean number of non-zero pixels per
object was calculated for the binarized image. Along with
some features below, this number was intended to capture
information about the sizes of fluorescent objects in the
cell.
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SLF1.4—the variance of the number of above-threshold
pixels per object. The variance of the number of non-
zero pixels per object was also calculated. This feature was
included to help quantify the homogeneity of fluorescent
object sizes in the image.

SLF1.5—the ratio of the size of the largest object to the
smallest. This was defined as the number of pixels in
the largest object divided by the number of pixels in the
smallest object. Like SLF1.4, this feature was included as
a means of assessing the distribution of fluorescent object
sizes.

SLF1.6—the average object distance to the cellular center
of fluorescence. The Center Of Fluorescence (COF) of
the whole cell was calculated and used to determine
distances to the centers of fluorescence of each object in
that cell. Centers of fluorescence were calculated as:
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∑

x
∑

y x f (x, y)∑
x
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y f (x, y)
, ȳc =

∑
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∑

y y f (x, y)∑
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∑
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where x and y are the coordinates of each pixel (in
either the entire cell or a particular object), and f (x, y)

is the intensity of the pixel at (x, y). This feature provides
information about how the individual fluorescent objects
are distributed throughout the cell.

SLF1.7—the variance of object distances from the image
COF. The variance was calculated using the COF deter-
mined for SLF1.6. As with SLF1.8, this feature is included
to capture information about the distribution of objects
around a central point.

SLF1.8—the ratio of the largest to the smallest object
to image COF distance. This ratio was calculated as
the distance from the image COF to the furthest object
in the cell divided by the distance from the image COF
to the closest object. This feature was also included to
characterize the distribution of object distances from a
central point.

SLF1.9—the fraction of the non-zero pixels in a cell
that are along an edge. Edge detection was performed
on each image using the Canny method (Canny, 1986)
as implemented in the Matlab edge function. Canny’s
method calculates the gradient of the image using the
derivative of a Gaussian filter. It then assigns edges to
strong and weak categories. Weak edges are only included
in the final output if they are connected to strong edges.
This approach is less sensitive to noise in the image than
other edge detection methods. The area of the binarized
edge image was then divided by the area of the binarized
cell image. In a biological sense, this feature is included to
help distinguish proteins that localize along edges (i.e. the
membrane of an organelle or along a filament or tubule)
from those that do not.

SLF1.10—measure of edge gradient intensity homogene-
ity. Each image (I) was convolved separately with the
kernels N and W

N =
[

1 1 1
0 0 0

−1 −1 −1

]
, W =

[
1 0 −1
1 0 −1
1 0 −1

]

to find the intensity gradients in two orthogonal directions
(GN = I ⊗ N and GW = I ⊗ W). The intensity of the
gradient at all points in the image was calculated using

A(x, y) =
√

G2
N (x, y) + G2

W (x, y)

and a four-bin histogram was calculated for the values
in this edge intensity image. The final feature was the
fraction of all values that fall in the first bin of this
histogram. This feature was designed to capture the
homogeneity of edge gradients. In other words, are the
edges primarily ‘steep’ or more gradually sloping.

SLF1.11—measure of edge direction homogeneity 1.
The edge direction gradient at each point in the image G
was then calculated from the convolved images, GN and
GW, used in SLF1.10:

G(x, y) = tan−1
(

G N (x, y)

GW (x, y)

)
.

The value of each pixel in the image G is therefore the
direction (from −π to π ) of the intensity gradient at
that point in the image, I. An eight-bin histogram was
calculated using all of the values in the gradient image
G. The final feature was calculated as the ratio of the
largest to smallest value in the histogram. This feature was
designed to capture the homogeneity of edge direction,
i.e. are the edges primarily in one direction or are they
more evenly distributed? Images with patterns containing
edges oriented predominantly along a particular direction
(some patterns of actin filaments, for example) result
in edge gradient histograms in which a few bins will
dominate. Histograms of edge direction are not completely
insensitive to rotation because of quantization error.
Because the edges in biological images are not as regularly
oriented as those in images of man made patterns, it
was decided to avoid the smoothing techniques previously
described (Jain and Vailaya, 1996) so that any information
in the histogram was not futher degraded by the smoothing
operation.

SLF1.12—measure of edge direction homogeneity 2.
The ratio of the largest to the next largest value in the
eight-bin histogram used for SLF1.11 was calculated.
This feature was included to overcome problems that may
arise with values of SLF1.11 becoming very large when
the minimum value of the histogram is small.
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SLF1.13—measure of edge direction difference. For the
eight-bin histogram used for SLF1.11, the difference
between the bins for an angle and for that angle plus
π was calculated by summing bins 1–4 and subtracting
the sum of bins 5–8. This difference was normalized by
the sum of all eight bins. This feature is intended to
distinguish patterns in which there are parallel edges or
in which the edge directions are uniformly distributed (i.e.
the difference between the first four and last four bins of
the histogram is small) from patterns in which the edges
are primarily in one direction.

SLF1.14—the fraction of the convex hull area occupied
by protein fluorescence. The convex hull of the protein
localization image was calculated using the convhull
function in Matlab and converted to a binary image. The
area of the binarized protein image was then divided by
the area of the convex hull image. This feature has been
described as the ‘transparency’ of the image (Eakins et al.,
1998).

SLF1.15—the roundness of the convex hull. The round-

ness of an arbitrary shape is defined as (Perimeter)2

4π · Area (Sonka
et al., 1993, p. 227), which approaches 1 as the shape ap-
proaches a circle. We applied this calculation to the convex
hull.

SLF1.16—the eccentricity of the convex hull. The eccen-
tricity of the ellipse that is equivalent, based on second or-
der moments, to the protein image convex hull was calcu-
lated using the following (from Prokop and Reeves, 1992):

√
(Semimajor Axis)2 − (Semiminor Axis)2

(Semimajor Axis)
,

where

Semimajor Axis =

√√√√2
[
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

]
µ00

Semiminor Axis =

√√√√2
[
µ20 + µ02 −

√
(µ20 − µ02)2 + 4µ2

11

]
µ00

and µxy are the central moments of the protein image
convex hull. This feature is intended to distinguish patterns
that are elongated from those that are more circular.

A second set of features, SLF2, was defined to include
all of the features of SLF1 as well as six features calcu-
lated using both the processed protein image and the cor-
responding DNA image. The image of DNA distribution
was included in the analysis because it provides a common
reference point for each cell, and it may help to overcome
issues related to the variability of cell size and shape.

SLF2.17—the average object distance from the COF of
the DNA image. As for SLF1.6, the distances from
a reference point of objects in the protein image are
calculated. However, in this case the COF of the DNA
image is used in place of the COF of the protein image.

SLF2.18—the variance of object distances from the DNA
COF. This feature is analogous to SLF1.7 except that the
DNA COF is used as the reference point.

SLF2.19—the ratio of the largest to the smallest object to
DNA COF distance. This feature is analogous to SLF1.8
except that the DNA COF is used as the reference point.

SLF2.20—the distance between the protein COF and the
DNA COF. The distance between the COF of a protein
image and its corresponding DNA image is calculated.
This feature was designed to capture information about
how the protein is distributed relative to the nucleus.

SLF2.21—the ratio of the area occupied by protein to that
occupied by DNA. The number of pixels in the binarized
protein image is divided by the number of pixels in the
binarized DNA image. This feature describes the area
occupied by the protein distribution relative to the size of
the nucleus.

SLF2.22—the fraction of the protein fluorescence that
co-localizes with DNA. The fraction of pixels in the
binarized protein image that overlap with pixels in the
binarized DNA image. As with SLF2.20, this feature
captures information about the distribution of the protein
with respect to the nucleus.

Lastly, SLF3 was defined as the combination of SLF1
with the Zernike and Haralick features (a total of 78
features that can be calculated from a protein image only)
and SLF4 was defined as the combination of SLF2 with
the Zernike and Haralick features (a total of 84 features
that are derived from a protein image and a corresponding
DNA image).

Neural networks
Back-Propagation Neural Networks (BPNNs) were im-
plemented using the Netlab (http://www.ncrg.aston.ac.uk/
netlab/) scripts for Matlab. A fixed number of instances
from each class were randomly assigned to the training
(40 instances from each class), stop (20 instances from
each class), and test (remaining 13–38 instances from
each class) sets. The mean and standard deviation of each
feature were calculated using the instances assigned to
the training set. These values were then used to normalize
the training data to have a mean of 0 and a variance of 1.
In order to avoid biasing the classification system, the
mean and standard deviation of the training data were
also used to normalize the stop and test sets. This choice
simulates the situation in which a previously trained
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classifier is applied to data not available at the time of
training (and which must therefore be converted using the
same transformation as the training data).

The normalized training and stop sets were used to train
a BPNN with a number of inputs equal to the number
of features being evaluated, 20 hidden nodes, and 10
output nodes. The momentum and learning rate were 0.9
and 0.001, respectively. The target outputs of the network
for each instance were defined to be 0.9 for the node rep-
resenting the correct class of that instance and 0.1 for the
other outputs. After each epoch of training, the stop data
were passed through the network and a sum of squared
error was calculated for the difference between the actual
network outputs and the target outputs. When this error
term for the stop data reached a minimum, training was
halted. At that point, the test data were applied to the
network and the outputs recorded. Starting with random
assignment of the feature data, all of the steps above were
repeated 10 times. The result was 10 networks, each cre-
ated with a unique combination of training, stop and test
data, and 10 corresponding sets of network output data.

Pairwise feature comparisons
To gain insight into the basis for distinguishing similar
classes, all pairs of features in SLF2 were tested for
their ability to discriminate a given pair of classes.
This exercise was carried out only for the two pairs
of classes that are most similar, giantin/gpp130 and
transferrin receptor/LAMP2. The values for each pair
of features for all observations in the two classes were
used as both training and test data for the classify
function of Matlab. This function implements a minimum
Mahalanobis distance classifier for the case where the
covariance matrices of the two classes are not assumed to
be equal (Duda and Hart, 1973, p. 30). The percentage of
images that were correctly classified was calculated, and
the pair of features giving the highest percentage was then
found. For this pair of features, the decision boundary (the
line separating points classified into one class from those
classified as the other class) was found as the solution to
the equation

M(f, µ1, C1) = M(f, µ2, C2)

where f represents a feature vector (of length 2), µ1
and µ2 represent the mean feature vectors for the first
and second classes, C1 and C2 represent the covariance
matrices of the features for those classes, and M represents
the Mahalanobis distance function. Since this approach is
for visualization purposes only, we choose two features
that can be plotted versus each other rather than three
or more features. It is not intended to replace the more
accurate BPNN. It is important to note also that using a
minimum Mahalnobis distance classifier does not assume

that the populations are multivariate Gaussian but only that
the decision boundary is optimal only for the multivariate
Gaussians with the same covariance matrices.

IMPLEMENTATION
Image collection
For our initial work on pattern classification, we created a
collection of microscope images depicting five subcellular
patterns in Chinese Hamster Ovary (CHO) cells (Boland et
al., 1998). Since more monoclonal antibodies against hu-
man proteins are available than against hamster proteins,
we chose to create a new database of images of HeLa cells
(a human cultured cell line) that included all major classes
of subcellular structures. HeLa cells have the additional
advantage for microscopy of being larger and better spread
than CHO cells. Briefly, fluorescent dyes were targeted to
nine specific proteins and DNA. Images depicting the lo-
calization of those dye molecules, and hence the localiza-
tion of the target protein (or DNA) were then collected by
fluorescence microscopy.

The antibodies chosen targeted the major classes of
subcellular structures: the Endoplasmic Reticulum (ER),
the Golgi complex, lysosomes, endosomes, mitochondria,
the actin cytoskeleton, the tubulin cytoskeleton, nucleoli,
and nuclei. Pairs of antibodies expected to produce
patterns difficult to distinguish visually were purposely
included. We anticipated that testing the ability of our
numeric descriptors to distinguish these pairs would help
to understand how successful these methods would be
with patterns from subcompartments of organelles and
with organelles possessing similar localization patterns.

Representative images selected from each of the ten
classes of localization patterns using a systematic method
(the HTFR typicality method, Markey et al., 1999) are
shown in Figure 1.

Feature extraction
Arguably the most important step in pattern recognition is
the appropriate choice of numbers (features) to represent
an image. Given that subconfluent, unpolarized cells on
coverslips have arbitrary location and orientation, all
features used to describe them should be invariant to the
translation and rotation of cells within a field of view.
Since a long term goal of this work is a system that is
able to distinguish the localization of many proteins (not
just the ten patterns used in this study), we therefore used
two sets of ‘general purpose’ features that we previously
showed were useful for distinguishing subcellular patterns
(Boland et al., 1998). Zernike moments (Teague, 1980)
have found application in pattern recognition (Bailey and
Mandyam, 1996; Khotanzad and Hong, 1990; Perantonis
and Lisboa, 1992). We used Zernike moments up to
degree 12, providing 49 numbers describing each image.
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Fig. 1. Representative images from the classes used as input to the classification systems described in the text. These images have had
background fluorescence subtracted and have had all pixels below a threshold set to 0. Images are shown for cells labeled with antibodies
against an ER protein (A), the Golgi protein giantin (B), the Golgi protein GPP130 (C), the lysosomal protein LAMP2 (D), a mitochondrial
protein (E), the nucleolar protein nucleolin (F), transferrin receptor (H), and the cytoskeletal protein tubulin (J). Images are also shown for
filamentous actin labeled with rhodamine-phalloidin (G) and DNA labeled with DAPI (K). Scale bar = 10 µm.

A fundamentally different set of features that measure
image texture (Haralick, 1979) were also used. These
features describe more intuitive aspects of the images (e.g.
complexity, coarseness, isotropy, etc.) using statistics of
the gray-level co-occurrence matrix for each image.

A new set of features was also developed using some
features designed specifically for this problem and some
features previously used for other pattern recognition and
image processing applications. The goal for these features
was to capture some of the criteria used by biologists
to describe the localization of proteins. The first set of

these SLF1, includes measures of object distance from
the center of the cell (where an object is a contiguous
group of fluorescent pixels and may represent all or
part of an organelle), the distribution of object sizes,
the degree to which the protein distribution overlaps
the nucleus, the diffuseness of the localization pattern,
the edge content of the image, and others. To help
provide some standardization between cells, which are
inherently heterogeneous in morphology, some features
were designed to take advantage of a DNA image collected
along with each protein localization image. The intent
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Table 1. The 37 features selected from SLF4 using stepwise discriminant
analysis to maximize discrimination between the ten classes of images used
in this study. The features are shown in decreasing order of Wilks’ λ statistic.
This set is defined as SLF5

1. SLF1.3: the average number of pixels per object
2. Z4,0
3. SLF2.22: the fraction of the protein fluorescence that co-localizes

with DNA

4. Z2,0
5. Haralick information measure of correlation 1
6. SLF1.6: the average object distance to the COF
7. SLF1.2: the Euler number of the image
8. Haralick sum entropy
9. SLF1.14: the fraction of the convex hull occupied by protein

fluorescence

10. SLF1.9: the fraction of non-zero pixels that are along an edge
11. SLF2.19: the ratio of the largest to the smallest object to DNA

COF distance

12. Z8,0
13. Z12,2
14. Z12,0
15. Haralick information measure of correlation 2
16. Haralick correlation
17. Z7,1
18. Z4,2
19. SLF1.5: the ratio of the size of the largest object to the smallest
20. SLF1.11: the ratio of the largest to smallest value in a histogram of

gradient direction

21. SLF2.17: the average object distance from the DNA COF
22. Haralick angular second moment
23. Haralick contrast
24. Haralick sum variance
25. Haralick sum average
26. SLF1.1: the number of fluorescent objects in the image
27. Haralick difference variance
28. SLF1.8: the ratio of the largest to smallest object—COF distance
29. Z10,0
30. Z1,1
31. SLF1.7: the variance of object distances from the COF
32. Z11,1
33. SLF1.4: the variances of the number of above-threshold pixels per

object

34. Haralick sum of squares
35. Haralick difference entropy
36. Haralick inverse difference moment
37. Z8,8

was to use the DNA pattern, which is fairly consistent
among cells, as a common landmark to which the protein
localization pattern could be referred. Feature set SLF2
was defined as the combination of the features in SLF1
with the six additional features that are defined in relation
to the DNA distribution.

Feature subset selection
It is accepted in the pattern recognition community that
simply adding more descriptive features to a system
will not necessarily increase the ability of that system

Fig. 2. Resolving power of the most discriminating features iden-
tified by stepwise discriminant analysis. A scatterplot displaying
Zernike moment Z4,0 versus SLF1.3 (average number of pixels per
object) is shown for twenty observations each for DAPI (�), an ER
protein (�), a mitochondrial protein (◦), giantin (�), F-actin (�),
tubulin (♦), nucleolin (•), and LAMP-2 (�). To simplify the plot,
values for gpp130 and transferrin receptor are not shown (they are
similar to giantin and LAMP-2, respectively). Note that many of
the classes overlap but that most can be roughly distinguished using
only these two features.

to correctly recognize patterns. In an attempt to opti-
mize the dimensionality of the feature set, a subset of
features was selected from the SLF4 feature set (the
combination of Zernike, Haralick, and SLF2 features) via
stepwise discriminant analysis (Jennrich, 1977) using the
STEPDISC function of SAS (SAS Institute, Cary, NC,
USA). This method uses Wilks’ λ statistic to iteratively
determine which features are best able to separate the
classes from one another in the feature space. Since it
is not possible to identify a subset of features that are
optimal for classification without training and testing
classifiers for all combinations of the input features,
optimization of Wilks’ λ was chosen as a reasonable
alternative. The 37 (out of 84) features that were most
statistically significant in terms of their ability to separate
the ten classes identified using this approach are listed in
Table 1. This set is referred to as SLF5 and was used in
the classification phase of the work. A scatter plot for the
two most distinguishing features is shown in Figure 2.
While there is significant overlap in the distributions of
these features for the various classes, the scatter plot gives
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Table 2. Average performance of BPNNs for classifying previously unseen single images using the SLF5 feature set. The average rate of correct classification
is 83 ± 4.6% (mean ± 95% confidence interval). The number of test samples per class is indicated in parentheses. This number of samples was randomly
selected 10 times and classified by 10 different networks to generate this table. Not all rows sum to 100% due to rounding

True Output of classifier
classification DNA ER Giantin GPP130 LAMP2 Mitochondria Nucleolin Actin TfR Tubulin
(no. samples) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

DNA (87) 99 1 0 0 0 0 0 0 0 0
ER (86) 0 87 2 0 1 7 0 0 2 2
Giantin (87) 0 1 77 19 1 0 1 0 1 0
GPP130 (85) 0 0 16 78 2 1 1 0 1 0
LAMP2 (84) 0 1 5 2 74 1 1 0 16 1
Mitochondria (73) 0 8 2 0 2 79 0 1 2 6
Nucleolin (80) 1 0 1 2 0 0 95 0 0 0
Actin (98) 0 0 0 0 0 1 0 96 0 2
TfR (91) 0 5 1 1 20 3 0 2 62 6
Tubulin (91) 0 4 0 0 0 8 0 1 5 81

a rough indication that at least most of the classes are
likely to be distinguishable using the SLF5 feature set.

Classification of single cells
A BPNN was chosen as a classifier primarily because of
its ability to generate complex decision boundaries in a
multidimensional feature space (Hornik et al., 1989). Neu-
ral networks were chosen for use as classifiers after prior
studies demonstrated the inferiority of other approaches
including linear discriminant analysis, decision trees, and
k-nearest neighbor classifiers (data not shown). A BPNN
with a single hidden layer of 20 nodes was used to classify
the ten classes of images described above. The choice of
20 hidden nodes was made by testing networks with 5–30
hidden nodes and assessing their ability to classify patterns
(data not shown). The choice of training algorithm, back
propagation with momentum, was essentially arbitrary but
was intended to demonstrate the utility of a straightfor-
ward neural network in this particular application.

Forty samples were taken randomly from each class and
their features were used to train the BPNN. Features from
another 20 samples from each class were then collectively
used to decide when to stop the training process. Finally,
the features from the remaining 13–38 images from each
class were classified using the trained network. This
process, starting with random assignment of the training
samples, was repeated 10 times to produce the confusion
matrix in Table 2. An ideal classifier would produce a
confusion matrix in which the diagonal elements were
all 100% and all off-diagonal elements were 0%. The
matrix in Table 2 is clearly not ideal, but most classes
of images are well resolved from each other. The poorest
performance is on the classes that were expected to be
easily confused, but even images in these classes were
correctly classified at a rate of at least 62%. Confused pairs

of patterns include those for LAMP2 and the transferrin
receptor, and those for the ER and mitochondrial proteins.
Surprisingly, the system was able to distinguish the
patterns of the two Golgi proteins to a significant extent.
The basis for this distinction will be discussed below.

An alternative method for reducing the dimensionality
of the original feature set is to calculate principal compo-
nents that capture a specified fraction of the total variance.
To test this approach, we first converted all features to
zero mean and unit variance and then calculated principal
components. The first 7 principal components captured
approximately 68% of the total variance while the first 32
captured approximately 95%. When BPNN classifiers
were trained and tested using either the first 7 or 32
principal components, the average correct classification
rate was lower (73%) than for SLF5 (83%). We conclude
that stepwise discriminant analysis, while known to be
a suboptimal method, performs better than principal
component calculation in our case.

Classification of populations
The results for classification of single cells based on
protein localization patterns are very good given the high
degree of heterogeneity within the individual classes,
but are not as impressive as pattern recognition results
from other fields in which classification rates approach
100%. While the systematic approach to description
of protein localization described here is valuable even
if classification accuracies cannot be improved beyond
those in Table 2, there are applications of this work
in which one would want the classification accuracies
to be as high as possible. The primary example is
experiments involving screening for cells expressing a
particular protein localization pattern. Specifically, it is
common for an investigator to conduct an experiment
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Table 3. Average performance of BPNNs for classifying previously unseen sets of ten images using the SLF5 feature set. Each set was assigned a single
classification based on the class to which a plurality of its members were assigned by the BPNNs whose performances are summarized in Table 2. The 10
networks trained to generate Table 2 were each tested on 1000 sets of 10 images, with plurality rule at the output, to generate this table. The numbers in
parentheses are calculated using only those sets not classified as unknown. The average rate of correct classification for all trials is 98% and the average for
sets that were not classified as unknown (numbers in parentheses) is 99%

True Output of classifier
classification DNA ER Giantin GPP130 LAMP2 Mitochondria Nucleolin Actin TfR Tubulin Unknown

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

DNA 100 0 0 0 0 0 0 0 0 0 0
(100)

ER 0 100 0 0 0 0 0 0 0 0 0
(100)

Giantin 0 0 98 0 0 0 0 0 0 0 1
(99.5)

GPP130 0 0 0 99 0 0 0 0 0 0 1
(99.7)

LAMP2 0 0 0 0 97 0 0 0 1 0 2
(99)

Mitochondria 0 0 0 0 0 100 0 0 0 0 0
(100)

Nucleolin 0 0 0 0 0 0 100 0 0 0 0
(100)

Actin 0 0 0 0 0 0 0 100 0 0 0
(100)

TfR 0 0 0 0 6 0 0 0 88 0 6
(93)

Tubulin 0 0 0 0 0 0 0 0 0 99.9 0
(100)

using many populations of cells where each of those
populations has been grown under different conditions.
The goal may then be, for example, to distinguish those
populations in which a particular protein is found in the
Golgi from those in which that protein is in the ER.

For this purpose, improvements in classification can be
achieved by assigning a single classification to a set (or
population) of homogeneously prepared cells. Groups of
cells that have been subject to the same preparation proce-
dures (i.e. they were in the same culture dish throughout
the experiment) can be assumed to belong to the same
class for the purposes of assessing protein localization.
Classifying populations rather than individual cells
parallels the practice of cell biologists, who often scan
across many fields before drawing a conclusion.

To test this method of classifying populations experi-
mentally, the same networks trained and tested for single
cell classification (above) were used to classify random
sets of ten images each drawn from a single class of the
test data. That is, the ten images all depicted different in-
stances of one of the localization patterns described above.
The entire set of ten images was then assigned to the class
to which a plurality of its constituents were assigned by
the classifier. Sets for which no plurality existed were clas-

sified as ‘unknown’. This procedure was repeated 1000
times (using different sets of randomly chosen images) for
each of the ten neural networks trained using different per-
mutations of the feature data. The accuracy of classifica-
tion of the resulting 10 000 sets of ten images is shown in
Table 3. Note that Table 3 includes correct classification
rates for all sets derived from a given class as well as the
correct classification rate for those sets not classified as
unknown. As expected, the classification system performs
better when we allow it to say ‘I don’t know’ and avoid
making a classification.

The most important result found in Table 3 is that
the average classification rate (defined as the average of
the diagonal elements) is much higher (98%) than that
obtained for the single cell case (83%). Furthermore, there
is little or no confusion between the pairs of classes that
were problematic when looking at cells one at a time
(giantin and GPP130, transferrin receptor and LAMP2).
In fact, looking at the results shown in parentheses in
Table 3 (sets for which a plurality existed, i.e. those not
classified as ‘unknown’), there is essentially no confusion
between any of the classes except for transferrin receptor
and LAMP2.
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Basis of distinction between similar classes
The fact that the various classifiers we tested were able to
distinguish image classes expected to be difficult to sep-
arate necessarily implies that decision boundaries can be
drawn in the high-dimensional feature space that separate
(at least to a large degree) each class. While statisticians or
computer scientists may be satisfied by this knowledge, bi-
ologists may reasonably ask what features enable an auto-
mated system to separate classes that they may not be able
to distinguish by eye. Although it is not possible to ad-
equately describe or visualize the decision boundaries of
a high-dimensional neural network, examination of scatter
plots of pairs of features may provide insight into the basis
for separation. We therefore searched for pairs of features
that could provide the best discrimination between partic-
ular classes and generated scatter plots of these features
(Figure 3). It can be seen in Figure 3a that the endosome
and lysosome classes are somewhat distinguishable based
on the number of fluorescent objects in each cell (with the
lysosomal protein showing fewer objects) and based on
the average distance of an object to the COF (with lyso-
somes being closer to the center). This finding recapitu-
lates a common description of the difference between en-
dosomal and lysosomal patterns (endosomes are more nu-
merous and peripheral). Similarly, Figure 3b shows that
the distributions of the two Golgi proteins can be partially
distinguished based on their relationship to nuclear DNA
and on their shape. Giantin’s distribution is more circular
than gpp130’s (at least as estimated by the convex hull)
and it overlaps with the nucleus somewhat more than the
distribution of gpp130. Of course, this overlap is expected
to arise from Golgi elements either above or below, rather
than inside, the nucleus. The biological significance of the
distinction between these Golgi protein distributions re-
mains to be determined.

DISCUSSION AND CONCLUSIONS
We have described an approach to quantitative description
of protein localization patterns and demonstrated that
this approach can produce classifiers that can reliably
distinguish the patterns of all major organelles in HeLa
cells. It is worth noting that the approach should work
equally well on proteins that move between organelles
and those that remain largely in a single organelle, since
it is the steady state pattern, which includes contributions
from all organelles weighted by the average fraction
of time that the protein spends in each, which is being
analyzed. Protein movement between organelles adds
additional components to the overall steady state pattern
beyond those of the individual organelles themselves.
Quantitative analysis of the localization of proteins
provides an objective method of describing proteins that
is complementary to those that currently exist (e.g. amino

Fig. 3. Partial basis for distinguishing between similar classes. All
pairs of features in SLF2 were tested for their ability to discriminate
similar classes using a minimum-Mahalanobis-distance classifier
(with non-equal covariance matrices for the two classes). (a) A
scatterplot of SLF1.6 versus SLF1.1 is shown for images of
transferrin receptor (�) and LAMP-2 (◦). The decision boundary
for the classifier is also shown; 74.9% of the images are correctly
classified using this boundary. While the best performance was
actually obtained using SLF1.6 with SLF1.12 (77.7% correct
classification), SLF1.6 and SLF1.1 are shown since their basis
for distinguishing the two classes is more understandable from a
biological perspective. (b) A scatterplot for the pair of features best
able to discriminate giantin (�) and gpp130 (�) is shown. The
decision boundary shown correctly classifies 75.6% of the images.
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acid sequence, hydrophobicity, functional motifs, etc.)
Ultimately, it will be possible to quantify the degree of
similarity in the localization of two proteins, just as it
is now possible to quantitatively describe the degree of
similarity between two amino acid sequences. A benefit of
such quantitative analysis will be the ability to obtain and
archive novel information about new or existing proteins;
a list of proteins with the same or similar localization
characteristics, for instance. These techniques form an
ideal adjunct to methods for randomly tagging expressed
proteins (Jarvik et al., 1996; Rolls et al., 1999).

In addition, automated screening of microscope images
is becoming an increasingly important tool in a variety of
fields, including biology and pharmacology (Giuliano and
Taylor, 1998). As an example, pharmaceutical companies
have a large arsenal of compounds that are potentially
marketable drugs. It is a significant effort to identify those
few that have a desired effect on a system (e.g. those
compounds that prevent translocation of a transcription
factor to the nucleus). Techniques like those described
here, for the automated screening of protein localization
patterns, are potentially useful in this process.
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